The AAS33051 is a 360° angle sensor IC that provides contactless high-resolution angular position information based on magnetic circular vertical Hall (CVH) technology. It has a system-on-chip (SoC) architecture that includes: a CVH front end, digital signal processing to calculate the angular position information, and multiple output formats: serial protocol (SPI), pulse-width modulation (PWM), and either motor commutation (UVW) or encoder outputs (A, B, I). It also includes on-chip EEPROM technology, capable of supporting up to 100 read/write cycles, for flexible programming of calibration parameters. The AAS33051 is ideal for automotive applications requiring 0° to 360° angle measurements, such as electronic power steering (EPS), electronic power braking (EPB or IDB), transmission actuators, and BLDC pumps.

The AAS33051 includes on-chip 32 segment linearization. This can be used to calibrate out errors due to misalignment between the magnet and the sensor or imperfect magnetization of the target magnet.

The AAS33051 supports customer integration into safety-critical applications.

The AAS33051 is available in a dual-die 24-pin eTSSOP and a single-die 14-pin TSSOP package. The packages are lead (Pb) free with 100% matte-tin leadframe plating. The 1 mm thin package reduces the minimum air gap between the CVH transducer and the target magnet. The AAS33051 device is pin-compatible with the A1339 to enable easy migration.
FEATURES AND BENEFITS (continued)

- High diagnostic coverage
 - On-chip diagnostics include logic built-in self-test (LBIST), signal path diagnostics, and watchdogs to support safety-critical (ASIL) applications
 - 4-bit CRC on SPI
- On-chip EEPROM for storing factory and customer calibration parameters
 - Single-bit error correction; dual-bit error detection, error correction control (ECC)
- Supports operating in harsh conditions required for automotive and industrial applications, including direct connection to 12 V battery
 - Operating temperature range from -40°C to 150°C
 - Operating supply voltage range from 3.7 to 18 V, absolute maximum of 28 V continuous
 - Can support ISO 7637-2 Pulse 5b up to 39 V
- Low power mode and turns counter feature to keep track of motor position in automotive applications when the vehicle is turned off
 - Loss of power is indicated by reset flag
 - Externally stored positions can be written back to the turns counter
- Multiple output formats supported for ease of system integration
 - ABI and UVW interfaces provide high resolution and lowest latency angle information
 - PWM interface provides initial position for ABI/UVW interfaces
 - 10 MHz SPI for low latency angle and diagnostic information; enables multiple independent ICs to be connected to same bus
 - 5 V SPI can be supported
- Output resolution on ABI and UVW are selectable
- Multiple programming / configuration formats supported
 - The system can be completely controlled and programmed over SPI, including EEPROM writes
 - For system with limited pins available, writing and reading can be performed over VCC and PWM pins. This allows configuring the EEPROM in production line for a device with only ABI/UVW and PWM pins connected.
- 1 mm thin surface-mount TSSOP packages for both single and dual die versions to minimize air gap from target magnet to CVH transducer for improved field strength
 - Pin-compatible to single and dual die A1339 devices
 - Stacked dual die construction to improve channel-to-channel matching for systems that require redundant sensors

Table of Contents

Features and Benefits ... 1
Description .. 1
Packages ... 1
Simplified Block Diagram ... 1
Selection Guide ... 3
Absolute Maximum Ratings .. 3
Thermal Characteristics .. 3
Pinout Diagrams and Terminal List 4
Typical Performance ... 5
Functional Description .. 9
Overview ... 9
Angle Measurement .. 9
System Level Timing .. 9
Power-Up .. 9
PWM Output .. 9
Linearization .. 14
Incremental Output Interface (ABI) 14
Brushless DC Motor Commutation 20
ABI Behavior at Power-Up .. 22
Angle Hysteresis .. 23
Low Power Mode ... 24
Turns Counting and Low Power Mode 28
Setting the Turns Count Value 30
Transport Mode ... 30
Device Programming Interface 31
Interface Structure .. 31
SPI Interface ... 32
Manchester Interface ... 36
EEPROM and Shadow Memory Usage 42
Enabling EEPROM Access ... 42
EEPROM Write Lock ... 42
EEPROM Access and Write Lock Exceptions 43
Write Transaction .. 43
Read Transaction ... 47
Shadow Memory Read and Write Transactions 49
Serial Interface Table ... 50
Primary Serial Interface Registers Reference 51
EEPROM and Shadow Register Table 59
EEPROM Reference .. 60
Safety and Diagnostics ... 69
Alive Counter ... 69
Oscillator Watchdogs .. 69
Logic Built-In Self-Test (LBIST) 69
CVH Self-Test .. 69
Application Information .. 70
Magnetic Target Requirements 70
Typical SPI and ABI/UVW Applications 71
I/O Structures .. 73
Package Outline Drawings .. 74
AAS33051

Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

SELECTION GUIDE *

<table>
<thead>
<tr>
<th>Part Number</th>
<th>System Die</th>
<th>Interface Voltage (V)</th>
<th>Package</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS33051LLPBTR-DD</td>
<td>Dual</td>
<td>3.3</td>
<td>24-pin eTSSOP</td>
<td>4000 pieces per 13-inch reel</td>
</tr>
<tr>
<td>AAS33051LLEATR</td>
<td>Single</td>
<td>3.3</td>
<td>14-pin TSSOP</td>
<td>4000 pieces per 13-inch reel</td>
</tr>
</tbody>
</table>

* Contact Allegro for 5 V interface variants if required.

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Notes</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Supply Voltage</td>
<td>V_{CC}</td>
<td>Sampling angles, respecting T_{j(max)}</td>
<td>28</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Supply Voltage</td>
<td>V_{RCC}</td>
<td>Not sampling angles</td>
<td>–18</td>
<td>V</td>
</tr>
<tr>
<td>All Other Pins Forward Voltage</td>
<td>V_{IN}</td>
<td></td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>All Other Pins Reverse Voltage</td>
<td>V_{R}</td>
<td></td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>T_{A}</td>
<td>L range</td>
<td>–40 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j(max)}</td>
<td></td>
<td>170</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td></td>
<td>–65 to 170</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS: May require derating at maximum conditions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Test Conditions*</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Thermal Resistance</td>
<td>R_{θJA}</td>
<td>LP-24 package with exposed thermal pad; measured on JEDEC JESD51-7 2s2p board</td>
<td>69</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LE-14 package; measured on JEDEC JESD51-7 2s2p board</td>
<td>82</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
PINOUT DIAGRAMS AND TERMINAL LIST TABLE

Terminal List Table

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM_1</td>
<td>4</td>
<td>9 PWM Angle Output (die 1)</td>
</tr>
<tr>
<td>BYP_1</td>
<td>1</td>
<td>12 External bypass capacitor terminal for internal regulator (die 1)</td>
</tr>
<tr>
<td>A_1/U_1</td>
<td>12</td>
<td>5 Option 1: Quadrature A output signal (die 1) Option 2: U (phase 1) output signal (die 1)</td>
</tr>
<tr>
<td>B_1/V_1</td>
<td>13</td>
<td>6 Option 1: Quadrature B output signal (die 1) Option 2: V (phase 2) output signal (die 1)</td>
</tr>
<tr>
<td>VCC_1</td>
<td>2</td>
<td>11 Power supply</td>
</tr>
<tr>
<td>I_1/W_1</td>
<td>14</td>
<td>7 Option 1: Quadrature I (index) output signal (die 1) Option 2: W (phase 3) output signal (die 1)</td>
</tr>
<tr>
<td>VCC_2</td>
<td>–</td>
<td>23 Power supply</td>
</tr>
<tr>
<td>MISO_2</td>
<td>–</td>
<td>16 SPI Master Input / Slave Output (die 2)</td>
</tr>
<tr>
<td>MOSI_2</td>
<td>–</td>
<td>15 SPI Master Output / Slave Input (die 2); also address selection for Manchester interface</td>
</tr>
<tr>
<td>CS_2</td>
<td>–</td>
<td>13 SPI Chip Select terminal, active low input (die 2); also address selection for Manchester interface</td>
</tr>
<tr>
<td>GND</td>
<td>5, 6, 7</td>
<td>– Device ground terminal</td>
</tr>
<tr>
<td>GND_1</td>
<td>–</td>
<td>8 Device ground terminal</td>
</tr>
<tr>
<td>GND_2</td>
<td>–</td>
<td>20 Device ground terminal</td>
</tr>
<tr>
<td>PWM_2</td>
<td>–</td>
<td>21 PWM Angle Output (die 2)</td>
</tr>
<tr>
<td>BYP_2</td>
<td>–</td>
<td>24 External bypass capacitor terminal for internal regulator (die 2)</td>
</tr>
<tr>
<td>A_2/U_2</td>
<td>–</td>
<td>17 Option 1: Quadrature A output signal (die 2) Option 2: U (phase 1) output signal (die 2)</td>
</tr>
<tr>
<td>B_2/V_2</td>
<td>–</td>
<td>18 Option 1: Quadrature B output signal (die 2) Option 2: V (phase 2) output signal (die 2)</td>
</tr>
<tr>
<td>I_2/W_2</td>
<td>–</td>
<td>19 Option 1: Quadrature I (index) output signal (die 1) Option 2: W (phase 3) output signal (die 1)</td>
</tr>
<tr>
<td>MISO_1</td>
<td>11</td>
<td>4 SPI Master Input / Slave Output (die 1)</td>
</tr>
<tr>
<td>SCLK_1</td>
<td>9</td>
<td>2 SPI Clock terminal input (die 1)</td>
</tr>
<tr>
<td>MOSI_1</td>
<td>10</td>
<td>3 SPI Master Output / Slave Input (die 1); also address selection for Manchester interface</td>
</tr>
<tr>
<td>CS_1</td>
<td>8</td>
<td>1 SPI Chip Select terminal, active low input (die 1); also address selection for Manchester interface</td>
</tr>
<tr>
<td>WAKE_1</td>
<td>3</td>
<td>10 External Wake-Up signal input (die 1)</td>
</tr>
<tr>
<td>WAKE_2</td>
<td>–</td>
<td>22 External Wake-Up signal input (die 2)</td>
</tr>
<tr>
<td>PAD</td>
<td>–</td>
<td>PAD Exposed pad for thermal dissipation</td>
</tr>
</tbody>
</table>

Pinout Diagrams

LP 24-Pin eTSSOP

- CS_1
- SCLK_1
- MOSI_1
- MISO_1
- B_1/V_1
- L_1/W_1
- GND_1
- PWM_1
- WAKE_1
- VCC_1
- BYP_1
- PAD

LE 14-Pin TSSOP

- BYP_1
- VCC_1
- WAKE_1
- PWM_1
- GND
- GND_1
- GND_2
- CS_1
- MISO_1
- SCLK_1
- LE 14-Pin TSSOP
Operating Characteristics

Valid over the full operating voltage and ambient temperature ranges, unless otherwise noted.

Electrical Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td>For single die</td>
<td>3.7 V</td>
<td>–</td>
<td>18 V</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>$I_{CC(MI)}$</td>
<td>Single die, target RPM = 0, $T_A = 25^\circ C$, $V_{CC} = 5$ V, sleep time = 96 ms</td>
<td>–</td>
<td>15 mA</td>
<td>19 mA</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single die, target RPM = 0, $T_A = 150^\circ C$, $V_{CC} = 16$ V, sleep time = 96 ms</td>
<td>–</td>
<td>76 µA</td>
<td>–</td>
<td>µA</td>
</tr>
<tr>
<td>Low-Power Mode Average Supply Current</td>
<td>$I_{CC(LP)}$</td>
<td>Single die, target RPM = 0, $T_A = 25^\circ C$, $V_{CC} = 5$ V</td>
<td>–</td>
<td>45 µA</td>
<td>–</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single die, target RPM = 0, $T_A = 150^\circ C$, $V_{CC} = 16$ V</td>
<td>–</td>
<td>170 µA</td>
<td>–</td>
<td>µA</td>
</tr>
<tr>
<td>Transport Mode Supply Current</td>
<td>$I_{CC(TRANS)}$</td>
<td>Single die, $T_A = 25^\circ C$, $V_{CC} = 5$ V</td>
<td>–</td>
<td>45 µA</td>
<td>–</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single die, $T_A = 150^\circ C$, $V_{CC} = 16$ V</td>
<td>–</td>
<td>150 µA</td>
<td>–</td>
<td>µA</td>
</tr>
<tr>
<td>Power-On Reset Threshold Voltage</td>
<td>V_{PORHI}</td>
<td>V_{CC} rising, $dV/dt = 1$ V/ms, $T_A = -40^\circ C$ to $150^\circ C$</td>
<td>–</td>
<td>–</td>
<td>3.7 V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{PORLOW}</td>
<td>V_{CC} falling, $dV/dt = 1$ V/ms, $T_A = -40^\circ C$ to $150^\circ C$</td>
<td>2.8 V</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Undervoltage Warning Level</td>
<td>V_{UV}</td>
<td>$T_A = -40^\circ C$ to $150^\circ C$</td>
<td>3.7 V</td>
<td>–</td>
<td>3.82 V</td>
<td>V</td>
</tr>
<tr>
<td>Supply Zener Clamp Voltage</td>
<td>V_{ZSUP}</td>
<td>$I_{CC} = I_{CC(AWAKE)} + 3$ mA, $T_A = 25^\circ C$</td>
<td>26.5 V</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Battery Current</td>
<td>I_{RC}</td>
<td>$V_{RCC} = 18$ V, $T_A = 25^\circ C$</td>
<td>–</td>
<td>–</td>
<td>5 mA</td>
<td>mA</td>
</tr>
<tr>
<td>Power-On Time</td>
<td>t_{PO}</td>
<td>Power-on diagnostics disabled, interface working, but angle not yet settled</td>
<td>–</td>
<td>300 ns</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Bypass Pin Output Voltage</td>
<td>V_{BVP}</td>
<td>$T_A = 25^\circ C$, $C_{BVP} = 0.1$ µF</td>
<td>2.97 V</td>
<td>3.3 V</td>
<td>3.63 V</td>
<td>V</td>
</tr>
</tbody>
</table>

SPI and ABI/UVW Interface Specifications

(For 3.3 V Interface)

Digital Input High Voltage	V_{IH}	MOSI, SCLK, ČS pins	2.8 V	–	3.63 V	V
Digital Input Low Voltage	V_{IL}	MOSI, SCLK, ČS pins	–	–	0.5 V	V
Output High Voltage	V_{OH}	MISO and ABI/UVW pins, $C_L = 20$ pF, $T_A = 25^\circ C$	2.93 V	3.3 V	3.63 V	V
Output Low Voltage	V_{OL}	MISO and ABI/UVW pins, $C_L = 20$ pF, $T_A = 25^\circ C$	–	0.3 V	–	V

(For 5.0 V Interface) (Contact Allegro for 5 V SPI ordering information)

Digital Input High Voltage	V_{IH}	MOSI, SCLK, ČS pins	3.75 V	–	5.5 V	V
Digital Input Low Voltage	V_{IL}	MOSI, SCLK, ČS pins	–	–	0.5 V	V
Output High Voltage	V_{OH}	MISO and ABI/UVW pins, $C_L = 20$ pF, $T_A = 25^\circ C$	4.0 V	5.0 V	5.5 V	V
Output Low Voltage	V_{OL}	MISO and ABI/UVW pins, $C_L = 20$ pF, $T_A = 25^\circ C$	–	0.3 V	–	V

SPI Interface Specifications

SPI Clock Frequency	f_{SCLK}	MISOx pins, $C_L = 20$ pF	0.1 MHz	–	10 MHz	kHz
SPI Clock Duty Cycle	D_{SCLK}	SPICLKDC	40 %	–	60 %	%
SPI Frame Rate	f_{SPI}	–	5.8 ns	–	588 ns	kHz
Chip Select to First SCLK Edge	t_{CS}	Time from ČSx going low to SCLKx falling edge	50 ns	–	–	ns
Chip Select Inactive Time	t_{CSH}	Time in which ČSx is held high before the next frame	150 ns	–	–	ns
Data Output Valid Time	t_{DAV}	Data output valid after SCLKx falling edge	–	–	50 ns	ns
MOSI Setup Time	t_{SU}	Input setup time before SCLKx rising edge	–	–	25 ns	ns
MOSI Hold Time	t_{HD}	Input hold time after SCLKx rising edge	–	–	50 ns	ns
SCLK to ČS Hold Time	t_{CHD}	Hold SCLKx high time before ČSx rising edge	–	–	5 ns	ns
Load Capacitance	C_L	Loading on digital output (MISOx) pin	–	–	20 pF	pF

Continued on the next page…
OPERATING CHARACTERISTICS (continued): Valid over the full operating voltage and ambient temperature ranges, unless otherwise noted

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM INTERFACE SPECIFICATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM Carrier Frequency</td>
<td>f_{PWM}</td>
<td>PWM Frequency Min Setting, T_A in specification</td>
<td>–</td>
<td>98</td>
<td>–</td>
<td>Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PWM Programmable Options (number of steps)</td>
<td>–</td>
<td>128</td>
<td>–</td>
<td>steps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PWM Frequency Max Setting, T_A in specification</td>
<td>–</td>
<td>3.125</td>
<td>–</td>
<td>kHz</td>
</tr>
<tr>
<td>PWM Output Low Clamp</td>
<td>$D_{PWM(min)}$</td>
<td>Corresponding to digital angle of 0x000</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>PWM Output High Clamp</td>
<td>$D_{PWM(max)}$</td>
<td>Corresponding to digital angle of 0xFFF</td>
<td>–</td>
<td>95</td>
<td>–</td>
<td>%</td>
</tr>
</tbody>
</table>

| **INCREMENTAL OUTPUT SPECIFICATIONS** | | | | | | |
| ABI and UVW Output Angular Hysteresis [6] | $h_{YS\text{ANG}}$ | Programmable | 0 | – | 1.38 | degrees |

MANCHESTER INTERFACE SPECIFICATIONS						
Manchester High Voltage [6]	$V_{MAN(H)}$	Applied to VCC line	7.3	8	$V_{CC(max)}$	V
Manchester Low Voltage [6]	$V_{MAN(L)}$	Applied to VCC line	$V_{CC(min)}$	5	5.7	V
Manchester Bitrate [6]	f_{MAN}	Line state changes once or twice per bit; maximum speed is usually limited by VCC line capacitance	2.2	100		kbit/s

BUILT-IN SELF TEST						
Logic BIST Time	t_{LBIST}	Configurable to run on power-up or on user request	–	30	–	ms
Circular Vertical Hall Self-Test Time	t_{CVHST}	Configurable to run on power-up or on user request	–	30	–	ms

| **MAGNETIC CHARACTERISTICS** | | | | | | |
| Magnetic Field | B | Range of input field | – | – | 1200 | G |
OPERATING CHARACTERISTICS (continued): Valid over the full operating voltage and ambient temperature ranges, unless otherwise noted

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output [7]</td>
<td>RESANGLE</td>
<td>Both 12 and 15-bit angle values are available via SPI</td>
<td>–</td>
<td>12/15</td>
<td>–</td>
<td>bit</td>
</tr>
<tr>
<td>Angle Refresh Rate [8]</td>
<td>tANG</td>
<td>No averaging</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
<td>µs</td>
</tr>
<tr>
<td>Response Time [6]</td>
<td>tRESPONSE</td>
<td>Angular latency; valid for ABI or UVW interface</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>µs</td>
</tr>
<tr>
<td>Angle Error [9]</td>
<td>ERRANG</td>
<td>T_A = 25°C, ideal magnet alignment, B = 300 G, target rpm = 0</td>
<td>–1</td>
<td>±0.4</td>
<td>1</td>
<td>degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_A = 150°C, ideal magnet alignment, B = 300 G, target rpm = 0</td>
<td>–1.3</td>
<td>±0.7</td>
<td>1.3</td>
<td>degrees</td>
</tr>
<tr>
<td>Temperature Drift</td>
<td>ANGLEDRIFT</td>
<td>T_A = 150°C, B = 300 G, angle change from 25°C</td>
<td>–1.4</td>
<td>–</td>
<td>1.4</td>
<td>degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_A = –40°C, B = 300 G, angle change from 25°C</td>
<td>–</td>
<td>0.9</td>
<td>–</td>
<td>degrees</td>
</tr>
<tr>
<td>Angle Noise [10][11]</td>
<td>NANG</td>
<td>T_A = 25°C, B = 300 G, no internal filtering, target rpm = 0, 3 sigma noise</td>
<td>–</td>
<td>±0.22</td>
<td>–</td>
<td>degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_A = 150°C, B = 300 G, no internal filtering, target rpm = 0, 3 sigma noise</td>
<td>–</td>
<td>±0.28</td>
<td>–</td>
<td>degrees</td>
</tr>
<tr>
<td>Effective Resolution [12]</td>
<td>ANGLEDRIFT_LIFE</td>
<td>B = 300 G, average maximum drift observed following AEC-Q100 qualification testing</td>
<td>–</td>
<td>0.5</td>
<td>–</td>
<td>degrees</td>
</tr>
</tbody>
</table>

[1] Typical data is at T_A = 25°C and V_CC = 5 V, and it is for design estimates only.

[2] 1 G (gauss) = 0.1 mT (millitesla).

[3] At power-on, a die will not respond to commands until V_CC rises above V_PORHI. After that, the die will perform and respond normally until V_CC drops below V_PORLOW.

[4] During the power-on phase, the AAS33051 SPI transactions are not guaranteed.

[5] The output voltage and current specifications are to aid in PCB design. The pin is not intended to drive any external circuitry. The specifications indicate the peak capacitor charging and discharging currents to be expected during normal operation.

[7] RESANGLE represents the number of bits of data available for reading from the die registers.

[8] The rate at which a new angle reading will be ready.

[9] Error value as measured at Allegro final test before any on-chip linearization is applied. Actual raw angle error performance in application can vary with multiple factors (e.g. magnet to sensor alignment, etc). Using the on-chip linearization features of the AAS33051 can significantly reduce these errors.

[10] Error and noise values are with no further signal processing. Angle Noise can be reduced with internal filtering and slower Angle Refresh Rate value.

[11] This value represents 3-sigma or three times the standard deviation of the measured samples.

[12] Effective Resolution is calculated using the formula below:

$$\log_2(360) - \log_2 \left(\frac{\sum_1^n \sigma_i}{n} \right)$$

where σ is the Standard Deviation based on thirty measurements taken at each of the 32 angular positions, I = 11.25, 22.5, ..., 360.

[13] Maximum observed angle drift following AEC-Q100 stress was 1.4 degrees.
TYPICAL PERFORMANCE

Table 1: Typical Power Consumption in Low Power Mode over Wake-Up Intervals at Different Temperatures

<table>
<thead>
<tr>
<th>lpm_cycle_time [ms]</th>
<th>25°C</th>
<th>150°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 V</td>
<td>12 V</td>
</tr>
<tr>
<td>8</td>
<td>239</td>
<td>253</td>
</tr>
<tr>
<td>16</td>
<td>151</td>
<td>164</td>
</tr>
<tr>
<td>24</td>
<td>121</td>
<td>134</td>
</tr>
<tr>
<td>32</td>
<td>106</td>
<td>119</td>
</tr>
<tr>
<td>40</td>
<td>97</td>
<td>110</td>
</tr>
<tr>
<td>48</td>
<td>91</td>
<td>104</td>
</tr>
<tr>
<td>56</td>
<td>87</td>
<td>100</td>
</tr>
<tr>
<td>64</td>
<td>84</td>
<td>96</td>
</tr>
<tr>
<td>72</td>
<td>81</td>
<td>94</td>
</tr>
<tr>
<td>80</td>
<td>79</td>
<td>92</td>
</tr>
<tr>
<td>88</td>
<td>78</td>
<td>90</td>
</tr>
<tr>
<td>96</td>
<td>76</td>
<td>89</td>
</tr>
<tr>
<td>104</td>
<td>75</td>
<td>88</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>152</td>
<td>71</td>
<td>83</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>200</td>
<td>68</td>
<td>81</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>248</td>
<td>67</td>
<td>79</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>296</td>
<td>66</td>
<td>78</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>400</td>
<td>65</td>
<td>77</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>512</td>
<td>64</td>
<td>76</td>
</tr>
</tbody>
</table>
AAS33051
Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

FUNCTIONAL DESCRIPTION

Overview
The AAS33051 is a rotary position Hall-sensor-based device. It incorporates one or two electrically independent Hall sensor dies in the same surface-mount package to provide solid-state consistency and reliability, and to support a wide variety of automotive applications. Each Hall-sensor-based die measures the direction of the magnetic field vector through 360° in the x-y plane (parallel to the branded face of the device) and computes an angle measurement based on the actual physical reading, as well as any internal parameters that have been set by the user. The output of each die is used by the host microcontroller to provide a single channel of target data.

This device is an advanced, programmable system-on-chip (SoC). Each integrated circuit includes a circular vertical Hall (CVH) analog front end, a high-speed sampling A-to-D converter, digital filtering, digital signal processing, a digital control SPI interface, motor commutation outputs (UVW), and encoder outputs (A, B, I).

Advanced offset, gain, and linearization adjustment options are available in the AAS33051. These options can be configured in onboard EEPROM, providing a wide range of sensing solutions in the same device.

Angle Measurement
The AAS33051 can monitor the angular position of a rotating magnet at speeds ranging from 0 to more than 15,000 rpm. The AAS33051 has a typical output refresh rate of 1 µs.

Readout in SPI is possible with 12-bit resolution, with error flags included in the same word, or in 15-bit resolution without included error flags. Reading out the angle takes 16 SPI clock cycles. See SPI Interface section for details on SPI usage.

PWM output is always resolved to a 12-bit angle resolution.

ABI/UVW resolution can be set to the level desired by the customer.

The sensor readout is processed and linearized in various steps. These are detailed in Figure 3.

System Level Timing
Internal registers are updated with a new angle value every tANG.

Due to signal path delay, the angle is tRESPONSE old at each update. In other words, tRESPONSE is the delay from time of magnet sampling until generation of a processed angle value. The streaming protocols ABI and UVW, which require no external trigger, will update every tANG (if an angle change has occurred). SPI, which is asynchronously clocked, results in a varying latency depending on sampling frequency and SCLK speed. The values which are presented to the user are copied from the data path to the output registers between 0 and 125 ns after the SPI falling chip select edge. If the SPI clock is 10 MHz, the data will be clocked out after 1.6 µs. As the data were sampled in at the first clock edge at an age of maximum tRESPONSE, their age after the SPI transaction has finished will be between 1.6 and 1.6 + tRESPONSE µs.

Figure 2 shows the update rate and the signal delay of the different angle output paths depending on the sensor settings.

The value of the “angle_zcd” register is updated approximately every 32 µs. The value of the register “gauss” is update approximately every 128 µs.

Power-Up
Upon applying power to the AAS33051, the device automatically runs through an initialization routine. The purpose of this initialization is to ensure that the device comes up in the same predictable operating condition every power cycle. This initialization routine takes a finite amount of time to complete, which is referred to as Power-On Time, tPO. Regardless of the state of the device before a power cycle, the device will re-power with EEPROM shadow bits copied from the EEPROM anew, and serial registers in their default states. For example, on every power-up, the device will power with the “zero_offset” that was stored in the EEPROM. The extended write access field “write_adr” will be set back to its default value, zero.

PWM Output
The AAS33051 provides a pulse-width-modulated output with duty cycle proportional to measured angle. The PWM duty cycle is clamped at 5% and 95% DC for diagnostic purposes. 5% DC corresponds to 0 degrees of angle; 95% DC corresponds to 360° of angle. The 0% and 100% (pulled low and pulled high) states are reserved for error condition notifications. The rising edges of the output are always at the same points in time, while the falling edge moves from 5% to 95% over angles of 0 to 360 degrees.

In case of errors, the setting “peo” = 1 will make errors affect the PWM pin. The setting “pes” = 0 will tristate the PWM pin, i.e. put it in a high-Z state. A power cycle is needed to relieve the high-Z condition, even if the error that caused the condition no longer persists.
With setting “pes” = 1, the output frequency will be halved in case of errors. As soon as the condition that caused the error no longer persists, the PWM output will return to normal behavior. Errors that appeared and disappeared within one PWM cycle will still be stored and output once for the next PWM cycle. This way, very brief errors will still be reported. In case of errors, the duty cycle will be fixed to the levels in Table 2.

<table>
<thead>
<tr>
<th>Error</th>
<th>Priority</th>
<th>Duty Cycle %</th>
<th>Description / Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDE</td>
<td>1 (highest)</td>
<td>5</td>
<td>Watchdog error. Permanent error until restart.</td>
</tr>
<tr>
<td>OFE</td>
<td>2</td>
<td>10.625</td>
<td>Oscillator frequency watchdog error.</td>
</tr>
<tr>
<td>ZIE</td>
<td>5</td>
<td>27.5</td>
<td>Zero-crossing integrity error. Persists as long as the issue exists.</td>
</tr>
<tr>
<td>AVG</td>
<td>6</td>
<td>33.125</td>
<td>Angle averaging error. Outputs once then clears.</td>
</tr>
<tr>
<td>UV</td>
<td>7</td>
<td>38.75</td>
<td>Undervoltage (UVA and/or UVCC dependent on serial error masks). Persists until no unmasked undervoltage.</td>
</tr>
<tr>
<td>MSL</td>
<td>8</td>
<td>44.375</td>
<td>Persists until field strength higher than low threshold.</td>
</tr>
<tr>
<td>ESE</td>
<td>9</td>
<td>50</td>
<td>EEPROM correctable error. Outputs once, then clears.</td>
</tr>
<tr>
<td>SAT</td>
<td>10</td>
<td>55.625</td>
<td>Saturation error. Persists as long as the issue exists.</td>
</tr>
<tr>
<td>MSH</td>
<td>11</td>
<td>61.25</td>
<td>Persists until field strength lower than high threshold.</td>
</tr>
<tr>
<td>TR</td>
<td>12</td>
<td>66.875</td>
<td>Persists until temperature within range.</td>
</tr>
<tr>
<td>TOV</td>
<td>13 (lowest)</td>
<td>72.5</td>
<td>Turns counter overflow. Persists until cleared via CTRL register.</td>
</tr>
</tbody>
</table>
The duty cycle of the pin can be configured using the “pwm_band” and the “pwm_freq” fields, yielding the frequencies shown in Table 3.

Table 3: PWM Frequency Table (Hz)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3125</td>
<td>2778</td>
<td>2273</td>
<td>1667</td>
<td>1087</td>
<td>641</td>
<td>352</td>
<td>185</td>
</tr>
<tr>
<td>1</td>
<td>3101</td>
<td>2740</td>
<td>2222</td>
<td>1613</td>
<td>1042</td>
<td>610</td>
<td>333</td>
<td>175</td>
</tr>
<tr>
<td>2</td>
<td>3077</td>
<td>2703</td>
<td>2174</td>
<td>1563</td>
<td>1000</td>
<td>581</td>
<td>316</td>
<td>166</td>
</tr>
<tr>
<td>3</td>
<td>3053</td>
<td>2667</td>
<td>2128</td>
<td>1515</td>
<td>962</td>
<td>556</td>
<td>301</td>
<td>157</td>
</tr>
<tr>
<td>4</td>
<td>3030</td>
<td>2632</td>
<td>2083</td>
<td>1471</td>
<td>926</td>
<td>532</td>
<td>287</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>3008</td>
<td>2597</td>
<td>2041</td>
<td>1429</td>
<td>893</td>
<td>510</td>
<td>275</td>
<td>143</td>
</tr>
<tr>
<td>6</td>
<td>2985</td>
<td>2564</td>
<td>2000</td>
<td>1389</td>
<td>862</td>
<td>490</td>
<td>263</td>
<td>137</td>
</tr>
<tr>
<td>7</td>
<td>2963</td>
<td>2532</td>
<td>1961</td>
<td>1351</td>
<td>833</td>
<td>472</td>
<td>253</td>
<td>131</td>
</tr>
<tr>
<td>8</td>
<td>2941</td>
<td>2500</td>
<td>1923</td>
<td>1316</td>
<td>806</td>
<td>455</td>
<td>243</td>
<td>126</td>
</tr>
<tr>
<td>9</td>
<td>2920</td>
<td>2469</td>
<td>1887</td>
<td>1282</td>
<td>781</td>
<td>439</td>
<td>234</td>
<td>121</td>
</tr>
<tr>
<td>10</td>
<td>2899</td>
<td>2439</td>
<td>1852</td>
<td>1250</td>
<td>758</td>
<td>424</td>
<td>225</td>
<td>116</td>
</tr>
<tr>
<td>11</td>
<td>2878</td>
<td>2410</td>
<td>1818</td>
<td>1220</td>
<td>735</td>
<td>410</td>
<td>217</td>
<td>112</td>
</tr>
<tr>
<td>12</td>
<td>2857</td>
<td>2381</td>
<td>1786</td>
<td>1190</td>
<td>714</td>
<td>397</td>
<td>210</td>
<td>108</td>
</tr>
<tr>
<td>13</td>
<td>2837</td>
<td>2353</td>
<td>1754</td>
<td>1163</td>
<td>694</td>
<td>385</td>
<td>203</td>
<td>105</td>
</tr>
<tr>
<td>14</td>
<td>2817</td>
<td>2326</td>
<td>1724</td>
<td>1136</td>
<td>676</td>
<td>373</td>
<td>197</td>
<td>101</td>
</tr>
<tr>
<td>15</td>
<td>2797</td>
<td>2299</td>
<td>1695</td>
<td>1111</td>
<td>658</td>
<td>362</td>
<td>191</td>
<td>98</td>
</tr>
</tbody>
</table>
Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

Latency: 10 + (2^{\text{orate}} – 1) µs
Rate: 1 µs \times 2^{\text{orate}}

Latency: 10 µs
Rate: 1 µs

Optional Angle averaging
Reduce rate by 2^{\text{orate}} times
0 ≤ “orate” ≤ 12

Latency: 10 µs
Rate: 1 µs

Figure 2: Update Rate and Signal Delay
Figure 3: Angle data flow chart. Text in quotes (") denotes registers that affect their containing block.
Linearization

The AAS33051 contains linearization functionality. Linearization allows for conversion of the initially sensor-measured magnetic field data into customer-desired linear output. This can be used to correct minor imperfections in the encoder output, or to allow motor commutation in side-shaft measurement setups.

Linearization converts the electrical angles (the angle as measured by the sensor front end) into mechanical angles (the actual angle of the encoder signal).

To use the linearization feature, it is most convenient to use the Allegro AAS33051 Samples Programmer Graphical User Interface (GUI). It allows the user to measure points along the mechanical rotation, calculate all parameters that need to be written into the sensor, and writes these values into the sensor. To use this function, the user must be able to read and control the mechanical angle.

The sensor performs linearization by taking the measured electrical angles and, depending on the angle measured, subtracting a linearization coefficient stored in EEPROM. There are 32 of these linearization coefficients in the EEPROM. The angle value at a sensor angle reading of 0.00, 11.25, 22.50, … 348.75 electrical degrees will be modified by the values in EEPROM fields LIN0, LIN1, LIN2, … LIN31. The EEPROM LIN values are subtracted from the electrical sensor angles, as shown in Table 4.

The LIN fields are 12-bit signed values. Each LIN coefficient has a range of –2048…+2047 LSB that corresponds to a correction of “ls” = 0) or by +45.00…–44.98 degrees (EEPROM field “ls” = 1). When the electrical angle is between of two of the linearization points, the sensor calculates the appropriate correction value for this angle by linear interpolation between the two coefficients next to the value. For example, if the sensor measures an angle of 5.625°, the output will be 5.625 – (LIN0 + LIN1)/2.

Figure 4 is an example showing a nonlinear curve that is corrected by the sensor. In this example, the values of LIN0, LIN1, LIN2, and LIN3 are negative numbers, while LIN4 is a positive number. The linearized output angle in the example is close to the mechanical angle, but not perfect. This was done on purpose to show a more realistic example.

The output delay of the AAS33051 is not affected by enabling or disabling linearization. If linearization is disabled, the EEPROM LIN fields can be used for other customer purposes.

The data path employed to track rotation of the field in the low power mode is not linearized. In low power mode, the sensor automatically wakes up at a programmable angle change rate. With default settings, it stays in the wake mode at speeds of over 100 RPM. Since the angle used to determine the wake-up event is not linearized, the sensor wake-up behavior is determined by the change of the non-linearized electrical angle, and not by the change of the linearized angle or the mechanical angle.

Table 4: Linearization Coefficients

<table>
<thead>
<tr>
<th>Electrical angle (%) measured by sensor</th>
<th>Correction value Written in EEPROM</th>
<th>Output angle Visible on sensor output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>LIN0</td>
<td>Output = 0.00 – LIN0</td>
</tr>
<tr>
<td>11.25</td>
<td>LIN1</td>
<td>Output = 11.25 – LIN1</td>
</tr>
<tr>
<td>22.50</td>
<td>LIN2</td>
<td>Output = 22.50 – LIN2</td>
</tr>
<tr>
<td>33.75</td>
<td>LIN3</td>
<td>Output = 33.75 – LIN3</td>
</tr>
<tr>
<td>45.00</td>
<td>LIN4</td>
<td>Output = 45.00 – LIN4</td>
</tr>
<tr>
<td>56.25</td>
<td>LIN5</td>
<td>Output = 56.25 – LIN5</td>
</tr>
<tr>
<td>67.50</td>
<td>LIN6</td>
<td>Output = 67.50 – LIN6</td>
</tr>
<tr>
<td>78.75</td>
<td>LIN7</td>
<td>Output = 78.75 – LIN7</td>
</tr>
<tr>
<td>90.00</td>
<td>LIN8</td>
<td>Output = 90.00 – LIN8</td>
</tr>
<tr>
<td>101.25</td>
<td>LIN9</td>
<td>Output = 101.25 – LIN9</td>
</tr>
<tr>
<td>112.50</td>
<td>LIN10</td>
<td>Output = 112.50 – LIN10</td>
</tr>
<tr>
<td>123.75</td>
<td>LIN11</td>
<td>Output = 123.75 – LIN11</td>
</tr>
<tr>
<td>135.00</td>
<td>LIN12</td>
<td>Output = 135.00 – LIN12</td>
</tr>
<tr>
<td>146.25</td>
<td>LIN13</td>
<td>Output = 146.25 – LIN13</td>
</tr>
<tr>
<td>157.50</td>
<td>LIN14</td>
<td>Output = 157.50 – LIN14</td>
</tr>
<tr>
<td>168.75</td>
<td>LIN15</td>
<td>Output = 168.75 – LIN15</td>
</tr>
<tr>
<td>180.00</td>
<td>LIN16</td>
<td>Output = 180.00 – LIN16</td>
</tr>
<tr>
<td>191.25</td>
<td>LIN17</td>
<td>Output = 191.25 – LIN17</td>
</tr>
<tr>
<td>202.50</td>
<td>LIN18</td>
<td>Output = 202.50 – LIN18</td>
</tr>
<tr>
<td>213.75</td>
<td>LIN19</td>
<td>Output = 213.75 – LIN19</td>
</tr>
<tr>
<td>225.00</td>
<td>LIN20</td>
<td>Output = 225.00 – LIN20</td>
</tr>
<tr>
<td>236.25</td>
<td>LIN21</td>
<td>Output = 236.25 – LIN21</td>
</tr>
<tr>
<td>247.50</td>
<td>LIN22</td>
<td>Output = 247.50 – LIN22</td>
</tr>
<tr>
<td>258.75</td>
<td>LIN23</td>
<td>Output = 258.75 – LIN23</td>
</tr>
<tr>
<td>270.00</td>
<td>LIN24</td>
<td>Output = 270.00 – LIN24</td>
</tr>
<tr>
<td>281.25</td>
<td>LIN25</td>
<td>Output = 281.25 – LIN25</td>
</tr>
<tr>
<td>292.50</td>
<td>LIN26</td>
<td>Output = 292.50 – LIN26</td>
</tr>
<tr>
<td>303.75</td>
<td>LIN27</td>
<td>Output = 303.75 – LIN27</td>
</tr>
<tr>
<td>315.00</td>
<td>LIN28</td>
<td>Output = 315.00 – LIN28</td>
</tr>
<tr>
<td>326.25</td>
<td>LIN29</td>
<td>Output = 326.25 – LIN29</td>
</tr>
<tr>
<td>337.50</td>
<td>LIN30</td>
<td>Output = 337.50 – LIN30</td>
</tr>
<tr>
<td>348.75</td>
<td>LIN31</td>
<td>Output = 348.75 – LIN31</td>
</tr>
</tbody>
</table>
Incremental Output Interface (ABI)

The AAS33051 offers an incremental output mode in the form of quadrature A/B and Index outputs to emulate an optical or mechanical encoder. The A and B signals toggle with a 50% duty cycle (relative to angular distance, not necessarily time) at a frequency of 2N cycles per magnetic revolution, giving a cycle resolution of \((360 / 2^N)\) degrees per cycle. B is offset from A by \(\frac{1}{4}\) of a cycle. The “I” signal is an index pulse that occurs once per revolution to mark the zero (0) angle position. One revolution is shown in Figure 5.

Since A and B are offset by \(\frac{1}{4}\) of a cycle, they are in quadrature and together have four unique states per cycle. Each state represents \(R = \left[\frac{360}{4 \times 2^N}\right]\) degrees of the full revolution. This angular distance is the quadrature resolution of the encoder. The order in which the states change, or the order of the edge transitions from A to B, allow the direction of rotation to be determined. If a given B edge (rising/falling) precedes the following A edge, the angle is increasing from the perspective of the electrical (sensor) angle and the angle position should be incremented by the quadrature resolution (R) at each state transition. Conversely, if a given A edge precedes the following B edge, the angle is decreasing from the perspective of the electrical (sensor) angle and the angle position should be decremented by the quadrature resolution (R) at each state transition. The angle position accumulator wraps each revolution back to 0. The quadrature states are designated as Q1 through Q4 in the following diagrams, and are defined as follows:

<table>
<thead>
<tr>
<th>State Name</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Q3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Note that the A/B progression is a grey coding sequence where only one signal transitions at a time. The state progression must be as follows to be valid:

Increasing angle: Q1 → Q2 → Q3 → Q4 → Q1 → Q2 → Q3 → Q4
Decreasing angle: Q4 → Q3 → Q2 → Q1 → Q4 → Q3 → Q2 → Q1

The duration of one cycle is referred to as 360 electrical degrees, or 360e. One half of a cycle is therefore 180e and one quarter of a cycle (one quadrature state, or R degrees) is 90e. This is the...
terminology used to express variance from perfect signal behavior. Ideally, the A and B cycle would be as shown below for a constant velocity (see Figure 6).

In reality, the edge rate of the A and B signals, and the switching threshold of the receiver I/Os, will affect the quadrature periods (see Figure 7).

![Figure 6: Electrical Cycle](image1)

![Figure 7: Electrical Cycle](image2)
RESOLUTION

The AAS33051 supports the following ABI output resolutions. This is set via the resolution_pairs field in EEPROM.

Table 5: ABI Output Resolution

<table>
<thead>
<tr>
<th>EEPROM Resolution Field</th>
<th>Cycle Resolution (Bits = N)</th>
<th>Quadrature Resolution (Bits = 4 × N)</th>
<th>Cycles per Revolution (A or B)</th>
<th>Quadrature States per Revolution</th>
<th>Cycle Resolution (Degrees)</th>
<th>Quadrature Resolution (R) (Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Factory Use Only</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Factory Use Only</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Factory Use Only</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>13</td>
<td>2048</td>
<td>8192</td>
<td>0.176</td>
<td>0.044</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>12</td>
<td>1024</td>
<td>4096</td>
<td>0.352</td>
<td>0.088</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>11</td>
<td>512</td>
<td>2048</td>
<td>0.703</td>
<td>0.176</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>256</td>
<td>1024</td>
<td>1.406</td>
<td>0.352</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>9</td>
<td>128</td>
<td>512</td>
<td>2.813</td>
<td>0.703</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>8</td>
<td>64</td>
<td>256</td>
<td>5.625</td>
<td>1.406</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>7</td>
<td>32</td>
<td>128</td>
<td>11.250</td>
<td>2.813</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>6</td>
<td>16</td>
<td>64</td>
<td>22.500</td>
<td>5.625</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>32</td>
<td>45.000</td>
<td>11.250</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>90.000</td>
<td>22.5</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>180.0</td>
<td>45.0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>360.0</td>
<td>90.0</td>
</tr>
<tr>
<td>15</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Slew rate limiting is enabled when the ABI.slew_time field is non-zero. This option separates the sample update rate from the ABI output rate, and can be used to control two circumstances:

- The angle sample does not monotonically increase or decrease at the quadrature resolution, thereby “skipping” one or more quadrature states. In this case, the slew rate limiting logic transitions the ABI signals in the required valid sequence, at the slew rate, until the ABI output “catches up” with the angle samples, at which point the normal sample rate output resumes. This skipping will most likely occur either at very low velocities, if the noise is high, or at very high velocities when the angle changes more than the quadrature resolution in one angle sample period.

- The ABI receiver at the host end cannot reliably detect edge transitions that are spaced at the sample rate of 1 µs. The slew limit time can be set greater than the nominal angle sample update period, providing the velocity of the angle rotation would not on average require ABI transitions greater than the angle sample rate.

![Figure 8: Slew Rate Limiting](image-url)
INDEX PULSE

The index pulse I (or Z in some descriptions) marks the absolute zero (0) position of the encoder. Under rotation, this allows the receiver to synchronize to a known mechanical/magnetic position, and then use the incremental A/B signals to keep track of the absolute position. To support a range of ABI receivers, the ‘I’ pulse has four widths, defined in Figure 9.

![Diagram of Index Pulse]

Figure 9: Index Pulse
Brushless DC Motor Output (UVW)

The AAS33051 offers U, V, and W signals for stator commutation of brushless DC (BLDC) motors. The device is mode-selectable for 1 to 16 pole-pairs. The BLDC signals (U, V, and W), are generated based on the quantity of pole-pairs and on angle information from the angle sensor. The U, V, and W outputs switch when the measured mechanical angle crosses the value where a change should occur. If hysteresis is used, then the output update method is different. The output behavior when hysteresis is enabled is described in the Angle Hysteresis section. Figure 10 and Figure 11 below show the UVW waveforms for three and five pole-pair BLDC motors.

![UVW Waveforms](image)

Figure 10: U, V, W Outputs for Three Pole-Pair BLDC Motor

![UVW Waveforms](image)

Figure 11: U, V, W Outputs for Five Pole-Pair BLDC Motor
<table>
<thead>
<tr>
<th>Quantity of Poles ("resolution_pairs")</th>
<th>Quantity of Pole-Pairs</th>
<th>Conversion from Electrical Degrees to Mechanical Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electrical (°)</td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>0001</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>0010</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>0011</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>0100</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0101</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>0110</td>
<td>7</td>
<td>90</td>
</tr>
<tr>
<td>0111</td>
<td>8</td>
<td>90</td>
</tr>
<tr>
<td>1000</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td>1001</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>1010</td>
<td>11</td>
<td>90</td>
</tr>
<tr>
<td>1011</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>1100</td>
<td>13</td>
<td>90</td>
</tr>
<tr>
<td>1101</td>
<td>14</td>
<td>90</td>
</tr>
<tr>
<td>1110</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>1111</td>
<td>16</td>
<td>90</td>
</tr>
</tbody>
</table>
ABI Behavior at Power-Up

At power-up, the AAS33051 ABI interface communicates the current position. This means that reading the angle through the PWM output is not needed to find the current position when using the ABI interface. The behavior at start-up is the following:

- During t_{PO}, the state of the interface is undefined
- During a delay phase, the output will display a 0° angle. With default settings, the 0° angle is indicated by $A = B = \text{low}$ and $I = \text{high}$.
- The interface will the “catch up” with the actual measured angle by moving in positive or negative direction, whichever is faster. The time for catching up is at most:
 \[
 t_{\text{SETTLE(MAY)}} = \frac{180°}{R} \times \text{ABI}_\text{slew_time}
 \]
 with $R =$ quadrature resolution.
- After catching up, with the output angle is completed, the sensor will operate normally.

If “ABI_slew_time” is set to 0, there is no “catch-up” phase. The output will jump to the final position immediately, e.g. with $A = \text{high}$ and $B = \text{low}$. With “ABI_slew_time” set to 0, the user cannot determine the position at startup from the ABI interface.

![Figure 20: ABI Startup Behavior](image-url)
Angle Hysteresis

Hysteresis can be applied to the compensated angle to moderate jitter in the angle output due to noise or mechanical vibration. In the AAS33051, the hysteresis field (ANG.hysteresis) defines the width of an angle window at 14-bit resolution. Mathematically, the width of this window is:

\[ANG.hysteresis \times \frac{360}{16384} \text{ degrees} \]

giving a range of 0 to 1.384 degrees.

The hysteresis-compensated angle can be routed to the ABI or UVW interface by setting the ABI.ahe bit to 1. On the SPI or Manchester interface, the hysteresis-compensated angle can be read via an alternate register (HANG.angle_hys) at 12-bit resolution.

The effect of the hysteresis is shown in Figure 12. The current angle position as measured by the sensor is at the “head” of the hysteresis window. As long as the sensor (electrical) angle advances in the same direction of rotation, the output angle will be the sensor angle, minimizing latency. If the sensor angle reverses direction, the output angle is held static until the sensor angle exits the hysteresis window in either direction. If the exit is in the opposite direction of rotation where the “head” was, the head flips to the opposite end of the hysteresis window and that becomes the new reference direction. The current direction of rotation, or “head” for the purposes of hysteresis, is viewable via the STA.rot bit, where 0 is increasing angle direction and 1 is in decreasing angle direction.

This behavior has the following consequences:

1. If the hysteresis window is greater than the output resolution, the output angle will skip consecutive incremental steps. If the hysteresis-compensated angle is selected for the ABI output, this would result in an integrity failure due to skipped quadrature states. To avoid this, it is recommended that the slew rate limiting be enabled on the ABI interface if hysteresis is used.

2. If there is jitter due to noise or mechanical vibration, especially at a static angle position or very slow rotation, the angle will tend to bias to one side of the window, depending on the direction of rotation as the angular velocity approaches zero (i.e., towards the current “head”) rather than to the average position of the jitter.

Note: The rotation direction resets to 0, or increasing angle direction. At power-up or exiting low power mode, or after LBIST, the hysteresis window will always be behind the initial angle position, so if hysteresis is enabled, a decreasing angle direction of rotation will not register until the hysteresis window is past.
Low Power Mode

Low power mode is an automatic duty cycling between a reduced-power angle sampling “wake” state and a minimal power “sleep” state. Low power mode is only entered if a set of conditions is met:

• The WAKE pin must be low, AND
• The SPI pins must be low, AND
• The change of the magnetic field direction must be below the programmed threshold, AND
• The command to enter the low power mode must have been given.

When keeping WAKE and SPI pins low, the AAS33051 will leave and re-enter low power mode repeatedly based on comparing the angle change to the maximum permitted angle change. This allows tracking the angular position with high speed (when needed) and minimized power consumption (when possible) without user commands to enter/leave the low power mode.

In the sleep state, the sensor counts the time until it needs to wake up again, but does not sample angles. No output is provided as to whether the sensor is currently sampling or sleeping. However, the alive count serial register is incremented at each wake/sleep cycle. Reading the alive count allows the user to verify that the system was still operating and sampling angles while it was in low power mode.

In case the change of angle between successive samples is larger than a set threshold, or in case a high voltage on the wake pin was detected, low power mode is left automatically and the sensor will move to full power mode.

STATE TRANSITIONS WITHIN LOW POWER MODE

The SPI input pins are used as the primary arbiter of low power mode. When all three pins inputs (MOSI, SCLK, CSN) are pulled low for at least 64 µs, the sensor enters a semi-low power state in which the PLL and some other logic are disabled (including SPI and Manchester), the I/O regulator is turned off, and the ABI and PWM pins are tristate. Only the low power angle sensing path is enabled in order to update the turns counter and measure angular velocity. This state is called the “wake” state.

In the “wake” state, the WAKE pin and the velocity are monitored. Once the WAKE pin is low (de-asserted) and the velocity is below the threshold set in the EEPROM, the sensor enters “sleep”. The low frequency oscillator remains on, with a counter for the sleep period (“lpm_cycle_time”) and logic to detect SPI/WAKE pins going high active. Expiration of the counter, or assertion of the WAKE pin signal, wakes the sensor back up to the “wake” state to update the turns counter and measure the velocity based on change in angle from entering the “sleep” state. If the velocity exceeds the threshold, or the WAKE pin is active, the sensor remains awake and updating the turns counter.

The SPI pins must change from their all-zeros state to resume normal mode operation; this will be followed by a settle time for the PLL to lock before angle output and temperature update is resumed.

All decisions about entering the “sleep” state are made at the end of the “lpm_cycle_time”, which runs continuously no matter what state the sensor is in. Therefore the sensor only can enter “sleep” on those time boundaries.

The following flowchart (Figure 13) shows the general low power mode flow.
Figure 13: Low Power Mode Flowchart
When using the default settings, the diagram can be simplified to the one below (Figure 14):

Figure 14: Simplified Low Power Flowchart, Default Settings
WAKE PIN

It is possible for the sensor to go to “wake” state using the WAKE pin. This may be connected to a digital output from a microcontroller, or to an analog signal generated from backscatter from the coils of an electric motor. Keep in mind that automatically waking up can still be triggered by the angle change processing in low power mode, so that using the WAKE pin is often not required for automatic wake-up. In applications where sudden ≥180° rotations could occur, the WAKE pin can be employed to remove this risk.

A sample input circuit is given in Figure 15.

The threshold at which the WAKE pin should signal a power on is programmable in EEPROM using the field wp_thres. The hysteresis of the pin can be selected using the field wp_hys.

![Sample Filtering Circuit](image-url)

Figure 15: Sample Filtering Circuit
Turns Counting and Low Power Mode

Certain automotive angle sensing applications require the ability to track angular position, even in key-off conditions. In the key-off state, most voltage regulators in the vehicle are not operational. Therefore, sensors that must operate in the key-off state are often powered directly from the car battery (12 V). Examples of such applications include:

- Seat-belt passive safety systems
- EPS motor position

Often, these motor and seat-belt systems are geared down so that multiple angle sensor rotations need to be counted by the angle sensor IC. For this reason, the AAS33051 includes a circuit that counts the rotational turns of a magnet. When sensor ICs are connected to the car battery, they must also have low-power modes that enable efficient battery usage. The AAS33051 is able to go into a low-power state and still monitor and keep track of rotations. This will ensure that the system can accurately and consistently track steering wheel position or seat-belt extension when using the AAS33051 in a key-on or key-off mode. Traditionally, this key-off requirement is achieved by a combination of relatively complex mechanical and electronic components. The AAS33051 can reduce system-level complexity and eliminate many system components by performing both the absolute angle measurement and the tracking of TCs, while maintaining low battery power consumption at vehicle key-off.

In low power mode, the turns counter is updated using a low-power signal path. The design minimizes the amount of logic that is drawing power during the low-power awake periods, allowing for efficient turns count tracking during battery operated low-power modes. The turns counter logic tracks the exact accumulated change in angle. Due to its emphasis on low power, the signal path which tracks total turns does not implement the same angle compensation as the primary signal path. However, after the sensor returns to full power operation, the source for the turns counter information is changed back to the more accurate full-power signal path. Because of this, the user does not see the reduced accuracy in the low-power signal path. Using the EEPROM setting “tcp” = 1, the turns counter uses the full-power high accuracy path when available. This setting is recommended.

For backward compatibility to the A1339, it is possible to use the low-power signal path as only turns counter source, by setting the tcp field in EEPROM to 0.

To read the total position of the magnetic encoder (angle in 12-bit resolution, as well as additional revolutions in 9 bits, sign-extended to 12 bits), two serial register are provided in “td_high” and “td_low”. This 24-bit word accumulates the total changes in angle. When reading “td_high”, the contents of “td_low” will be locked. This is done so that the values of the two words are matching to each other. To get a correct reading of the entire turns delta, the customer must first read “td_high” and then read “td_low”.

An example for reading turns_delta is given in Figure 17.

Figure 16: Turn Counting

Figure 17: Reading turns_delta

The reads from register 0x36 (“td_high”) and 0x38 (“td_low”) return the words 0x7005 and 0x6664. Taking the 12 LSB from each word and combining these gives value 0x005664, which equals 22116, or \([22116 \times (360 / 4096)] = 1943.78^\circ\) of total rotation.

Negative numbers are output in two’s complement. The example in Figure 18 below shows a read of a negative turns_delta value.

Again taking the last 12 bits of each transaction, the turns_delta value is 0xFFE5DB. Converting this value from two’s complement is done by taking the first bit as negative value and the other 23 bits as positive. In decimal, the turns_delta value equals \((0x800000 + 0x7FE5DB) = (-8388608 + 8381915) = -6693\). This equals an angle of \([-6693 \times (360 / 4096)] = -588.25^\circ\).

The initial value of the register (zero, or current angle, or current angle with turns_count zeroed) can be controlled using the EEPROM field turns_init, as detailed in Figure 19 below.

If the customer wants to restore the old value of “turns_delta” after a power-on reset, then “turns_init” should be set to ‘10’.

The serial register “turns” presents the highest value bits of the turns_delta. It saturates at +2047 and –2048 in the 45-degree mode and +511 and –512 in the 180-degree mode. If this happens, the Turns Count Overflow Flag will assert and stay asserted until the turns counter is reset via the Control register (see “Primary Serial Interface Registers Reference” section).

During Low Power mode, the AAS33051 periodically measures the magnet position, and updates the turns count based on the angular change from the previous angle measurement. If the angle changes by ≥180 degrees, the direction change is ambiguous and will be interpreted as a rotation in the opposite direction. Any sample to sample delta greater than 135 degrees will set the Turns Count Warning Flag. This is intended to give some indication relative to the low power mode cycle time as to whether the velocity is high enough over that sleep period for the angle delta to be getting close to the 180 point of ambiguity.
Setting the Turns Count Value

There are two ways to modify the value of the turns counter:

- Using the turns counter reset function
- By writing the turns_delta value to register EWD, and loading it into turns_delta

INVOKING A TURNS COUNTER RESET

A reset of the turns counter is a command invoked using the field “CTRL.special”. For details, refer to “CTRL.special” field in the serial register documentation.

CHANGING OR RESTORING THE TURNS_DELTA VALUE

It is possible to load a desired value into the turns counter register. This may be useful if a certain externally stored value should be set again following a power loss. The turns counter register itself cannot be written directly. Instead, the writing action is an indirect one using the following steps:

1. Writing should only be only be when the system is stable, as indicated by the “sta.aok” bit field.
2. Write the desired 21-bit value of turns_delta into the serial registers “ewdh” and “ewdl”.

 Example:
 A. The customer wants to set turns_delta to value 10441.32° (29 rotations and 1.32° current angle), so he needs to write
 \((10441.32 \div 360) \times 4096 = 118799 = \text{0x01D00F}\).
 B. Write the lower 16 bits into register “ewdl”, and the higher 5 bits into “ewdh”. Put 11 zeros in front of the turns_delta value to get full 16 bits to write. This results in writing 0x0001 to register 0x04:0x05 (“ewdh”) and writing 0xD00F to register 0x06:0x07 (“ewdl”).
3. Write the value 0x3 to the field “ctrl.special” and write 0x46 to the field “ctrl.initiate_special”.
4. The sensor behavior to process the command will depend on the setting of the turns_init EEPROM field:
 - A. When turns_init = 00 or 01, the value will be copied to turns_delta, and subsequent angle changes will be accumulated on top of this value. Using this is not recommended for scenarios in which one wants to restore a saved value, because small offset changes / noise errors will result in an increasing error every time such a write is performed.
 - B. When turns_init = 10 or 11, the value will be compared to the currently sensed angle. The turns_delta field will ‘snap’ to the closest value matching the sensed angle. Errors in position of <180° will be removed this way. This method is recommended for scenarios in which one wants to restore a saved turns_delta value. If the angle has drifted a little before writing back, this will be corrected by the sensor, and a correct turns_delta value is still presented even after many turns counter restorations.

Transport Mode

Transport mode is effectively low power mode, but with the low frequency oscillator disabled and the WAKE pin disabled. To invoke transport mode, the serial “ctrl.special” field is set to 0x6, then when low power mode is enabled (SPI inputs low for > 64 µs), transport mode is entered.

As soon as one of the incoming SPI lines is high, the AAS33051 will wake up again. Transport mode can be disabled using the customer EEPROM setting “tpmd.”
The AAS33051 can be programmed in two ways:

- Using the SPI interface for input and output, whilst supplying the VCC pin with normal operating voltage
- Using a Manchester protocol on the supply pin for input, and the PWM pin for output.

The AAS33051 does not require special supply voltages to write to the EEPROM.

All setting fields and all data fields of the sensor can be read and written using both protocols. If EEPROM locking is used (detailed in EEPROM lock section), then write access using either of the protocols will be prevented.

A separate setting to completely disable the Manchester interface is available in the dm field of the EEPROM. Using this setting will cause the sensor to ignore any commands entered using Manchester protocol. The SPI interface will not be disabled by disabling the Manchester interface.

Interface Structure

The AAS33051 consists of two memory blocks. The primary serial interface registers are used for direct writes and reads by the host controller for frequently required information (for example, angle data, warning flags, field strength, and temperature). All forms of communication (even to the extended locations) operate through the primary registers, whether it be via SPI or Manchester.

The primary serial registers also provide a data and address location for accessing extended memory locations. Accessing these extended location is done in an indirect fashion: the controller writes into the primary interface to give a command to the sensor to access the extended locations. The read/write is executed and the result is again presented in the primary interface.

This concept is shown in Figure 21.

For writing extended locations, the primary interface offers extended write address, data, and control registers. Refer to the section “Write Transaction to EEPROM and Other Extended Locations” for details on their usage.

For reading extended locations, the primary interface offers extended read address, data, and control registers. Refer to the section “Read Transaction from EEPROM and other Extended Locations” for details on their usage.

EEPROM writing requires additional procedures. For more information on EEPROM and shadow memory read and write access, see “EEPROM and Shadow Memory Usage” section.

The primary serial interface can be accessed using the SPI and using the Manchester interface. These two interfaces are detailed in the sections below.

Device Programming Interface

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:03</td>
<td>Extended Write Address</td>
</tr>
<tr>
<td>04:05</td>
<td>Extended Write Data High</td>
</tr>
<tr>
<td>06:07</td>
<td>Extended Write Data Low</td>
</tr>
<tr>
<td>08:09</td>
<td>Extended Write Control/Status</td>
</tr>
<tr>
<td>0A:0B</td>
<td>Extended Read Address</td>
</tr>
<tr>
<td>0C:0D</td>
<td>Extended Read Control/Status</td>
</tr>
<tr>
<td>0E:0F</td>
<td>Extended Read Data High</td>
</tr>
<tr>
<td>10:11</td>
<td>Extended Read Data Low</td>
</tr>
<tr>
<td>1E:1F</td>
<td>Device Control (CTRL)</td>
</tr>
<tr>
<td>20:21</td>
<td>Angle (ANG)</td>
</tr>
</tbody>
</table>

Extended Locations

<table>
<thead>
<tr>
<th>Shadow Address</th>
<th>EEPROM Address</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x58</td>
<td>0x18</td>
<td>PWE</td>
</tr>
<tr>
<td>0x59</td>
<td>0x19</td>
<td>ABI</td>
</tr>
<tr>
<td>0x5A</td>
<td>0x1A</td>
<td>MSK</td>
</tr>
<tr>
<td>0x5B</td>
<td>0x1B</td>
<td>PWI</td>
</tr>
</tbody>
</table>

Figure 21: Serial Registers allow access to extended memory (EEPROM and Shadow)
SPI Interface

The AAS33051 provides a full-duplex 4-pin SPI interface for each die, using SPI mode 3 (CPHA = 1, CPOL = 1). All programming can be done using this interface, but all programming can also be done using the Manchester interface.

In addition to providing a communications interface, the SPI interface is also used to control entering and leaving of the low power and transport modes. If the SPI interface is not used, do not leave the chip select line floating but instead follow the recommendations in the “Typical SPI and ABI/UVW Applications” section.

The sensor responds to commands received on the MOSI (Master-Out Slave-In), SCLK (Serial Clock), and CSB (Chip Select) pins, and outputs data on the MISO (Master-In Slave-Out) pin. All three input pins are 3.3 V and 5 V SPI compatible, with threshold values determined by factory EEPROM settings. MISO output voltage level will conform to 3.3 V or 5 V SPI levels, based on factory settings. Regular part are shipped with 3.3 V interface. Contact Allegro for ordering options of the 5 V variant.

The setup for communication using the SPI interface is given in Figure 22 below.

TIMING

The interface timing parameters from the specification table are defined in Figure 23 and Figure 24 below.
MESSAGE FRAME SIZE

The SPI interface requires either 16, 17, or 20-bit packet lengths. An extended 20-bit SPI packet allows 4 bits of CRC to accompany every data packet. A 17-bit packet is only allowed if the EEPROM/Shadow bit “s17” is set to 1.

The purpose of the 17-bit SPI option is to allow delayed reading of the MISO line by the host. Some hosts allow sampling of data from the slave not on the rising edge, but on the next falling edge of SCLK. This way, in case of long interface delays caused by large line capacitance or very long cables, the permissible clock speed can be increased. However, a 17th falling edge is required to read the 16th bit coming from the sensor. For the sensor to not display an error when this 17th clock is found, the bit “s17” must be set.

WRITE CYCLE

Write cycles consist of a 1-bit low, a 1-bit R/W (write = high), 6 address bits (corresponding to the primary serial register), 8 data bits, and 4 optional CRC bits. To write a full 16-bit serial register, two write commands are required (even and odd byte addresses). MOSI bits are clocked in on the rising edge of the Master-generated SCLK signal.

READ CYCLE

Reading data always involves at least two SPI frames. In the first frame, the read command is sent, while in the second frame, the result from the first read is received. While receiving data from the last read command, it is possible to send another read command (duplexed read). This way, every frame except the first one contains data from the sensor. This is useful for very fast reading of angle information.

When receiving the last frame, the host can transmit a command with MOSI set to all zeros. This represents a read command from register 0x00 and will not change the state of the sensor. Reading from register 0x00 will output the value 0x0000.

In frames where no previous read command was sent, the MISO data output should be ignored.
Because an SPI read command can transmit 16 data bits at one time, and the primary serial registers are built from one even and one odd byte, the entire 16-bit contents of one serial register may be transmitted with one SPI frame. This is accomplished by providing an even serial address value. If an odd value address is sent, only the contents of the single byte will be returned, with the eight most significant bits within the SPI packet set to zero. Example: To read all 16 bits of the error register (0x24:0x25), an SPI read request using address 0x24 should be sent. If only the 8 LSBs are desired, the address 0x25 should be used. Figure 28 shows examples of both an SPI write and an SPI read request, using a 16-bit SPI message frame.

Figure 28: SPI Read and Write Pulse Sequences
CRC

If the user wants to check the data coming from the sensor, it is possible to use 20-bit SPI frames. Without additional setting required, a 4-bit CRC is automatically generated and placed on the MISO line if more than 16 bits are read from the sensor.

The four additional CRC bits on the MOSI line coming from the host are ignored by the sensor, unless the “PWI.sc” bit is set within EEPROM. When the incoming CRC check is enabled, an incoming SPI packet with an incorrect CRC will be discarded, and the CRC error flag set in serial register “warn.crc”.

The CRC is based on the polynomial \(x^4 + x + 1 \) with the linear feedback shift register preset to all 1s. The 16-bit packet is shifted through from bit 15 (MSB) to bit 0 (LSB). The CRC logic is shown in Figure 22. Data are fed into the CRC logic with MSB first. Output is sent as C3-C2-C1-C0.

![Figure 29: SPI CRC](image)

The CRC output by the sensor on the MISO pin will always be calculated correctly. The CRC from the host on the MOSI pin must be correct if the CRC enable bit PWI.sc in the EEPROM was set.

Note: If the ERD (extended read data) register is read before the “ERCS.ERD” bit indicates a read has completed, there is a possibility of a CRC error, as the data could change during the read. Do not read the ERD register until it is known to be stable based on the done bit indication or waiting sufficient time.

The CRC can be calculated with the following C code:

```c
/*
 * CalculateCRC
 *
 * Take the 16-bit input and generate a 4-bit CRC
 * Polynomial = x^4 + x + 1
 * LFSR preset to all 1’s
 */
uint8_t CalculateCRC(uint16_t input)
{
    bool CRC0 = true;
    bool CRC1 = true;
    bool CRC2 = true;
    bool CRC3 = true;
    int i;
    bool DoInvert;
    uint16_t mask = 0x8000;

    for (i = 0; i < 16; ++i)
    {
        DoInvert = ((input & mask) != 0) ^ CRC3; // XOR required?
        CRC3 = CRC2;
        CRC2 = CRC1;
        CRC1 = CRC0 ^ DoInvert;
        CRC0 = DoInvert;
        mask >>= 1;
    }

    return (CRC3 ? 8U : 0U) + (CRC2 ? 4U : 0U) + (CRC1 ? 2U : 0U) + (CRC0 ? 1U : 0U);
}
```

This code can be tested at http://codepad.org/jPPW1CQ4.
Manchester Interface

To facilitate addressable device programming when using the unidirectional PWM output mode with no need for additional wiring, the AAS33051 incorporates a serial interface on the VCC line. All programming can be done using this interface, but all programming can also be done using the SPI interface.

This interface allows an external controller to read and write registers in the AAS33051 EEPROM and volatile memory. The device uses a point-to-point communication protocol, based on Manchester encoding per G.E. Thomas (a rising edge indicates a 0 and a falling edge indicates a 1), with address and data transmitted MSB first. The addressable Manchester code implementation uses the logic states of the CSN/MOSI pins to set address values for each die. In this way, individual communication with up to four AAS33051 dies is possible. Using a broadcast Manchester command, any die receiving the command will respond. To prevent any undesired programming of the AAS33051, the serial interface can be disabled by setting the Disable Manchester bit, “PWI.dm”, to 1. With this bit set, the sensor will ignore any Manchester input on VCC.

The setup for communication using the Manchester interface is given in Figure 30.

The master can freely choose any supported Manchester communication frequency for each transaction. The sensor will recognize the transaction speed used by the master and send the response at the same data rate.

As Manchester commands are sent on the supply line, the speed is usually limited by capacitances on the supply line. A reduction of the bit rate, or using a stronger line driver, can help to ensure stable communication.

If a correct read command was sent, the sensor responds to the master using the open-drain output on the PWM line. The high level will be determined by the PWM pull-up (usually 3.3 V or 5 V), and the low level will be close to GND. The PWM uses an open drain output, setting the logic levels to GND and logic level high (see Figure 30). A sufficient pull-up resistor (e.g. 4.7 kΩ) must be used to pull the line to a maximum logic high level V_IN.

ENTERING MANCHESTER COMMUNICATION MODE

Provided the Disable Manchester bit is not set in EEPROM, the AAS33051 continuously monitors the VCC line for valid Manchester commands. The part takes no action until a valid Manchester Access Code is received.

There are two special Manchester code commands used to activate or deactivate the serial interface and specify the output format used during Read operations:

1. Manchester Access Code: Enters Manchester Communication Mode; Manchester code output on the PWM pin. See further paragraphs for example.
2. Manchester Exit Code; returns the PWM pin to normal operation. See further paragraphs for example.

Once the Manchester Communication Mode is entered, the PWM output pin will cease to provide angle data, interrupting any data transmission in progress.

TRANSACTION TYPES

The AAS33051 receives all commands via the VCC pin, and responds to Read commands via the PWM pin. This implementation of Manchester encoding requires the communication pulses be within a high (V_MAN(H)) and low (V_MAN(L)) range of voltages on the VCC line. Each transaction is initiated by a command from the controller; the sensor does not initiate any transactions. Two commands are recognized by the AAS33051: Write and Read.
CONTROLLER MANCHESTER MESSAGE STRUCTURE

The general format of a command message frame is shown in Figure 31. Note that, in the Manchester coding used, a bit value of 1 is indicated by a falling edge within the bit boundary, and a bit value of zero is indicated by a rising edge within the bit boundary.

Figure 31: Manchester Message Format
A brief description of the bitfields is provided in Table 6.

Table 6: Manchester Message Bit Fields

<table>
<thead>
<tr>
<th>Bits</th>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Synchronization</td>
<td>Value '00' sent to identify a command start and to synchronise sensor clock</td>
</tr>
<tr>
<td>1</td>
<td>Read/Write</td>
<td>0 = write, 1 = read</td>
</tr>
<tr>
<td>4</td>
<td>Target ID</td>
<td>Select the target ID for this transaction. [ID3 ID2 ID1 ID0] are each adressed / ignored by a 1 / 0 at their address, so that a write to [0011] will write to ID0 and ID1. Reading from several sensors at the same time will result in corrupted outputs if the output pins are tied together. Writing to [0000] is a broadcast write; it is written to all sensor dies.</td>
</tr>
<tr>
<td>6</td>
<td>Address</td>
<td>Serial address for read/write</td>
</tr>
<tr>
<td>16</td>
<td>Data</td>
<td>Only for writes: 16 bit write data. Omit for read commands</td>
</tr>
<tr>
<td>3</td>
<td>CRC</td>
<td>3-bit CRC, needed for all commands</td>
</tr>
</tbody>
</table>

When the AAS33051 is operating in PWM mode, the Die ID value is determined by the state of the CSN and MOSI pins, as detailed in Table 7.

Table 7: Pin Values

<table>
<thead>
<tr>
<th>MOSI</th>
<th>CS</th>
<th>ID Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>ID0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>ID1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>ID2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>ID3</td>
</tr>
</tbody>
</table>

Using the 4 bits of the Chip Select field, die can be selected via their ID value, allowing up to four die to be individually addressed and providing for different group addressing schemes.

Example: If Target ID = [1 0 1 0], all die with ID3 or ID1 will be selected. If Target ID is set to [0 0 0 0], then no ID comparison will be made, allowing all sensors to be addressed at once. In case of PWM line sharing for Manchester communication, reading must be done one die at a time.
SENSOR MANCHESTER MESSAGE STRUCTURE

If a read command with the desired register number was sent from the controller to the sensor, the device responds with a Read Response frame using the Manchester protocol over the PWM output.

The following command messages can be exchanged between the device and the external controller:

- Manchester Access Code (host to sensor)
- Manchester Exit Code (host to sensor)
- Manchester Write Command (host to sensor)
- Manchester Read Command (host to sensor)
- Manchester Read Response (sensor to host)

In addition to the contents of the requested memory location, a Return Status field is included with every Read Response. This field provides the ID used to communicate with the part and any errors which may have occurred during the transaction. These bits are:

- ID – ID (CSN/MOSI) unless BC = 1 (ID will be 00)
- BC – Broadcast; ID field was zero or SPI mode active
- AE – Abort Error; edge detection failure after sync detect
- OR– Overrun Error; A new Manchester command has been received before the previous request could be completed
- CS – Checksum error; a prior command had a checksum error

For EEPROM address information, refer to the EEPROM structure section. For serial address locations, refer to the serial register map.

MANCHESTER ACCESS CODE

The Manchester Access Code has to be sent before other Manchester commands.

The Manchester Access Code always operates as a broadcast pulse, meaning the sensor will not look at the Target ID field. For example, if two sensors configured with ID0 and ID1 respectively are sharing a common VCC line, a Manchester Access Code with a Target ID value of [0 0 1 0] results in both sensors entering Manchester Serial Communication mode.

In addition to the contents of the requested memory location, a Return Status field is included with every Read Response. This field provides the ID used to communicate with the part and any errors which may have occurred during the transaction. These bits are:

- ID – ID (CSN/MOSI) unless BC = 1 (ID will be 00)
- BC – Broadcast; ID field was zero or SPI mode active
- AE – Abort Error; edge detection failure after sync detect
- OR– Overrun Error; A new Manchester command has been received before the previous request could be completed
- CS – Checksum error; a prior command had a checksum error

For EEPROM address information, refer to the EEPROM structure section. For serial address locations, refer to the serial register map.

Table 8: Manchester Access Code

<table>
<thead>
<tr>
<th>Bits</th>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Synchronization</td>
<td>‘00’</td>
</tr>
<tr>
<td>1</td>
<td>Read/Write</td>
<td>‘0’</td>
</tr>
<tr>
<td>4</td>
<td>Target ID</td>
<td>‘0000’ (this command will always be a broadcast, even if it is addressed)</td>
</tr>
<tr>
<td>6</td>
<td>Address</td>
<td>‘111111’ (fixed number for Manchester access message)</td>
</tr>
<tr>
<td>16</td>
<td>Data</td>
<td>0x62D2 (fixed number for Manchester access message)</td>
</tr>
<tr>
<td>3</td>
<td>CRC</td>
<td>3-bit CRC</td>
</tr>
</tbody>
</table>

An example is given below, with target ID = [0 0 0 1], data = access code = 0x62D2, and CRC = ‘110’.

![Figure 32: Target ID = [0 0 0 1], Data = Access code = 0x62D2, CRC = ‘110’](image)

38
MANCHESTER EXIT CODE

The Manchester Exit Code can be sent after Manchester access is complete in order to avoid accidental decoding of Manchester commands.

The Manchester Exit Code always operates as a broadcast pulse, meaning the sensor will not look at the Target ID field. For example, if two sensors configured with ID0 and ID1 respectively are sharing a common VCC line, a Manchester Access Code with a Target ID value of [0 0 1 0] results in both sensors exiting Manchester Serial Communication mode.

Table 9: Manchester Exit Code

<table>
<thead>
<tr>
<th>Bits</th>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Synchronization</td>
<td>‘00’</td>
</tr>
<tr>
<td>1</td>
<td>Read/Write</td>
<td>‘0’</td>
</tr>
<tr>
<td>4</td>
<td>Target ID</td>
<td>‘0000’ (this command will always be a broadcast, even if it is addressed)</td>
</tr>
<tr>
<td>6</td>
<td>Address</td>
<td>‘111111’ (fixed number for Manchester exit message)</td>
</tr>
<tr>
<td>16</td>
<td>Data</td>
<td>0x0000 (any value except 0x62D2 can be used for Manchester exit message)</td>
</tr>
<tr>
<td>3</td>
<td>CRC</td>
<td>3-bit CRC</td>
</tr>
</tbody>
</table>

An example is given below, with target ID = [0 0 0 1], data = 0x0000, and CRC = ‘110’.

Figure 33: Target ID = [0 0 0 1], Data = 0x0000, CRC = ‘110’

MANCHESTER READ COMMAND

Determines the serial address within the sensor from which the next Read Response will transmit data. The sensor must first receive a Manchester Access Code before responding to a read command.

This command is sent by the controller.

Table 10: Manchester Read Command

<table>
<thead>
<tr>
<th>Bits</th>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Synchronization</td>
<td>‘00’</td>
</tr>
<tr>
<td>1</td>
<td>Read/Write</td>
<td>‘1’</td>
</tr>
<tr>
<td>4</td>
<td>Target ID</td>
<td>Depends on targeted sensor ID, e.g. to target ID0, use ‘0001’</td>
</tr>
<tr>
<td>6</td>
<td>Address</td>
<td>Serial Register Address, e.g. 0x10 for “read_data_lo”, or 0x20 for “angle”</td>
</tr>
<tr>
<td>3</td>
<td>CRC</td>
<td>3-bit CRC</td>
</tr>
</tbody>
</table>

An example is given below where register 0x20 “angle” is read from target ID [0 0 0 1] with CRC = ‘111’. The two sync pulses from the Read Response on the PWM return line are also shown.

Figure 34: Target ID = [0 0 0 1], “angle” = 0x20, CRC = ‘111’
MANCHESTER READ RESPONSE

The read response transmits data from the sensor to the controller after a read command. These data are sent by the sensor on the open-drain PWM pin. A pull-up resistor is needed for this to work.

Read from an even address returns even byte [15:8] and odd byte [7:0].
Read from an odd address returns odd byte [7:0] only. Data bits [15:8] will be zeroes.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Synchronization</td>
<td>‘00’</td>
</tr>
<tr>
<td>2</td>
<td>ID</td>
<td>Target ID of the responding sensor die. ‘00’ for ID0, ‘01’ for ID1, ‘10’ for ID2, ‘11’ for ID3.</td>
</tr>
<tr>
<td>1</td>
<td>BC flag</td>
<td>“Broadcast”: Value set to ‘1’ if read command was a broadcast command (Target-ID set to [0 0 0 0]), ‘0’ if not</td>
</tr>
<tr>
<td>1</td>
<td>AE flag</td>
<td>“Abort error”: Value set to ‘1’ if a previous transaction was aborted and discarded, typically caused by incorrect bit lengths, ‘0’ is there was no problem. The error is stored until it can be transmitted on the next read response, and is cleared afterwards.</td>
</tr>
<tr>
<td>1</td>
<td>OR flag</td>
<td>“Overrun error”: If a command is sent to the sensor while the sensor is still sending a read response, and this command is completely transmitted before the read response was finished, and overrun error has occurred. This error is then stored until it can be transmitted on the next read response, and is cleared afterwards.</td>
</tr>
<tr>
<td>1</td>
<td>CS flag</td>
<td>“CRC error”: Value set to ‘1’ if a previous transaction had an incorrect CRC, ‘0’ means there was no problem. The error is stored until it can be transmitted on the next read response, and is cleared afterwards.</td>
</tr>
<tr>
<td>16</td>
<td>data</td>
<td>Read from an Even address: even byte [15:8] and odd byte [7:0]. Read from an Odd address: odd byte [7:0] only. Data bits [15:8] will be zeroes.</td>
</tr>
<tr>
<td>3</td>
<td>CRC</td>
<td>3-bit CRC</td>
</tr>
</tbody>
</table>

An example is given below where register 0x20 “angle” is read, and the response is ID ‘00’ (ID0), the four flags are all zeros (no errors), the data is “0x5C34”, and the CRC is ‘100’.

Figure 35: ID = ‘00’, error flag = ‘0000’, Data = 0x5C34, CRC = ‘100’

MANCHESTER READ RESPONSE DELAY

The Manchester Read Response starts at the end of the Read Command. The response may start a ¼ bit time before the CRC is finished transmitting (overlap with last CRC bit) or ¼ after the CRC finished transmitting.
The serial Manchester interface uses a cyclic redundancy check (CRC) for data-bit error checking of all the bits coming after the two synchronization bits. The synchronization bits are not included in the CRC. The CRC algorithm is based on the polynomial:

\[g(x) = x^3 + x + 1. \]

The calculation is represented graphically in Figure 36. The trailing 3 bits of a message frame comprise the CRC token. The CRC is initialized at 111. Data are fed into the CRC logic with MSB first. Output is sent as C2-C1-C0.

The 3-bit Manchester CRC can be calculated using the following C code:

```c
uint16_t ManchesterCRC(uint64_t data, uint16_t numberOfBits)
{
    bool C0 = false;
    bool C1 = false;
    bool C2 = false;
    bool C0p = true;
    bool C1p = true;
    bool C2p = true;
    uint64_t bitMask = 1;
    bitMask <<= numberOfBits - 1;
    // Calculate the state machine
    for (; bitMask != 0; bitMask >>= 1)
    {
        C2 = C1p;
        C0 = C2p ^ ((data & bitMask) != 0);
        C1 = C0 ^ C0p;
        C0p = C0;
        C1p = C1;
        C2p = C2;
    }
    return (C2 ? 4U : 0U) + (C1 ? 2U : 0U) + (C0 ? 1U : 0U);
}
```

Figure 36: Manchester CRC Calculation
The device uses EEPROM to permanently store configuration parameters for operation. EEPROM is user-programmable and permanently stores operation parameter values or customer information. The operation parameters are downloaded to shadow (volatile) memory at power-up. Shadow fields are initially loaded from corresponding fields in EEPROM, but can be overwritten, either by performing an extended write to the shadow addresses, or by reprogramming the corresponding EEPROM fields and power cycling the IC. Use of Shadow Memory is substantially faster than accessing EEPROM. In situations where many parameter need to be tested quickly, shadow memory is recommended for trying parameter values before permanently programming them into EEPROM. The shadow memory registers have the same format as the EEPROM and are accessed at extended addresses 0x40 higher than the equivalent EEPROM address. Unused bits in the EEPROM do not exist in the related shadow register, and will return 0 when read. Shadow registers do not contain the ECC bits. Shadow registers have the same protection restrictions as the EEPROM. All registers can be read without unlocking. The mapping of bits from registers addresses in EEPROM to their corresponding register addresses in SHADOW is shown in the EEPROM table (See “EEPROM table” section).

EEPROM AND SHADOW MEMORY USAGE

EEPROM Write Lock

It is possible to protect the EEPROM against accidental writes.

- Setting the EEPROM field “lock” to value 0xC (‘1100’ binary) will block any writes to the EEPROM, so that permanent changes are not possible anymore. Temporary changes to the setting are still possible by writing to the shadow memory, but these changes are lost after a power cycle. This lock is permanent and cannot be reversed. Reading of the settings is still possible.
- Setting the EEPROM field “lock” to value 0x3 (‘0011’ binary) will lock EEPROM writes AND shadow memory writes. This means none of the sensor settings can be changed anymore. This lock is permanent and cannot be changed anymore. Reading of the settings is still possible.

Enabling EEPROM Access

To enable EEPROM write access after power-on-reset, a unlock code needs to be written to the serial register “keycode”. This involves five write commands, which should be executed after each other:

- Write 0x00 to register 0x3C[15:8]
- Write 0x27 to register 0x3C[15:8]
- Write 0x81 to register 0x3C[15:8]
- Write 0x1F to register 0x3C[15:8]
- Write 0x77 to register 0x3C[15:8]

This needs to be done once after power-on reset if the customer intends to write to the EEPROM.

Writing to serial registers and reading from serial registers does not require anything special after power-on.

Reading all EEPROM cells is always possible.
EEPROM Access Exceptions and Write Lock Exceptions

It is possible to allow writes to the fields “cust” and “cust2” without having to enable EEPROM access, and even when the EEPROM write lock is enabled (“lock” = 0xC or “lock” = 0x3).

This is controlled using the EEPROM fields “cud” (customer uses disables), “del” (disable EEPROM lock) and “dur” (disable unlock requirement). By default, the fields “cud”, “del” and “dur” are all set to zero.

Table 12 shows how these settings control EEPROM access to different fields:

<table>
<thead>
<tr>
<th>“cud” setting</th>
<th>“dur” setting</th>
<th>“del” setting</th>
<th>“lock” setting</th>
<th>Writes to Customer2 (0x17) possible…</th>
<th>Writes to Customer (0x1F) possible…</th>
<th>Writes to all other EEPROM possible…</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0/1</td>
<td>0x0</td>
<td>after keycode</td>
<td>after keycode</td>
<td>after keycode</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0/1</td>
<td>0x0</td>
<td>always</td>
<td>after keycode</td>
<td>after keycode</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0xC/0x3</td>
<td>never</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0xC/0x3</td>
<td>after keycode</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0xC/0x3</td>
<td>never</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0xC/0x3</td>
<td>always</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0/1</td>
<td>0x0</td>
<td>after keycode</td>
<td>after keycode</td>
<td>after keycode</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0/1</td>
<td>0x0</td>
<td>always</td>
<td>always</td>
<td>after keycode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0xC/0x3</td>
<td>never</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0xC/0x3</td>
<td>after keycode</td>
<td>after keycode</td>
<td>never</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0xC/0x3</td>
<td>never</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0xC/0x3</td>
<td>always</td>
<td>always</td>
<td>never</td>
</tr>
</tbody>
</table>

Write Transaction to EEPROM and Other Extended Locations

Invoking an extended write access is a three-step process:

1. Write the extended address into the “ewa” register (using SPI or Manchester direct access). “ewa” is the 8-bit extended address that determines which extended memory address will be accessed.

2. Write the data that is to be transferred into the “ewd” registers (using SPI or Manchester direct access). This will take four SPI writes or 2 Manchester packets to load all 32 bits of data.

3. Invoke the extended access by writing the direct “ewcs.exw” bit with ‘1’.

The 32-bit of data in “ewd” are then written to the address specified in “ewa”.

The bit “ewcs.wdn” can be polled to determine when the write completes. This is only necessary for EEPROM writes, which can take up to 24 ms to complete. Shadow register writes complete immediately in one system clock cycle after synchronization.
For example, to write location 0x1F in the EEPROM with 0x00A45678:

- Write 0x1F to lower 8 bits of EWA register (0x1F to EWA+1 Address 0x03)

- Write 0x00A45678 to EWD (0x00 to EWD, 0xA4 to EWD+1, 0x56 to EWD+2, 0x78 to EWD+3)

- Write 0x80 to EWCS

- Read EWCS+1 until bit 0 ("wdn") is set, or wait enough time.

In the example, register 0x08 is read, so that the second output byte is from register 0x09, and we wait for bit 0 to become ‘1’, which happens in the last read.

If an access violation occurs (address not unlocked), the transaction will be terminated and the corresponding “rdn” or “wdn” bit set, and the “xee” warning bit will assert. The “xee” bit in the “err” register will also set if the EEPROM write aborts.
After writing to the EEPROM, verify that the write was successful by performing an EEPROM margin check.

EEPROM Margin Check

Due to nonidealities in transistors, current will slowly leak into or out of EEPROM cells and can, over time, cause small changes in the stored voltage level. Variances in voltage levels of the charge pump can result in a variety of stored EEPROM cell voltages when programming. If this value is marginally close to the threshold, the small drift over lifetime can cause this value to move across the threshold. This results in a corrupted EEPROM value. Since this drift happens slowly over time, if there is an issue, it may not appear for years. For this reason, it is important to perform margin testing (margining) to verify the internal voltage levels of EEPROM cells after programming, and ensure there will be no issue in the future.

Margining is performed by Allegro on all registers at final test. Since EEPROM cell voltages are only modified when writing to the cell, it is not necessary to perform margining on registers that have not been modified.

Margining is performed in two steps: the first checks the validity of the voltage stored on digital ‘1’ cells, and the second checks the voltage stored on digital ‘0’ cells. It is important to perform both steps to ensure there are no issues.

In order to perform margining, a value of ‘0b0001’ must be written to the SPECIAL field of the CTRL register. This reduces the internal threshold value. Once this value is written, an EEPROM read will use this lower threshold value when reading EEPROM values. Perform a read on all EEPROM registers that are being tested, and confirm they read correctly. If a stored voltage is marginal to the normal operating threshold, it will appear as a ‘1’ when it should be a ‘0’.

Repeat this test with the value of ‘0b0010’ in the SPECIAL register to raise the threshold value above normal operation. Again, read all EEPROM registers being tested. In this test, any stored high voltage that is marginal to the normal threshold will appear as a ‘0’ when they should be ‘1’.

If during either test, a bit is read incorrectly, simply perform another EEPROM write of the desired values to the register, and retest the margins.

Unlike other values in the SPECIAL field, these values will persist and can be read to confirm the write was successful. As a result, the SPECIAL register must be cleared (or power cycled) to return the threshold value to its normal level.

In the figure below, $V_{\text{NOM(H)}}$ represents the nominal voltage programmed into EEPROM cells containing a ‘1’, and $V_{\text{NOM(L)}}$ represents the nominal voltage programmed into EEPROM cells containing a ‘0’. The red and blue lines represent the actual voltage levels in the programmed cells for ‘1’ and ‘0’ values respectively. As can be seen, at time 0 when the margin test is run, both high and low levels still appear to be the correct value when the threshold is moved to the margin testing levels.

Figure 37: Example of passing programming voltages

In the figure below, the high and low voltage levels at the time of programming are further from their target. The drift over time results in these value crossing V_{THRESH}, and becoming corrupted. At time 0 when the margin test is run, these values fail, and would be reported as errors to be reprogrammed.

Figure 38: Example of failing programming voltages
Margining is shown below as a list of high level steps. For details on performing individual steps, see the associated sections.

1. Clear the ERR and WARN registers.
2. Write new data to EEPROM as desired.
3. Check the following flags for communication errors: ESE, EUE, XEE, IER, CRC, BSY.
4. Set CTRL.special to ‘0001’ and confirm by writing 0xA5 to CTRL.initiate_special.
5. Check the following flags for communication errors: ESE, EUE, XEE, IER, CRC, BSY.
6. Read all EEPROM registers changed in step 1 and verify their contents.
7. Set CTRL.special to ‘0010’ and confirm by writing 0xA5 to CTRL.initiate_special.
8. Check the following flags for communication errors: ESE, EUE, XEE, IER, CRC, BSY.
9. Read all EEPROM registers changed in step 1 and verify their contents.
10. If any values read in steps 3/5 are not what was set in step 1, repeat steps 1-6 for erroneous registers.
11. Set CTRL.special to ‘0000’, or power cycle the part.
Read Transaction from EEPROM and other Extended Locations

Extended access is provided to additional memory space via the direct registers. This access includes the EEPROM and EEPROM shadow registers. All extended registers are up to 32 bits wide. Invoking an extended read access is a three-step process:

1. Write the extended address to be read into the “era” register (using SPI or Manchester direct access). “era” is the 8-bit extended address that determines which extended memory address will be accessed.

2. Invoke the extended access by writing the direct “ercs.ext” bit with ‘1’. The address specified in “era” is then read, and the data is loaded into the “erd” registers.

3. Read the “erd” registers (using SPI or Manchester direct access) to get the extended data. This will take multiple packets to get all 32 bits.

EEPROM read accesses may take up to 2 µs to complete. The “ercs.rdn” bit can be polled to determine if the read access is complete before reading the data. Shadow register reads complete in one system clock cycle after synchronization. Do not attempt to read the “erd” registers if the read access is potentially in process, as it could change during the serial access and the data will be inconsistent. It is also possible that an SPI CRC error will be detected if the data changes during the serial read via the SPI interface.
For example, to read location 0x1F in the EEPROM:

- Write 0x1F to lower 8 bits of “era” (0x1F to “era+1”, Address 0x0B)

- Write 0x80 to “ercs”

- Read “ercs”+1 until bit 0 (“rdn”) is set, or wait enough time.

In the example, register 0x0C is read, so that the last bit of the second output byte contains the “rdn” bit.

- Read “erdh” (upper 16 bits of read data)
- Read “erdl” (lower 16 bits of read data)

In the example below, the result for the data at address 0x1F is 0x58A45678. In this value,
 □ Bit [31:26] are the EEPROM CRC
 □ Bit [25:24] are unused and zero
 □ Bit [23:0] are the EEPROM values that can be used. These are the 24 bits containing the information 0xA45678 that was written in the EEPROM write example.

Note that it would have been possible to pipeline transactions in this example, i.e. send a new command while reading return data from the old command. This way the transaction could have been performed in 5 SPI frames instead of 8.
Shadow Memory Read and Write Transactions

Shadow memory Read and Write transactions are identical to those for EEPROM. Instead of addressing to the EEPROM extended address, one must address to the Shadow Extended addresses, which are located at an offset of 0x40 above the EEPROM. Refer to the EEPROM table for all addresses.
SERIAL INTERFACE TABLE

Table 13: Primary Serial Interface Registers Bits Map

<table>
<thead>
<tr>
<th>Address (0x00)</th>
<th>Register Symbol</th>
<th>Read/Write</th>
<th>Addressed Byte (MSB)</th>
<th>Addressed Byte + 1 (MSB)</th>
<th>LSB Address</th>
<th>LSB Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>ewa</td>
<td>RW</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>write_adr</td>
<td>0x03</td>
<td></td>
</tr>
<tr>
<td>0x04</td>
<td>ewdh</td>
<td>RW</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>write_data_hi</td>
<td>0x05</td>
<td></td>
</tr>
<tr>
<td>0x06</td>
<td>ewdl</td>
<td>RW</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>read_adr</td>
<td>0x07</td>
<td></td>
</tr>
<tr>
<td>0x08</td>
<td>ewcs</td>
<td>WO/RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>wip</td>
<td>0x09</td>
<td>wdn</td>
</tr>
<tr>
<td>0x0A</td>
<td>era</td>
<td>RW</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>rds</td>
<td>0x0B</td>
<td></td>
</tr>
<tr>
<td>0x0C</td>
<td>ercs</td>
<td>WO/RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>rip</td>
<td>0x0D</td>
<td>rdn</td>
</tr>
<tr>
<td>0x0E</td>
<td>erdh</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>read_data_hi</td>
<td>0x0F</td>
<td></td>
</tr>
<tr>
<td>0x10</td>
<td>erdl</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>read_data_lo</td>
<td>0x11</td>
<td></td>
</tr>
<tr>
<td>0x12</td>
<td>Unused</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>special</td>
<td>0x13</td>
<td></td>
</tr>
<tr>
<td>0x14</td>
<td>Unused</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>special</td>
<td>0x15</td>
<td></td>
</tr>
<tr>
<td>0x16</td>
<td>Unused</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>special</td>
<td>0x17</td>
<td></td>
</tr>
<tr>
<td>0x18</td>
<td>Unused</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>special</td>
<td>0x19</td>
<td></td>
</tr>
<tr>
<td>0x1A</td>
<td>Unused</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>special</td>
<td>0x1B</td>
<td></td>
</tr>
<tr>
<td>0x1C</td>
<td>Unused</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>special</td>
<td>0x1D</td>
<td></td>
</tr>
<tr>
<td>0x1E</td>
<td>ctrl</td>
<td>RW/WO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>initiate_special</td>
<td>0x1F</td>
<td></td>
</tr>
<tr>
<td>0x20</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle</td>
<td>0x21</td>
<td></td>
</tr>
<tr>
<td>0x22</td>
<td>sta</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>dieid</td>
<td>0x23</td>
<td></td>
</tr>
<tr>
<td>0x24</td>
<td>err</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>avg</td>
<td>0x25</td>
<td></td>
</tr>
<tr>
<td>0x26</td>
<td>warn</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>xee</td>
<td>0x27</td>
<td></td>
</tr>
<tr>
<td>0x28</td>
<td>tsen</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>crc</td>
<td>0x29</td>
<td></td>
</tr>
<tr>
<td>0x2A</td>
<td>field</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>gauss</td>
<td>0x2B</td>
<td></td>
</tr>
<tr>
<td>0x2C</td>
<td>turns</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>turns</td>
<td>0x2D</td>
<td></td>
</tr>
<tr>
<td>0x2E</td>
<td>toff</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>turns_offset</td>
<td>0x2F</td>
<td></td>
</tr>
<tr>
<td>0x30</td>
<td>hang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_hys</td>
<td>0x31</td>
<td></td>
</tr>
<tr>
<td>0x32</td>
<td>ang15</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_15</td>
<td>0x33</td>
<td></td>
</tr>
<tr>
<td>0x34</td>
<td>zang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_zcd</td>
<td>0x35</td>
<td></td>
</tr>
<tr>
<td>0x36</td>
<td>td_high</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>turns_delta[23:12]</td>
<td>0x37</td>
<td></td>
</tr>
<tr>
<td>0x38</td>
<td>td_low</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>turns_delta[11:0]</td>
<td>0x39</td>
<td></td>
</tr>
<tr>
<td>0x3A</td>
<td>ptang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>p^2_turns_angle</td>
<td>0x3B</td>
<td></td>
</tr>
<tr>
<td>0x3C</td>
<td>key</td>
<td>WO/RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>keycode</td>
<td>0x3D</td>
<td></td>
</tr>
<tr>
<td>0x3E</td>
<td>Unused</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>cul</td>
<td>0x3F</td>
<td></td>
</tr>
</tbody>
</table>

Addresses that span multiple bytes are addressed by the most significant byte.
PRIMARY SERIAL INTERFACE REGISTERS REFERENCE

Location 0x02:0x03 ("ewa")

ewa.write_adr
The field “write_adr” is a bit field located at address 0x02[7:0].
This bit field is part of the location “ewa”.
8-bit address for extended writes. Writes require unlock.
0x00-0x1F: EEPROM (takes about 24 ms)
0x40-0x5F: Shadow

Location 0x04:0x05 ("ewdh")

ewdh.write_data_hi
The field “write_data_hi” is a bit field located at address
0x04[15:0]. This bit field is part of the location “ewdh”.
Upper 16 bits of data for an extended write operation.

Location 0x06:0x07 ("ewdl")

ewdl.write_data_lo
The field “write_data_lo” is a bit field located at address
0x06[15:0]. This bit field is part of the location “ewdl”.
Lower 16 bits of data for an extended write operation.

Location 0x08:0x09 ("ewcs")

ewcs.wdn
The field “wdn” is a bit located at address 0x08[0]. This bit is part
of the location “ewcs”.
Write done when wdn = ‘1’; wdn clears when exw is set to ‘1’.

ewcs.wip
The field “wip” is a bit located at address 0x08[8]. This bit is part
of the location “ewcs”.
Write in progress when ‘1’.

ewcs.exw
The field “exw” is a bit located at address 0x08[15]. This bit is part
of the location “ewcs”.
Initiate extended write by writing with ‘1’. Set “wip” and clears
“wdn”. Write-only, always reads back 0.

Location 0x0A:0x0B ("era")

era.read_adr
The field “read_adr” is a bit field located at address 0x0A[7:0].
This bit field is part of the location “era”.
8-bit address for extended reads.
0x00-0x1F: EEPROM (takes about 2 µs)
0x40-0x5F: Shadow
NOTE: After LBIST or a reload of EEPROM values, this value of
read_adr will be changed.

Location 0x0C:0x0D ("ercs")

ercs.rdn
The field “rdn” is a bit located at address 0x0C[0]. This bit is part
of the location “ercs”.
Read done when ‘1’, clears when “exr” set to ‘1’.

ercs.rip
The field “rip” is a bit located at address 0x0C[8]. This bit is part
of the location “ercs”.
Read in progress when ‘1’.

ercs.exr
The field “exr” is a bit located at address 0x0C[15]. This bit is part
of the location “ercs”.
Initiate extended read by writing with ‘1’. Set “rip” and clears
“rdn”. Write-only, always reads back 0.

Location 0x0E:0x0F ("erdh")

erdh.read_data_hi
The field “read_data_hi” is a bit field located at address
0x0E[15:0]. This bit field is part of the location “erdh”.
Upper 16 bits of data from extended read operation, valid when
RDN set to ‘1’.
Location 0x10:0x11 ("erdl")

erdl.read_data_lo
The field “read_data_lo” is a bit field located at address 0x10[15:0]. This bit field is part of the location “erdl”.
Lower 16 bits of data from extended read operation, valid when RDN set to ‘1’.

Location 0x1E:0x1F (“ctrl”)

ctrl.initiate_special
The field “initiate_special” is a bit field located at address 0x1E[7:0]. This bit field is part of the location “ctrl”.
For certain actions from “special” bit field, a code must be set to “initiate_special”. These are to be written into this bit field.
- 0xB9 initiates CVH self-test or functional BIST.
- 0x46 initiates turns counter Reset.
- 0xA5 initiates EEPROM margin or EEPROM reload.
- 0x5A initiates hard reset.
Read always returns 0x00.

ctrl.cle
The field “cle” is a bit located at address 0x1E[8]. This bit is part of the location “ctrl”.
Clear error register “err” when written with ‘1’. Clears bits that were previously read from the “err”. Bits that were not yet read will not be cleared, so the user needs to read ERR first. Write-only, always returns 0.

ctrl.clw
The field “clw” is a bit located at address 0x1E[9]. This bit is part of the location “ctrl”.
Clear warning (WARN) register when set to ‘1’. Clears bits that were previously read from the WARN, so need to read WARN first. Write-only, always returns 0.

ctrl.cls
The field “cls” is a bit located at address 0x1E[10]. This bit is part of the location “ctrl”.
Clear bits “sdn” and “bdn” from “status” register when set to ‘1’. Write-only, returns 0 when read.

crveye.special
The field “special” is a bit field located at address 0x1E[15:12]. This bit field is part of the location “ctrl”.
Special actions. Some of the actions will only be invoked after the “initiate_special” field is written with the correct value. This field will return 0x00 on completion. Self-tests may be run in parallel.

- 0000 - No action.
- 0001 - Enable EEPROM low voltage margining.
- 0010 - Enable EEPROM high voltage margining.
- 0011 - Turns counter load from EWD. Starts after writing 0x46 to “initiate_special”.
- 0100 - Turns counter reset. Starts after writing 0x46 to “initiate_special”.
- 0101 - Reload EEPROM. Requires unlock of part. Starts after writing 0xA5 to “initiate_special”.
- 0110 - Enable transport mode on next LPM entry.
- 0111 - Hard reset. Requires unlock of part. Starts after writing 0x5A to “initiate_special”.
- 1001 - Run CVH self-test. Starts after writing 0xB9 to “initiate_special”.
- 1010 - Run logic BIST. Starts after writing 0xB9 to “initiate_special”.
- 1011 - Run CVH self-test and logic-BIST in parallel. Starts after writing 0xB9 to “initiate_special”.

Location 0x20:0x21 ("ang")

ang.angle
The field “angle” is a bit field located at address 0x20[11:0]. This bit field is part of the location “ang”.
Angle from PLL after processing. Angle in degrees = unsigned 12-bit value × (360 / 4096).

ang.p
The field “p” is a bit located at address 0x20[12]. This bit is part of the location “ang”.
Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.
ang.uv
The field “uv” is a bit located at address 0x20[13]. This bit is part of the location “ang”.
Undervoltage flag (real time). OR of “uva” and “uvd” undervoltage flags. Conditions are realtime, but are masked by the Shadow mask bits.

ang.ef
The field “ef” is a bit located at address 0x20[14]. This bit is part of the location “ang”.
Error flag – will be ‘1’ if any unmasked bit in ERR or WARN is set.

Location 0x22:0x23 (“sta”)

sta.aok
The field “aok” is a bit located at address 0x22[0]. This bit is part of the location “sta”.
Angle output OK. PLL is in lock

sta.bip
The field “bip” is a bit located at address 0x22[1]. This bit is part of the location “sta”.
Boot in progress.

sta.cstr
The field “cstr” is a bit located at address 0x22[2]. This bit is part of the location “sta”.
CVH self-test running.

sta.lbr
The field “lbr” is a bit located at address 0x22[3]. This bit is part of the location “sta”.
LBIST running.

sta.sdn
The field “sdn” is a bit located at address 0x22[5]. This bit is part of the location “sta”.
Special access (from ctrl register) done. Clears to ‘0’ when SPECIAL triggered, set ‘1’ when complete.

sta.lpsh
The field “lpsh” is a bit located at address 0x22[6]. This bit is part of the location “sta”.
Cannot enter low power mode, since angular speed is too high.

sta.rot
The field “rot” is a bit located at address 0x22[7]. This bit is part of the location “sta”.
Rotation direction based on hysteresis (‘0’ = increasing angle, ‘1’ = decreasing angle).

sta.dieid
The field “dieid” is a bit field located at address 0x22[9:8]. This bit field is part of the location “sta”.
DIE ID from EEPROM (for multi-die packages).

Location 0x24:0x25 (“err”)
This is the error register. All errors are latched, meaning they will remain high after they occurred just once. Errors need to be read and then cleared in order to remove them. It is important that the user clears errors, so that subsequent errors become visible. This is especially important for the “rst” error flag (reset), which is always enabled after power on. Not removing it means that an unexpected reset cannot be discovered afterwards.

err.rst
The field “rst” is a bit located at address 0x24[0]. This bit is part of the location “err”.
Reset condition. Sets on power-on reset or on hard reset. Does not set on LBIST.

err.msl
The field “msl” is a bit located at address 0x24[1]. This bit is part of the location “err”.
Magnetic sense low fault. Magnetic sense was below the “mag_thres_lo” limit.
err.uva
The field “uva” is a bit located at address 0x24[2]. This bit is part of the location “err”.
Undervoltage detector tripped. Will be set again after clearing if the undervoltage situation persists. Based on analog regulator.

err.uvd
The field “uvd” is a bit located at address 0x24[3]. This bit is part of the location “err”.
Undervoltage detector tripped. Will be set again after clearing if the undervoltage situation persists.

err.ofe
The field “ofe” is a bit located at address 0x24[4]. This bit is part of the location “err”.
Oscillator frequency watchdog tripped.

err.eue
The field “eue” is a bit located at address 0x24[5]. This bit is part of the location “err”.
EEPROM uncorrectable error. A multi-bit EEPROM read occurred.

err.zie
The field “zie” is a bit located at address 0x24[6]. This bit is part of the location “err”.
Zero crossing integrity error – a zero crossing did not occur within the maximum time expected, likely indicating missing magnet, an extreme rotation speed, or a sensor defect.

err.plk
The field “plk” is a bit located at address 0x24[7]. This bit is part of the location “err”.
PLL lost lock.

err.abi
The field “abi” is a bit located at address 0x24[8]. This bit is part of the location “err”.
ABI integrity fault. The quadrature integrity of the ABI could not be maintained.

err.avg
The field “avg” is a bit located at address 0x24[9]. This bit is part of the location “err”.
Angle averaging error. The ORATE is too high for the velocity and the averaging is corrupted.

err.stf
The field “stf” is a bit located at address 0x24[10]. This bit is part of the location “err”.
Self-test failure.

err.war
The field “war” is a bit located at address 0x24[11]. This bit is part of the location “err”.
Warning. Some unmasked error bits are set in the WARN register. If WAR in mask register “MSK” is set, this will be forced to 0.

Location 0x26:0x27 (“warn”)

warn.tov
The field “tov” is a bit located at address 0x26[0]. This bit is part of the location “warn”.
Turns Counter Overflow Error. The turns counter surpassed its maximum value of ±256 full rotations. This is not dependent on the resolution of “turns” (45 or 180 degree).

warn.msh
The field “msh” is a bit located at address 0x26[1]. This bit is part of the location “warn”.
Magnetic sense high fault. Magnetic sense has exceeded the “mag_thres_hi” limit.

warn.bsy
The field “bsy” is a bit located at address 0x26[2]. This bit is part of the location “warn”.
Extended access overflow. An EXW or EXR was initiated while previous extended read or write was in progress.

warn.tcw
The field “tcw” is a bit located at address 0x26[3]. This bit is part of the location “warn”.
Turns counter warning (over ±135 degrees delta).
warn.sat
The field “sat” is a bit located at address 0x26[4]. This bit is part of the location “warn”.
Aggretate saturation flag. Shows that any internal signals have saturated, likely to have been cause by extremely strong or weak fields.

warn.esr
The field “ese” is a bit located at address 0x26[5]. This bit is part of the location “warn”.
EEPROM soft error. A correctable (single-bit) EEPROM read occurred.

warn.tr
The field “tr” is a bit located at address 0x26[6]. This bit is part of the location “warn”.
Temperature out of range. The temperature sensor calculated a temperature below –60°C or above 180°C. Temperature will saturate at those limits.

warn.xee
The field “xee” is a bit located at address 0x26[7]. This bit is part of the location “warn”.
Extended execute error. A command intiated by an extended write failed. Write failed due to access error (not unlocked) or EEPROM write failure.

warn.srw
The field “srw” is a bit located at address 0x26[8]. This bit is part of the location “warn”.
Slew rate warning. This warning is asserted if the ABI slew rate limiting is enabled and a condition that requires the limiting to be applied has occurred.

warn.crc
The field “crc” is a bit located at address 0x26[10]. This bit is part of the location “warn”.
Incoming SPI CRC error. Packet was discarded.

warn.iel
The field “ier” is a bit located at address 0x26[11]. This bit is part of the location “warn”.
Interface error. Invalid number of bits in SPI packet, or bit 15 of MOSI data = ‘1’. Packet was discarded.
Also Manchester error.

Location 0x28:0x29 (“tsen”)

tsen.temperature
The field “temperature” is a bit field located at address 0x28[11:0]. This bit field is part of the location “tsen”.
Current junction temperature from internal temperature sensor relative to 25°C (signed value). Value is in 1/8 of a degree. Temperature °C = (tsen.temperature / 8) + 25.0.

Location 0x2A:0x2B (“field”)

field.gauss
The field “gauss” is a bit field located at address 0x2A[11:0].
This bit field is part of the location “field”.
Field strength in gauss.

Location 0x2C:0x2D (“trns”)

trns.turns
The field “turns” is a bit field located at address 0x2C[11:0]. This bit field is part of the location “trns”.
Turns counter – signed 45 or 180 degree increments.

trns.p
The field “p” is a bit located at address 0x2C[12]. This bit is part of the location “trns”.
Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.

trns.tsrc
The field “tsrc” is a bit located at address 0x2C[13]. This bit is part of the location “trns”.
Turns Source. Set to ‘1’ to use accurate PLL as turns counter source in normal power mode (recommended). Set to ‘0’ to use ZCD angle as turns counter source in normal power mode (not recommended).
Location 0x2E:0x2F ("toff")

toff.turns_offset
The field “turns_offset” is a bit field located at address 0x2E[10:0]. This bit field is part of the location “toff”.

This is either the 11 or 9 LSBs of the turns_delta register, depending on a 180 or 45 degree turns configuration.

toff.p
The field “p” is a bit located at address 0x2E[12]. This bit is part of the location “toff”.

Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.

toff.lat
The field “lat” is a bit located at address 0x2E[14]. This bit is part of the location “toff”.

Indicates that the “turns_offset” field is latched. If ‘1’, indicates that the word “toff” was latched on a prior read of the “turns” register, and is consistent with that reading. Will return to ‘0’ after reading.

Location 0x30:0x31 (“hang”)

hang.angle_hys
The field “angle_hys” is a bit field located at address 0x30[11:0]. This bit field is part of the location “hang”.

Angle from PLL after processing. Angle in degrees = unsigned 12-bit value × (360 / 4096).

hang.p
The field “p” is a bit located at address 0x30[12]. This bit is part of the location “hang”.

Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.

hang.uv
The field “uv” is a bit located at address 0x30[13]. This bit is part of the location “hang”.

Undervoltage flag (real time). OR of analog and digital UV flags. Conditions are realtime, but are masked by the Shadow mask bits.

hang.ef
The field “ef” is a bit located at address 0x30[14]. This bit is part of the location “hang”.

Error flag – will be ‘1’ if any unmasked bit in ERR or WARN is set.

Location 0x32:0x33 (“ang15”)

ang15.angle_15
The field “angle_15” is a bit field located at address 0x32[14:0]. This bit field is part of the location “ang15”.

15-bit compensated angle (not rounded).

Location 0x34:0x35 (“zang”)

zang.angle_zcd
The field “angle_zcd” is a bit field located at address 0x34[11:0]. This bit field is part of the location “zang”.

Angle from zero-crossing-detector, which is used to verify that the PLL angle is correct. This angle always used for turns counter in used in low power mode, and for turns counter source in normal power mode in case tsr = 0. Angle in degrees = unsigned 12-bit value × (360 / 4096).

zang.p
The field “p” is a bit located at address 0x34[12]. This bit is part of the location “zang”.

Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.

zang.uv
The field “uv” is a bit located at address 0x34[13]. This bit is part of the location “zang”.

Undervoltage flag (real time). OR of analog and digital UV flags. Conditions are realtime, but are masked by the Shadow mask bits.

zang.ef
The field “ef” is a bit located at address 0x34[14]. This bit is part of the location “zang”.

Error flag - will be ‘1’ if any unmasked bit in ERR or WARN is set.
Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

Location 0x36:0x37 (“td_high”)

When reading “td_high”, the contents of “td_low” will be locked. This is done so that the values of the two words are matching. To get a correct reading of the entire turns delta, the customer must first read “td_high” and then read “td_low”.

td_high.turns_delta_high

The field “turns_delta_high” is a bit field located at address 0x36[11:0]. This bit field is part of the location “td_high”.

Upper 9 bits (sign extended to 12) of the turns delta counter.

td_high.p

The field “p” is a bit located at address 0x36[12]. This bit is part of the location “td_high”.

Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.

td_high.tsrd1

The field “tsrd1” is a bit located at address 0x36[13]. This bit is part of the location “td_high”.

Turns Source. Set to ‘1’ to use accurate PLL as turns counter source in normal power mode (recommended). Set to ‘0’ to use ZCD angle as turns counter source in normal power mode (not recommended).

td_high.ef

The field “ef” is a bit located at address 0x36[14]. This bit is part of the location “td_high”.

Error flag – will be ‘1’ if any unmasked bit in ERR or WARN is set.

Location 0x38:0x39 (“td_low”)

td_low.turns_delta_low

The field “turns_delta_low” is a bit field located at address 0x38[11:0]. This bit field is part of the location “td_low”.

Lower 12 bits of the turns delta counter. This is the angle offset at 12-bit resolution.

td_low.p

The field “p” is a bit located at address 0x38[12]. This bit is part of the location “td_low”.

Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.

td_low.lat1

The field “lat1” is a bit located at address 0x38[13]. This bit is part of the location “td_low”.

Indicates that the “td_low” field is latched. If ‘1’, indicates that “td_low” was latched on a prior read of the “td_high” register, and is consistent with that reading. Will return to ‘0’ after reading.

td_low.ef

The field “ef” is a bit located at address 0x38[14]. This bit is part of the location “td_low”.

Error flag – will be ‘1’ if any unmasked bit in ERR or WARN is set.
Location 0x3A:0x3B (“ptang”)

ptang_pll_turns_angle
The field “pll_turns_angle” is a bit field located at address 0x3A[11:0]. This bit field is part of the location “ptang”.
Angle from PLL after processing, as used for the turns counter.
May have hysteresis based on “h2a” configuration in EEPROM.
Angle in degrees = unsigned 12-bit value \times (360 / 4096).

ptang_p
The field “p” is a bit located at address 0x3A[12]. This bit is part of the location “ptang”.
Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.

ptang_uv
The field “uv” is a bit located at address 0x3A[13]. This bit is part of the location “ptang”.
Undervoltage flag (real time). OR of analog and digital UV flags. Conditions are realtime, but are masked by the Shadow mask bits.

ptang_ef
The field “ef” is a bit located at address 0x3A[14]. This bit is part of the location “ptang”.
Error flag – will be ‘1’ if any unmasked bit in ERR or WARN is set.

Location 0x3C:0x3D (“key”)

key_cul
The field “cul” is a bit located at address 0x3C[0]. This bit is part of the location “key”.
Customer unlocked if ‘1’.

key_keycode
The field “keycode” is a bit field located at address 0x3C[15:8]. This bit field is part of the location “key”.
Customer access keycode is entered here, using five subsequent write commands with the numbers: 0x00, 0x27, 0x81, 0x1F, 0x77.
Always reads back 0.
EEPROM AND SHADOW REGISTER TABLE

The EEPROM register bitmap is shown below. Addresses that span multiple bytes are addressed by the most significant byte. All EEPROM content can be read by the user. The EEPROM ECC field in bits [31:26] of each word are not shown here. Bits [25:24] of each EEPROM word are unused and not shown here, but are included in the ECC.

Table 14: EEPROM/Shadow Memory Map

<table>
<thead>
<tr>
<th>Shadow Memory Address</th>
<th>EEPROM Address</th>
<th>Register Name</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>0x17</td>
<td>CU2</td>
<td></td>
</tr>
<tr>
<td>0x58</td>
<td>0x18</td>
<td>PWE</td>
<td>zcd_turns_offset tov tr msh sat ese msl uv avg zie plk sff eue cfe</td>
</tr>
<tr>
<td>0x59</td>
<td>0x19</td>
<td>ABI</td>
<td>abd_slew_time inv – – ahe – – index_mode wdh plh loe usw resolution_pairs</td>
</tr>
<tr>
<td>0x5A</td>
<td>0x1A</td>
<td>MSK</td>
<td>iem crm arwm xem esm esem smth tswm bsym msth warm stfm avgm lim abim plkm ziem euem ofem uvdm uvam mslm rstm</td>
</tr>
<tr>
<td>0x5B</td>
<td>0x1B</td>
<td>PWI</td>
<td>pen pwm_band pwm_freq – phe peo pes eli ls wp_hys zal wp_thres dm h2t s17 sc</td>
</tr>
<tr>
<td>0x5C</td>
<td>0x1C</td>
<td>ANG</td>
<td>crate rd ro hysteresis zero_offset</td>
</tr>
<tr>
<td>0x5D</td>
<td>0x1D</td>
<td>LPC</td>
<td>t45 top tpmd kpmd turns_init lpm_cycle_time lpt lpm_wake_threshold</td>
</tr>
<tr>
<td>0x5E</td>
<td>0x1E</td>
<td>COM</td>
<td>tock lbe cse dur del – cud dist dhr mag_thres_hi mag_thres_lo</td>
</tr>
<tr>
<td>–</td>
<td>0x1F</td>
<td>CUS</td>
<td></td>
</tr>
<tr>
<td>0x60</td>
<td>0x20</td>
<td>LIN00</td>
<td>Linearization Error Segment 1</td>
</tr>
<tr>
<td>0x61</td>
<td>0x21</td>
<td>LIN01</td>
<td>Linearization Error Segment 3</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td></td>
<td>Linearization Error Segment 2</td>
</tr>
<tr>
<td>0x6E</td>
<td>0x2E</td>
<td>LIN14</td>
<td>Linearization Error Segment 29</td>
</tr>
<tr>
<td>0x6F</td>
<td>0x2F</td>
<td>LIN15</td>
<td>Linearization Error Segment 31</td>
</tr>
<tr>
<td>0x80</td>
<td>–</td>
<td>ALV</td>
<td>Alive counter</td>
</tr>
</tbody>
</table>

Allegro MicroSystems, LLC
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com
Location 0x17 (“CU2”)

Customer useable field, intended for storing data or turns counter.

This word can be written even if EEPROM is locked. Write may be allowed without the unlock code based on COM.dur and COM.del settings (see word 0x1E).

CU2.customer 2

The field “customer 2” is a bit field located at address 0x17[23:0]. This bit field is part of the location “CU2”.

Customer-useable field, intended for storing data or turns counter.

Depending on COM.dur and COM.del settings, this word can be written even if EEPROM is locked. Details are given in the chapter “EEPROM write lock”.

Location 0x18 (“PWE”)

PWE.ofe

The field “ofe” is a bit located at address 0x18[0]. This bit is part of the location “PWE”.

PWM oscillator frequency watchdog error enable. Duty cycle output 5% at half the selected PWM frequency.

PWE.eue

The field “eue” is a bit located at address 0x18[1]. This bit is part of the location “PWE”.

PWM EEPROM uncorrectable error enable. Duty cycle 10.625% at half the selected PWM frequency.

PWE.stf

The field “stf” is a bit located at address 0x18[2]. This bit is part of the location “PWE”.

PWM self-test failure error enable. Duty cycle 16.25% at half the selected PWM frequency.

PWE.plk

The field “plk” is a bit located at address 0x18[3]. This bit is part of the location “PWE”.

PWM PLL Lost Lock error enable. Duty cycle 21.875% at half the selected PWM frequency.

PWE.zie

The field “zie” is a bit located at address 0x18[4]. This bit is part of the location “PWE”.

PWM zero crossing integrity error enable. Duty cycle 27.5% at half the selected PWM frequency.

PWE.avg

The field “avg” is a bit located at address 0x18[5]. This bit is part of the location “PWE”.

PWM angle averaging error enable. Duty cycle is 33.125% at half the selected PWM frequency.

PWE.msa

The field “msa” is a bit located at address 0x18[6]. This bit is part of the location “PWE”.

PWM magnetic Sense Low Fault enable. Duty cycle 44.375% at half the selected PWM frequency.

PWE.ms

The field “ms” is a bit located at address 0x18[7]. This bit is part of the location “PWE”.

PWM magnetic Sense Low Fault enable. Duty cycle 50% at half the selected PWM frequency.

PWE.ese

The field “ese” is a bit located at address 0x18[8]. This bit is part of the location “PWE”.

PWM EEPROM Soft Error enable. Duty cycle 50% at half the selected PWM frequency.

PWE.uv

The field “uv” is a bit located at address 0x18[9]. This bit is part of the location “PWE”.

PWM undervoltage Fault enable (analog or digital). Duty cycle 38.75% at half the selected PWM frequency.

PWE.zie

The field “zie” is a bit located at address 0x18[10]. This bit is part of the location “PWE”.

PWM zero crossing integrity error enable. Duty cycle 27.5% at half the selected PWM frequency.

PWE.sie

The field “sie” is a bit located at address 0x18[11]. This bit is part of the location “PWE”.

PWM saturation warning enable. Duty cycle 55.625% at half the selected PWM frequency.

PWE.zie

The field “zie” is a bit located at address 0x18[12]. This bit is part of the location “PWE”.

PWM zero crossing integrity error enable. Duty cycle 27.5% at half the selected PWM frequency.

PWE.zie

The field “zie” is a bit located at address 0x18[13]. This bit is part of the location “PWE”.

PWM zero crossing integrity error enable. Duty cycle 27.5% at half the selected PWM frequency.

PWE.zie

The field “zie” is a bit located at address 0x18[14]. This bit is part of the location “PWE”.

PWM zero crossing integrity error enable. Duty cycle 27.5% at half the selected PWM frequency.

PWE.zie

The field “zie” is a bit located at address 0x18[15]. This bit is part of the location “PWE”.

PWM zero crossing integrity error enable. Duty cycle 27.5% at half the selected PWM frequency.

PWE.zie

The field “zie” is a bit located at address 0x18[16]. This bit is part of the location “PWE”.

PWM zero crossing integrity error enable. Duty cycle 27.5% at half the selected PWM frequency.

PWE.zie

The field “zie” is a bit located at address 0x18[17]. This bit is part of the location “PWE”.

PWM zero crossing integrity error enable. Duty cycle 27.5% at half the selected PWM frequency.
PWE.tr
The field “tr” is a bit located at address 0x18[11]. This bit is part of the location “PWE”.

PWM temperature sensor out of range error enable. Duty cycle 66.875% at half the selected PWM frequency.

PWE.tov
The field “tov” is a bit located at address 0x18[12]. This bit is part of the location “PWE”.

PWM turns counter overflow error enable. Duty cycle 72.5% at half the selected PWM frequency.

PWE.zcd_turns_offset
The field “zcd_turns_offset” is a bit field located at address 0x18[23:13]. This bit field is part of the location “PWE”.

Offset to ZCD angle for purposes of aligning for turns counting. This is 11-bit angle resolution and is added to the ZCD angle for turns purposes. If turns is configured to use the PLL (TCP = 1), it is important to use this to align the ZCD close to the PLL angle.

The value is already calibrated at Allegro factory. However, if “zero_offset” is changed, linearization is used, “rd” is changed, or “ro” is changed, recalibrating this value may be needed.

To recalibrate the “zcd_turns_offset” value, read output registers “angle” and “angle_zcd” and take the 12 LSB from these registers. Calculate the new value of zcd_turns_offset using these two measurements as follows:

```
“zcd_turns_offset” = mod( ( mod(“angle” – “angle_zcd”),4096) / 2 ) + “zcd_turns_offset”), 2048)
```

In the formula above, the division by two was included to compensate for the fact that the angle resolution is 12-bit, while the zcd_turns_offset resolution is 11-bit.

A completely perfect alignment is not necessary and not even possible when using linearization. However, gross misalignments of >180° will cause errors in turns counting in combination with low power mode if “tcp” = 1.

Location 0x19 (“ABI”)

ABI.resolution_pairs
The field “resolution_pairs” is a bit field located at address 0x19[3:0]. This bit field is part of the location “ABI”.

ABI or UVW resolution.

If ABI selected, this selects AB cycle counts per rotation. Cycle count = 2(14-n) where n is selected code.

If UVW selected, this is the number of pole pairs – 1.

ABI.uvw
The field “uvw” is a bit located at address 0x19[4]. This bit is part of the location “ABI”.

Incremental outputs UVW (1), ABI (0).

ABI.ioe
The field “ioe” is a bit located at address 0x19[5]. This bit is part of the location “ABI”.

Incremental output pins enable (see UVW).

ABI.plh
The field “plh” is a bit located at address 0x19[6]. This bit is part of the location “ABI”.

Enable ABI all high (before inversions) as error mode if PLL is unlocked.

ABI.wdh
The field “wdh” is a bit located at address 0x19[7]. This bit is part of the location “ABI”.

Enable ABI all high (before inversions) as error mode if high-frequency watchdog trips.

ABI.index_mode
The field “index_mode” is a bit field located at address 0x19[9:8]. This bit field is part of the location “ABI”.

ABI index mode, defines width and placement of index pulse.

Mode 0: Angle = 0
Mode 1: Angle = –R or 0
Mode 2: Angle = –R, 0 or +R
Mode 3: Angle = –2R, –R, 0 or +R
AAS33051

Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

ABI.ahe
The field “ahe” is a bit located at address 0x19[12]. This bit is part of the location “ABI”.

ABI hysteresis enable. If 1, use hysteresis on angle going to ABI.

ABI.inv
The field “inv” is a bit located at address 0x19[15]. This bit is part of the location “ABI”.

Invert ABI or UVW signals.

ABI.abi_slew_time
The field “abi_slew_time” is a bit field located at address 0x19[21:16]. This bit field is part of the location “ABI”.

ABI slew rate limit. ‘0’ mean slew rate limiter is disabled. Otherwise, \((N + 1) \times 125\) ns (nominal) is the minimum edge-to-edge time for the ABI output. This limits the maximum ABI velocity. Reducing the ABI output resolution may be useful to counteract this effect.

Location 0x1A (“MSK”)

MSK.rstm
The field “rstm” is a bit located at address 0x1A[0]. This bit is part of the location “MSK”.

Reset mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.ziem
The field “ziem” is a bit located at address 0x1A[6]. This bit is part of the location “MSK”.

Oscillator frequency watchdog error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

Digital undervoltage Fault Mask

MSK.uvdm
The field “uvdm” is a bit located at address 0x1A[3]. This bit is part of the location “MSK”.

Digital undervoltage Fault Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.ofem
The field “ofem” is a bit located at address 0x1A[4]. This bit is part of the location “MSK”.

Oscillator frequency watchdog error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.euem
The field “euem” is a bit located at address 0x1A[5]. This bit is part of the location “MSK”.

EEPROM uncorrectable error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.plkm
The field “plkm” is a bit located at address 0x1A[7]. This bit is part of the location “MSK”.

PLL Lost Lock error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.abim
The field “abim” is a bit located at address 0x1A[8]. This bit is part of the location “MSK”.

ABI integrity fault mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.avgm
The field “avgm” is a bit located at address 0x1A[9]. This bit is part of the location “MSK”.

Angle averaging fault mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

Allegro MicroSystems, LLC
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com
MSK.stfm

The field “stfm” is a bit located at address 0x1A[10]. This bit is part of the location “MSK”.

Self-test failure error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.warm

The field “warm” is a bit located at address 0x1A[11]. This bit is part of the location “MSK”.

If set to 1, will not set WAR bit in the ERR register when unmasked warnings are present.

MSK.tovm

The field “tovm” is a bit located at address 0x1A[12]. This bit is part of the location “MSK”.

Turns Counter Overflow Error Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.mshm

The field “mshm” is a bit located at address 0x1A[13]. This bit is part of the location “MSK”.

Magnetic Sense High Fault Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.bsym

The field “bsym” is a bit located at address 0x1A[14]. This bit is part of the location “MSK”.

Indirect access busy error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.tcwm

The field “tcwm” is a bit located at address 0x1A[15]. This bit is part of the location “MSK”.

Turns counter warning mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.satm

The field “satm” is a bit located at address 0x1A[16]. This bit is part of the location “MSK”.

Aggregate saturation flag mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.esem

The field “esem” is a bit located at address 0x1A[17]. This bit is part of the location “MSK”.

EEPROM Soft Error Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.trm

The field “trm” is a bit located at address 0x1A[18]. This bit is part of the location “MSK”.

Temp sensor out of range error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.xeem

The field “xeem” is a bit located at address 0x1A[19]. This bit is part of the location “MSK”.

Execute Error Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.srwvm

The field “srwvm” is a bit located at address 0x1A[20]. This bit is part of the location “MSK”.

Slew rate warning mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.crcm

The field “crcm” is a bit located at address 0x1A[22]. This bit is part of the location “MSK”.

CRC Error Mask (SPI). If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.ierm

The field “ierm” is a bit located at address 0x1A[23]. This bit is part of the location “MSK”.

Interface Error Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

Allegro MicroSystems, LLC
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com
Location 0x1B (“PWI”)

PWI.sc
The field “sc” is a bit located at address 0x1B[0]. This bit is part of the location “PWI”.
SPI CRC (incoming) validated if SC = 1, ignored if SC = 0.

PWI.s17
The field “s17” is a bit located at address 0x1B[1]. This bit is part of the location “PWI”.
SPI ignore 17th clock to allow negative edge host sampling.

PWI.h2t
The field “h2t” is a bit located at address 0x1B[2]. This bit is part of the location “PWI”.
- 0 - Use non-hysteresis angle for turns counter
- 1 - Use hysteresis angle for turns counter
This affects serial register TANG (0x3A).

PWI.dm
The field “dm” is a bit located at address 0x1B[3]. This bit is part of the location “PWI”.
Disable Manchester interface. If ‘1’, any Manchester input on VCC will be ignored.

PWI.wp_thres
The field “wp_thres” is a bit field located at address 0x1B[6:4].
This bit field is part of the location “PWI”.
WAKE pin voltage threshold.

PWI.zal
The field “zal” is a bit located at address 0x1B[7]. This bit is part of the location “PWI”.
Zero offset after linearization:
- 0 = Before linearization and rotation
- 1 = After linearization

PWI.wp_hys
The field “wp_hys” is a bit field located at address 0x1B[9:8].
This bit field is part of the location “PWI”.
WAKE pin hysteresis.

PWI.ls
The field “ls” is a bit located at address 0x1B[10]. This bit is part of the location “PWI”.
Linearization scale:
0 = ±22.5 degrees
1 = ±45 degrees

PWI.eli
The field “eli” is a bit located at address 0x1B[11]. This bit is part of the location “PWI”.
Enable linearization:
- 0 = Disabled
- 1 = Enabled

Note: If “zero_offset” is changed, linearization is used, “rd” is changed, or “ro” is changed, recalibrating “zcd_turns_offset” may be needed. Read the documentation of “zcd_turns_offset” for further information.

PWI.pes
The field “pes” is a bit located at address 0x1B[12]. This bit is part of the location “PWI”.
PWM error select (if “peo” = 1).
- 0 - PWM tristated, must reset (or set “peo” back to 0 in shadow) to release the PWM output.
- 1 - PWM carrier frequency halved and highest priority error output on PWM as selected duty cycle. See “PWM Output” section for more details.

PWI.peo
The field “peo” is a bit located at address 0x1B[13]. This bit is part of the location “PWI”.
PWM error output enable. If ‘1’, “pes” selects the response to an enabled error (see “abe” word).

PWI.phe
The field “phe” is a bit located at address 0x1B[14]. This bit is part of the location “PWI”.
PWM hysteresis enable. If 1, use hysteresis on angle going to PWM.
AAS33051

Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

PWl.pwm_freq
The field “pwm_freq” is a bit field located at address 0xB[19:16]. This bit field is part of the location “PWl”.

PWM frequency select. See “PWM Output” section for more details.

PWl.pwm_band
The field “pwm_band” is a bit field located at address 0xB[22:20]. This bit field is part of the location “PWl”.

PWM frequency band. See “PWM Output” section for more details.

PWl.pen
The field “pen” is a bit located at address 0xB[23]. This bit is part of the location “PWl”.

PWM Enable = 1.
If 0, PWM is tristate.

Location 0x1C (“ANG”)

ANG.zero_offset
The field “zero_offset” is a bit field located at address 0x1C[11:0]. This bit field is part of the location “ANG”.

Post-compensation zero offset (or DC adjust) at angle resolution. This value is subtracted from the measured angle.

Note: If “zero_offset” is changed, linearization is used, “rd” is changed, or “ro” is changed, recalibrating “zcd_turns_offset” may be needed. Read the documentation of “zcd_turns_offset” for further information.

ANG.hysteresis
The field “hysteresis” is a bit field located at address 0x1C[17:12]. This bit field is part of the location “ANG”.

Angle hysteresis threshold, angle resolution × 4 (14 bit). Range is about 0 to 1.384 degrees.

ANG.ro
The field “ro” is a bit located at address 0x1C[18]. This bit is part of the location “ANG”.

Rotation Direction (post-linearization). If set to 0, increasing angle movement is in the clockwise direction when looking down on the top of the die. If set to 1, increasing angle movement is in the counter-clockwise direction.

Note: If “zero_offset” is changed, linearisation is used, “rd” is changed, or “ro” is changed, recalibrating “zcd_turns_offset” may be needed. Read the documentation of “zcd_turns_offset” for further information.

ANG.rd
The field “rd” is a bit located at address 0x1C[19]. This bit is part of the location “ANG”.

Rotate die. Rotates final angle by 180 degrees. This is the very last step in the angle processing algorithm. The sensor is Allegro factory-calibrated to deliver identical field directions for both dies. If the user want the two outputs to be 180° offset from each other, this setting is a convenient way to do so.

Note: If “zero_offset” is changed, linearisation is used, “rd” is changed, or “ro” is changed, recalibrating “zcd_turns_offset” may be needed. Read the documentation of “zcd_turns_offset” for further information.

ANG.orate
The field “orate” is a bit field located at address 0x1C[23:20]. This bit field is part of the location “ANG”.

Reduces the output rate by averaging samples. 2orate samples will be averaged. ORATE values above 12 are reduced to 12 in the logic, meaning that up to 4096 samples = 4 ms can be selected as averaging time.
Location 0x1D (“LPC”)

LPC.lpm_wake_threshold
The field “lpm_wake_threshold” is a bit field located at address 0x1D[10:0]. This bit field is part of the location “LPC”.

Minimum sample-to-sample angle difference in low power mode to force a switch to normal power mode. Also used as maximum angle difference in normal power mode to decide if the device can enter low power mode. In both cases, the angle difference is calculated over the time given in “lpm_cycle_time”. Resolution is 11 bit, for values of 0 to 180 degrees, with resolution of (360/4096) degrees per LSB. Setting values close to 180 degrees can result in dangerous ambiguity and is not recommended.

LPC.tcp
The field “tcp” is a bit located at address 0x1D[11]. This bit is part of the location “LPC”.

Turns counter PLL:
0 = Turns uses ZCD angle.
1 = Turns uses PLL except during LPM and if PLL lock is lost. Make sure the “ZCD_TURNS_OFFSET” aligns the ZCD angle close to the PLL angle.

LPC.lpt
The field “lpt” is a bit located at address 0x1D[11]. This bit is part of the location “LPC”.

Low power transport:
0 = Low power mode requires CTRL to enable transport mode.
1 = Low power mode (SPI pins low) automatically enters transport mode.

LPC.lpm_cycle_time
The field “lpm_cycle_time” is a bit field located at address 0x1D[17:12]. This bit field is part of the location “LPC”.

Low power cycle time in 8.192 ms increments with cycle time = [(N + 1) × 8.192 ms]. Also determines the Alive counter increment rate.

LPC.turns_init
The field “turns_init” is a bit field located at address 0x1D[19:18]. This bit field is part of the location “LPC”.

Turns initialization at power-up.
00, 01 = Turns counter zeroed at power-up.
10 = Turns counter set to full settled angle (turns register may be non-zero).
11 = Turns counter set to settled angle offset from 180 or 45 configuration (MSB 10 or 12 bits zeroed), turns register will start out zero.

LPC.lpmd
The field “lpmd” is a bit located at address 0x1D[20]. This bit is part of the location “LPC”.

Disable low power mode if ‘1’.

LPC.tpmd
The field “tpmd” is a bit located at address 0x1D[21]. This bit is part of the location “LPC”.

Disable transport mode if ‘1’.

LPC.t45
The field “t45” is a bit located at address 0x1D[23]. This bit is part of the location “LPC”.

Turns counter steps at 45 degree boundaries if 1. 180 degree boundaries if 0.
Location 0x1E ("COM")

COM.mag_thres_lo
The field “mag_thres_lo” is a bit field located at address 0x1E[5:0]. This bit field is part of the location “COM”.
Magnetic field low comparator value, field value equals low field error threshold in gauss divided by 16.
If set to 0, low threshold is disabled.
00 0000: Low field flag disabled
00 0001: 16 gauss
00 0010: 32 gauss
...
00 1101: 208 gauss (factory setting)
...
11 1111: 1108 gauss

COM.mag_thres_hi
The field “mag_thres_hi” is a bit field located at address 0x1E[11:6]. This bit field is part of the location “COM”.
Magnetic field high comparator value, field value equals maximum field threshold in gauss divided by 32. If set to 0, high threshold is disabled.
00 0000: High field flag disabled
00 0001: 32 gauss
00 0010: 64 gauss
...
10 0101: 1184 gauss (factory setting)
...
11 1111: 2016 gauss

COM.dhr
The field “dhr” is a bit located at address 0x1E[12]. This bit is part of the location “COM”.
Disable hard reset in serial CTRL register special if ‘1’.

COM.dst
The field “dst” is a bit located at address 0x1E[13]. This bit is part of the location “COM”.
Disable self-test initiation in serial CTRL register special if ‘1’.

COM.cud
The field “cud” is a bit located at address 0x1E[14]. This bit is part of the location “COM”.
If ‘1’, the “customer” word 0x1F will use the “dur” and “del” configuration in addition to the “customer2” word 0x17.

COM.del
The field “del” is a bit located at address 0x1E[16]. This bit is part of the location “COM”.
Disable EEPROM lock for CUST2 (EEPROM word 0x17) and, if CUD = 1, CUST word 0x1F. EEPROM lock will not affect write-ability of word 0x17 (and 0x1F if enabled). Intended for turns counter savings.

COM.dur
The field “dur” is a bit located at address 0x1E[17]. This bit is part of the location “COM”.
Disable unlock requirement for CUST2 (EEPROM word 0x17) and if CUD = 1, CUST word 0x1F.

COM.cse
The field “cse” is a bit located at address 0x1E[18]. This bit is part of the location “COM”.
Enable CVH self-test at power-up.

COM.ibe
The field “ibe” is a bit located at address 0x1E[19]. This bit is part of the location “COM”.
Power-up logic BIST enable.

COM.lock
The field “lock” is a bit field located at address 0x1E[23:20]. This bit field is part of the location “COM”.
Lock options:
1100 Lock EEPROM writes
0011 Lock EEPROM writes AND indirect register writes.
Location 0x1F ("CUS")

CUS.customer

The field “customer” is a bit field located at address 0x1F[23:0]. This bit field is part of the location “CUS”. Customer-useable field, intended for storing data.

With certain settings, this word can be written even if EEPROM is locked. Details are given in the chapter “EEPROM Write Lock”.

If COM.cud = ‘1’, then, depending on COM.dur and COM.del settings, this word can be written even if EEPROM is locked. Details are given in the section “EEPROM Write Lock”.

Location 0x20 ("LIN00")

LIN00.Linearization Error Segment 0

The field “Linearization Error Segment 0” is a bit field located at address 0x20[11:0]. This bit field is part of the location “LIN00”.

Correction value at segment boundary. Signed, resolution is based on LS bit. Will be subtracted from sensor angle to produce linearized angle.

For LS = 0, range is ±22.5 degrees.
For LS = 1, range is ±45 degrees.

LIN00.Linearization Error Segment 1

The field “Linearization Error Segment 1” is a bit field located at address 0x20[23:12]. This bit field is part of the location “LIN00”.

Correction value at segment boundary. Signed, resolution is based on LS bit. Will be subtracted from sensor angle to produce linearized angle.

For LS = 0, range is ±22.5 degrees.
For LS = 1, range is ±45 degrees.

NOTE: linearization segments 2...29 have been omitted from the datasheet for reasons of brevity.

Location 0x2F ("LIN15")

LIN15.Linearization Error Segment 30

The field “Linearization Error Segment 30” is a bit field located at address 0x2F[11:0]. This bit field is part of the location “LIN15”.

Correction value at segment boundary. Signed, resolution is based on LS bit. Will be subtracted from sensor angle to produce linearized angle.

For LS = 0, range is ±22.5 degrees.
For LS = 1, range is ±45 degrees.

LIN15.Linearization Error Segment 31

The field “Linearization Error Segment 31” is a bit field located at address 0x2F[23:12]. This bit field is part of the location “LIN15”.

Correction value at segment boundary. Signed, resolution is based on LS bit. Will be subtracted from sensor angle to produce linearized angle.

For LS = 0, range is ±22.5 degrees.
For LS = 1, range is ±45 degrees.

Location 0x80 ("ALV")

ALV.alive counter

The field “alive counter” is a bit field located at address 0x80[31:0]. This bit field is part of the location “ALV”.

Alive counter is a 32-bit counter, which increments periodically from zero after power-on or hard reset. The alive increment period is based on the EEPROM lpm_cycle_time, which has a resolution of 8.192 ms. The alive counter can overflow. The overflow period of the counter is $[2^{32} \times 8.192 \times (\text{lpm}_{\text{cycle}} _\text{time} + 1)]$ milliseconds. At cycle_time = 0, this period is approximately 400 days.
SAFETY AND DIAGNOSTICS

The AAS33051 was developed in accordance to the ASIL design flow. It incorporates several diagnostics.

Alive Counter

A 32-bit counter increments periodically from zero after power-on or hard reset. It is read via an extended read at address 0x80. The alive increment period is based on the EEPROM lpm_cycle_time, which has a resolution of 8.192 ms.

The alive counter can overflow. The overflow period of the counter is $[2^{32} \times 8.192 \times (\text{lpm}_\text{cycle} _\text{time} + 1)]$ milliseconds. At lpm_cycle_time = 0, this period is approximately 400 days.

Oscillator Watchdogs

The watchdogs run constantly when in full power or “wake” modes. They are disabled during sleep mode, and are reset when waking up to ensure there is not a false positive due to a partial clock count. These watchdogs are intended to detect gross failures of either oscillator. Logic running on clocks based on each oscillator effectively counts clock periods produced in the other clock domain and compares to expected limits.

Logic Built-In Self-Test (LBIST)

Logic BIST is implemented to verify the integrity of the AAS33051 logic. It can be executed in parallel with the CVH self-test. LBIST is effectively a form of auto-driven scan. The logic to be tested is broken into 31 scan chains. The chains are fed in parallel by a 31-bit linear feedback shift register (LFSR) to generate pseudo-random data. The output of the scan chains are fed back into a multiple input shift register (MISR) that accumulates the shifted bits into a 31-bit signature. LBIST takes typically 30 ms to verify.

CVH Self-Test

CVH self-test is a method of verifying the operation of the CVH transducer without applying an external magnetic field. This feature is useful for both manufacturing test and for integration debug. The CVH self-test is implemented by changing the switch configuration from the normal operating mode into a test configuration, allowing a test current to drive the CVH in place of the magnetic field. By changing the direction of the test current and by changing the elements in the CVH that are driven, the self-test circuit emulates a changing angle of magnetic field. The measured angle is monitored to determine a passing or failing device.

CVH self-test typically takes 30 ms to verify.

Self-test can be run on power-up, by setting the EEPROM field SHA.COM.cse = 1

Self-test can also be invoked via the serial control register by issuing the corresponding “special” command.

The test is complete when either:
- “STA.sdn” = 1 (special done) or
- “STA.cstr” = 0 (CVH self-test not running).

Failure is indicated by:
- “ERR.stf” = 1 (assuming it was cleared before test was run).
Magnetic Target Requirements

The AAS33051 is designed to operate with magnets constructed with a variety of magnetic materials, geometries, and field strengths. See Table 15 for a list of common magnet dimensions.

The AAS33051 actively measures and adapts to its magnetic environment. This allows operation throughout a large range of field strengths (recommended range is 300 to 1000 G, operation beyond this range will not result in long term damage). Due to the greater signal-to-noise ratio provided at higher field strengths, performance inherently increases with increasing field strength.

Table 15: Target Magnet Parameters

<table>
<thead>
<tr>
<th>Magnetic Material</th>
<th>Diameter (mm)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neodymium (sintered)*</td>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>Neodymium (sintered)</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Neodymium / SmCo</td>
<td>6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* A sintered Neodymium magnet with 10 mm (or greater) diameter and 2.5 mm thickness is the recommended magnet for redundant applications.

Figure 39: Magnetic Field versus Air Gap for a magnet 6 mm in diameter and 2.5 mm thick.

Allegro can provide similar curves for customer application magnets upon request. Allegro recommends larger magnets for applications that require optimized accuracy performance.
Typical SPI and ABI/UVW Applications

Below, typical application diagrams for SPI and ABI/UVW are given. Programming and controlling are possible using the SPI interface and the Manchester interface. The Manchester programming interface is useful for low pin count applications (e.g. ABI). See “Manchester Interface” section for details on programming with this interface.

Notes:
- PWM and ABI/UVW can be used in parallel to the SPI interface.
- Entering and exiting low power mode is controlled using the SPI lines.
- The WAKE pin does not have to be used, but should be grounded if unused.

Figure 40: Typical SPI Application Diagram
Figure 41: Typical ABI / UVW Application Diagram

Notes:

- Entering and exiting low power mode is controlled using the CSB, MOSI, and SCLK line. It is possible to connect CSB, MOSI, and SCLK together and connect them to the microcontroller on one line to control entering/exiting low power mode if required.
- PWM output can be left floating if not required. The absolute position is transferred through ABI pins after power on, so that PWM information is not needed to find the start position. The AAS33051 is different from the A1339 in this regard.
- For programming the sensor, CSB and MOSI determine the slave address. Read the Manchester Interface section for more details.
- If not needed by the host, any of the ABI outputs can be left floating. For example,
 - If only rotational frequency is needed, only pin A could be used.
 - If frequency and position is needed, but direction is always the same, only pin B and I could be used.
I/O STRUCTURES

A/U, B/V, I/W

PWM

SCK/CSN/MOSI

WAKE

V_POS

V_REF

33 Ω

1 kΩ

1 MΩ

Downloaded from Arrow.com.
 Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

PACKAGE OUTLINE DRAWINGS

For Reference Only – Not for Tooling Use
(Reference MO-153 ADT) NOT TO SCALE
Dimensions in millimeters
Dimensions exclusive of mold flash, gate burrs, and chamfer protrusions
Exact case and lead configuration at supplier discretion within limits shown

Figure 42: Package LP, 24-Pin TSSOP with Exposed Thermal Pad

- Terminal #1 mark area.
- Exposed thermal pad (bottom surface); dimensions may vary with device.
- Reference land pattern layout (reference IPC7351 TSOP65P640X120-25M); all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances; when mounting on a multilayer PCB, thermal vias can improve thermal dissipation (reference EIA/JEDEC Standard JESD51-5).
- Branding scale and appearance at supplier discretion.
- Hall elements (E1, E2), corresponding to respective die; not to scale.
- Active Area Depth: F1: 0.47 mm; F2: 0.62 mm.

AAS33051

Allegro MicroSystems, LLC
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

74
Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

For Reference Only – Not for Tooling Use
(Reference DWG-2870)
Dimensions in millimeters – NOT TO SCALE
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions
Exact case and lead configuration at supplier discretion within limits shown

Figure 43: Package LE, 14-Pin TSSOP

Downloaded from Arrow.com.
AAS33051

Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

Revision History

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>March 27, 2018</td>
<td>Initial release</td>
</tr>
<tr>
<td>1</td>
<td>April 18, 2018</td>
<td>Corrected selection guide part numbers</td>
</tr>
<tr>
<td>2</td>
<td>August 29, 2018</td>
<td>Updated Terminal List table (page 4)</td>
</tr>
</tbody>
</table>

Copyright ©2018, Allegro MicroSystems, LLC

Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro’s product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com