Features

- Optimized for 120 VAC Nominal Input Voltage
 - 120 VAC ± 15% input voltage
- Targeted for 8.5W Output Power
- Programmable Overtemperature Protection
 - Provides Gradual Reduction in Light Output with Increasing Temperature
- Active Line Regulation
 - Provides Fairly Constant Output Power over Variations in AC Line Voltage
 - Typical Line Regulation of –12% to +0%
- Four Taps with Two Current Set Resistors
 - Allows Optimization of THD
- Optional Reduced Light Output Ripple
 - Provides Continuous Power to the LED
 - Eliminates Strobing
 - Uses an External Ceramic Storage Capacitor
- TRIAC Dimmer Compatible
- Available in a Thermally Enhanced 8-Lead SOIC Package with Heat Slug
 - Larger Creepage Distances between High Voltage and Low Voltage Pins

Applications

- LED Lamps
- LED Lighting Fixtures

Description

The CL88020 LED Driver Integrated Circuit (IC) is an off-line sequential linear LED driver designed to provide 8.5W of LED power from a 120 VAC nominal input voltage.

CL88020 is designed to drive a long string of inexpensive, low-current LEDs directly from the AC mains. A basic driver circuit consists of Microchip Technology Inc.’s CL88020 LED driver IC, six resistors and a bridge rectifier. Two to four additional components are optional for various levels of transient protection, also with a low-cost NTC to assure remote overtemperature protection (OTP). No capacitors, EMI filters, or power factor correction circuits are needed unless the optional reduced light output ripple feature is desired.

A string of series/parallel LEDs is tapped at four locations. Four linear current regulators sink current at each tap through a single control point and are sequentially turned on and off. High efficiency is achieved by shutting off upstream regulators when downstream regulators achieve regulation. This makes controlling overall input current easier than trying to control multiple current paths, thereby tracking the input sine wave voltage. CL88020 uses a self-commutation technique using only the tap currents themselves; this technique inherently provides smooth transitions from one regulator to the next, without relying on tap voltages or the rectified AC to coordinate the transitions.

PIN DIAGRAM

```
| TAP1 | 1 |  | 8 | ALR |
| TAP2 | 2 |  | 7 | BIAS |
| TAP3 | 3 |  | 6 | OTP |
| TAP4 | 4 |  | 5 | CS |
```

* Includes Exposed Thermal Pad (EP); see Table 2-1
1.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

TAP₁₋₄ to GND (non-conducting) –0.5V to +352V
OTP, ALR, CS to GND–0.3V to (BIAS + 0.5V)
BIAS to GND ..–0.3V to 14V
Maximum current into BIAS pin.........................10 mA
ESD Rating (OTP, ALR, CS, BIAS, GND pins) Human
Body Model ..750 V
Operating junction temperature –40°C to +125°C
Storage temperature –65°C to +150°C

Notice: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to
the device. This is a stress rating only and functional
operation of the device at those or any other condi-
tions, above those indicated in the operational listings
of this specification, is not intended. Exposure to maxi-
mum rating conditions for extended periods may affect
device reliability. CL88020 is susceptible to
electrostatic discharge (ESD).

1.1 ELECTRICAL SPECIFICATIONS

TABLE 1-1: ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply (PVDD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum TAP current capability for TAP 1</td>
<td>ITAP,max</td>
<td>105</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>RSET = 6.19Ω</td>
</tr>
<tr>
<td>Maximum TAP current capability for TAP 2</td>
<td>—</td>
<td>110</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>RSET = 7.50Ω</td>
</tr>
<tr>
<td>Maximum TAP current capability for TAP 3</td>
<td>—</td>
<td>130</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>VTPA = 6V</td>
</tr>
<tr>
<td>Maximum TAP current capability for TAP 4</td>
<td>—</td>
<td>130</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>TAP on resistance for TAP 1</td>
<td>RTAP</td>
<td>—</td>
<td>—</td>
<td>67</td>
<td>Ω</td>
<td>VTPA = 6V</td>
</tr>
<tr>
<td>TAP on resistance for TAP 2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>56</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>TAP on resistance for TAP 3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>56</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>TAP on resistance for TAP 4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>52</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Voltage at BIAS pin</td>
<td>VBIAS</td>
<td>12.0</td>
<td>12.5</td>
<td>13.64</td>
<td>V</td>
<td>IBIAS = 0.8 - 5 mA</td>
</tr>
<tr>
<td>Quiescent current consumption</td>
<td>IBIAS,Q</td>
<td>—</td>
<td>550</td>
<td>750</td>
<td>μA</td>
<td>Note 1</td>
</tr>
<tr>
<td>Limiting current (measured at TAP 4)</td>
<td>ILIM</td>
<td>12.96</td>
<td>15.25</td>
<td>17.54</td>
<td>mA</td>
<td>VALR = 0V, RSET = 100Ω</td>
</tr>
<tr>
<td>Regulated Tap current for TAP 4</td>
<td>ITAP4</td>
<td>121.1</td>
<td>127.5</td>
<td>133.9</td>
<td>mA</td>
<td>RSET = 10Ω;</td>
</tr>
<tr>
<td>TAP 3 to TAP 4 current ratio</td>
<td>KTAP3</td>
<td>0.883</td>
<td>0.929</td>
<td>0.975</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>TAP 2 to TAP 4 current ratio</td>
<td>KTAP2</td>
<td>0.747</td>
<td>0.786</td>
<td>0.825</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>TAP 1 to TAP 4 current ratio</td>
<td>KTAP1</td>
<td>0.542</td>
<td>0.571</td>
<td>0.600</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Self-commutation (TAP 1 to TAP 2)</td>
<td>ΔVCS(REG)</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>mV</td>
<td>Rset = 100Ω (VCs at VTP2 = 20V) - (VCs at VTP1 = 20V)</td>
</tr>
<tr>
<td>Self-commutation (TAP 2 to TAP 3)</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>mV</td>
<td>Rset = 100Ω (VCs at VTP3 = 20V) - (VCs at VTP2 = 20V)</td>
</tr>
<tr>
<td>Self-commutation (TAP 3 to TAP 4)</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>mV</td>
<td>Rset = 100Ω (VCs at VTP4 = 20V) - (VCs at VTP3 = 20V)</td>
</tr>
</tbody>
</table>
TABLE 1-1: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all specifications are for $T_A = T_J = +25°C$. BIAS = 12V. $V_{TAP} = 20V$, ALR pin open, OTP = 5V unless otherwise noted. Boldface specifications apply over the full temperature range $T_A = T_J = -15°C$ to +95°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
</table>
| TAP 1 to TAP 2 cross regulation | X-Reg | -2 | — | 2 | mV | $R_{set} = 100\,\Omega$
$\quad I_{TAP2} = 2 \, mA$
$\quad V_{TAP2} = 20V$ |
| TAP 2 to TAP 3 cross regulation | -2 | — | 2 | mV | $R_{set} = 100\,\Omega$
$\quad I_{TAP3} = 2 \, mA$
$\quad V_{TAP3} = 20V$ |
| TAP 3 to TAP 4 cross regulation | -2 | — | 2 | mV | $R_{set} = 100\,\Omega$
$\quad I_{TAP4} = 2 \, mA$
$\quad V_{TAP4} = 20V$ |
| Nominal TAP 4 current | $I_{LR,nom}$ | 12.75 | — | — | mA | $R_{set} = 100\,\Omega$
$\quad V_{ALR} = 1.275V$
$\quad V_{TAP4} = 20V$ |
| TAP4 current to $I_{LR,NOM}$ ratio | $I_{LR,HI}$ | 0.801 | 0.843 | 0.885 | — | $R_{set} = 100\,\Omega$
$\quad V_{ALR} = 1.776V$
$\quad V_{TAP4} = 20V$ |
| TAP4 current to $I_{LR,LO}$ ratio | $I_{LR,LO}$ | 1.073 | 1.129 | 1.186 | — | $R_{set} = 100\,\Omega$
$\quad V_{ALR} = 0.863V$
$\quad V_{TAP4} = 20V$ |
| OPT current limit | OTP | 9.01 | 10.60 | 12.19 | mA | $V_{OTP} = 1.6V$
$\quad R_{set} = 100\,\Omega$
$\quad V_{TAP4} = 20V$ |

Note 1: Does not include the bias current.

TABLE 1-2: TEMPERATURE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_J</td>
<td>-40°C</td>
<td>—</td>
<td>+125°C</td>
<td>°C</td>
<td>Note 1</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65°C</td>
<td>—</td>
<td>+150°C</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8LD-SOIC</td>
<td>θ_{JC}</td>
<td>—</td>
<td>+8°C</td>
<td>—</td>
<td>°C/W</td>
<td>Note 2</td>
</tr>
</tbody>
</table>

Note 1: The Operating Temperature Range is specified at the junction. The junction temperature must be computed using the thermal resistance (TR) from junction-to-case, and the case-to-ambient TR of the PCB design.

Note 2: Thermal resistance is measured from junction to bottom metal slug.
2.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 2-1.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TAP1</td>
<td>Drives the most upstream LED string</td>
</tr>
<tr>
<td>2</td>
<td>TAP2</td>
<td>Drives the first and second LED strings</td>
</tr>
<tr>
<td>3</td>
<td>TAP3</td>
<td>Drives the first, second and third LED strings</td>
</tr>
<tr>
<td>4</td>
<td>TAP4</td>
<td>Drives all 4 LED strings</td>
</tr>
<tr>
<td>5</td>
<td>CS</td>
<td>Used to set the currents in the Taps</td>
</tr>
<tr>
<td>6</td>
<td>OTP</td>
<td>Provides remote Over-Temperature protection.</td>
</tr>
<tr>
<td>7</td>
<td>BIAS</td>
<td>Provides power to the IC using an internal shunt regulator. It is recommended to be bypassed with a low ESR ceramic capacitor (at least 1 μF)</td>
</tr>
<tr>
<td>8</td>
<td>ALR</td>
<td>An external resistive voltage divider and capacitor provide line regulation for the TAP currents</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Regulator ground</td>
</tr>
</tbody>
</table>

2.1 TAP1 Pin

Open drain power FET connection to the first/top LED string.

2.2 TAP2 Pin

Open drain power FET connection to the second LED string.

2.3 TAP3 Pin

Open drain power FET connection to the third LED string.

2.4 TAP4 Pin

Open drain power FET connection to the fourth/bottom LED string.

2.5 Current Set Pin (CS)

A resistor from this pin to ground sets the LED string current.

2.6 Over-temperature Protection Pin (OTP)

This input is connected to a resistor/NTC-thermistor combination to reduce the LED current when the temperature becomes too high.

2.7 BIAS Pin

An input pin to provide voltage to the chip. The BIAS pin is the input to a shunt regulator and must be fed by a current source, not a fixed voltage.

2.8 Active Line Regulation Pin (ALR)

This input pin is connected to an RC network to sense the input main voltage and regulate the LED string current against variations in AC input voltage.

2.9 Ground Terminal (GND)

Reference ground for all input voltages.
3.0 FUNCTIONAL DESCRIPTION

3.1 Introduction

The CL88020 Sequential Linear LED Driver is designed to drive a long string of inexpensive, low-current LEDs directly from the AC mains. A string of series/parallel LEDs is tapped at four locations. Four linear current regulators sink current at each tap through a single control point and are sequentially turned on and off.

This IC is targeted to drive a string of LEDs from a nominal 120 VAC input voltage and provide 8.5W of output power.

It has an internal line regulation circuit to regulate the output power as the line voltage changes from minimum to maximum. It also includes a remote over-temperature protection which allows thermal de-rating of the output power using a remote NTC to sense the LED temperature.

3.2 Principle of Operation

The CL88020 employs a very simple method of implementing single-point control and self-commutation, as shown in Figure 3-1. The single current sense resistor to ground (RCS) comprises single-point control. Each taps’ error amplifier shares this single control point, although only one err amp is active at any one time.

Initially, VCS is at 0V, causing all the current regulators to be turned on but not conducting. Once the rectified AC rises high enough to forward bias the first LED string segment, the first current regulator begins conducting. Eventually it achieves regulation. At this point VREF1 and VCS are in equilibrium. As the rectified AC continues to rise, the next LED segment becomes forward biased. Since the second regulator’s reference voltage (VREF2) is higher than VCS, the second regulator is already on and begins conducting (although not regulating), injecting current (ITAP2) into the single control point, raising the VCS voltage. The first regulator responds to the increase in VCS by reducing ITAP1 such that VCS remains equal to VREF1.

EQUATION 3-1:

$$I_{TAP1} = \frac{V_{REF1}}{R_{CS}} - I_{TAP2}$$

ITAP1 continues to decrease as ITAP2 increases. When the rectified AC rises sufficiently for the second regulator to achieve regulation, VCS increases to be equal with VREF2. With VCS now greater than VREF1, the first regulator is effectively shut off and the second regulator takes over. This repeats for the other taps and also works in reverse as the rectified AC passes the peak and begins decreasing.

This simple self-commutating mechanism and single-point control automatically sequences the current regulators and assures smooth tap-to-tap transitions.

3.2.1 ACTIVE LINE REGULATION (ALR)

Without compensating for line voltage variations, as the AC voltage increases, downstream LED segments become active. In addition, the dwell time at the higher tap currents increases as AC voltage goes up. This causes brightness to increase with AC voltage, resulting in poor line regulation.

The ALR circuit maintains fairly constant output power over variations in AC line voltage. It is not a closed loop system that directly monitors and corrects output power. Instead it monitors the voltage applied to the LED string and uses it to adjust the reference voltage provided by the OTP circuit. The circuit used for achieving the active line regulation is shown in Figure 3-2.

FIGURE 3-1: Tap Commutation.

Each current regulator has its own reference voltage, derived from a resistive voltage divider such that:

$$V_{REF4} > V_{REF3} > V_{REF2} > V_{REF1}$$

FIGURE 3-2: ALR Circuit.
Under normal operation (OTP not activated) the OTP limiting voltage is essentially the reference voltage used to set the tap currents. The ALR circuit adjusts this voltage up or down to compensate for variations in the AC line voltage as represented by the voltage at the ALR pin.

EQUATION 3-2:

\[
V_{REF4} = 1.275V - \left(\frac{V_{ALR} - 1.275V}{300k\Omega} \cdot 120k\Omega \right)
\]

The external resistor divider at the ALR pin is usually chosen such that the average voltage at the pin is 1.275V at nominal 120 VAC input. The ALR divider is connected after the first LED segment to increase its sensitivity to changes in the AC line voltage.

The function of the limiter circuit is three-fold. Except during OTP, the limiting voltage is fixed. First, during the initial application of power, the ALR filter capacitor (C_ALR) is at 0V. This would result in high LED current during OTP, the limiting voltage is fixed. First, during the initial application of power, the ALR filter capacitor (C_ALR) is at 0V. This would result in high LED current. Lastly, during an overtemperature condition, the OTP circuit gradually lowers the limiting voltage from its fixed value. This reduces the power applied to the LEDs, lowering their temperature until an equilibrium is established.

3.2.2 OVERTEMPERATURE PROTECTION (OTP)

OTP uses an inexpensive, external NTC thermistor to remotely sense LED temperature. The thermistor can be located in close proximity to the LEDs, providing near-direct LED temperature monitoring. The OTP temperature is adjustable via selection of NTC resistance. It is essential that OTP operate linearly, gradually reducing output power as temperature increases.

The thermistor is arranged in a full-bridge configuration with the active arm consisting of the NTC and a discrete resistor to VBIAS (Figure 3-3). The passive arm consists of internal resistors. The thermistors' resistance versus temperature curve asymptotically approaches 0\(\Omega \) as temperature rises. To provide a well-defined window between the threshold temperature and the extinguishing temperature, a small segment of the thermistors' resistance-temperature curve must be used.

EQUATION 3-3:

\[
V_{REF4} = R_{OF} \left[V_{OTP} \left(\frac{1}{R_{OF}} + \frac{1}{R_{OU}} + \frac{1}{R_{OL}} \right) - \frac{V_{BIAS}}{R_{OU}} \right] = (2.979 \cdot V_{OTP} - (0.3125 \cdot V_{BIAS}))
\]

Note that in the above equation, it is assumed that the input voltage is at nominal value and there is no adjustment to the reference due to the ALR circuit.

The output of the OTP amplifier is internally clamped to 1.575V, which corresponds to a voltage of 1.787V at the OTP pin when VBIAS is 12.0 volts. As the voltage at the OTP pin decreases to 1.686V, the output of the OTP amplifier falls to 1.275V. It is at this point, the OTP circuit starts modifying the TAP currents and causes thermal derating.

Using two fixed resistors and one NTC, both the breakpoint and the slope of the derating curve can be set independently.

For example, consider a case with a breakpoint of 85°C with a derating curve such that the LED driver is at 20% of full power at 110°C. So, the VREF4 voltages at 85°C and 110°C are 1.275V and 0.255V respectively. The NTC thermistor used is a 470 k\(\Omega \), with a B value of 4500K. The NTC resistance at a given temperature (Tc, expressed in °C) can be expressed as:

EQUATION 3-4:

\[
R_{NTC,Tc} = R_{NTC,25C} \cdot e^{-B \left(\frac{1}{298K} - \frac{1}{Tc + 273} \right)}
\]

FIGURE 3-3:
OTP Equivalent Circuit.

R_{OF} and the parallel combination of R_{OU} and R_{OL} determine OTP gain and set the width of the OTP window — the higher the gain, the narrower the window. Offset is determined by the passive arm of the bridge and sets the location of the OTP window along the temperature axis.

If OTP is unused, the OTP pin should be connected to VDD.

The output of the OTP amplifier (which is used as a limit for the ALR amplifier) can be expressed as:
Using Equation 3-4, the corresponding NTC resistances at 85°C and 110°C are 33.4 kΩ and 14.2 kΩ. Using these NTC resistance values, \(R_{OW} \) and \(R_{OT} \) can then be computed. The final set of values that are computed assuming 12.0 volts \(V_{BIAS} \) are provided in the Table 3-1.

TABLE 3-1: OVERTEMPERATURE PROTECTION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>25°C</th>
<th>85°C</th>
<th>110°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{OT})</td>
<td>511 kΩ</td>
<td>511 kΩ</td>
<td>511 kΩ</td>
</tr>
<tr>
<td>(R_{OW})</td>
<td>49.9 kΩ</td>
<td>49.9 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>(R_{NTC})</td>
<td>470 kΩ</td>
<td>33.4 kΩ</td>
<td>14.2 kΩ</td>
</tr>
<tr>
<td>(V_{OTP})</td>
<td>6.05V</td>
<td>1.68V</td>
<td>1.34V</td>
</tr>
<tr>
<td>(V_{REF4})</td>
<td>1.575V</td>
<td>1.262V</td>
<td>0.234V</td>
</tr>
</tbody>
</table>

3.2.3 RIPPLE REDUCTION (OPTIONAL)

Low output ripple is achieved using a capacitor and four diodes. The capacitor may one or more paralleled ceramic capacitors or a single electrolytic. Multiple ceramic capacitors may be needed due to their poor voltage coefficient. The four diodes may be obtained in a single small package. The LED and rectifier arrangement is shown in Figure 3-4.

With this method all currents, including ripple capacitor charging and discharging currents, are controlled, passing through the same single control point. This allows the input current wave-shape to be maintained and avoids peak-charging the ripple-reduction capacitor.

FIGURE 3-4: Ripple Reduction Circuit.
The CL88020 with the ripple reduction circuit operates in four phases: recharge, hold-up, direct and under certain conditions, idle. Note that all active current paths include Segment 1, assuring uninterrupted light output during all phases of operation, excluding the idle phase.

Recharge (red path)

Recharging of the ripple capacitor \((C_{RPL}) \) occurs when \((V_{RAC} - V_{SEG1}) > V_{CRPL} \). The maximum voltage that \(C_{RPL} \) can be charged to is:

\[
V_{CRP\text{max}} = V_{SEG2} + V_{SEG3} + V_{SEG4}
\]

The numbers of LEDs for each segment must be chosen carefully so as not to exceed \(C_{RPL} \)'s voltage rating while at the same time allowing \(C_{RPL} \) to charge up to a voltage sufficient to drive at least SEG1. To provide continuous light output, the recharge path must include LEDs.

Hold-Up (green path)

When the rectified AC falls below \(V_{CRPL} \), the capacitor takes over, supplying the LEDs. The discharge path flows through \(R_{SET1} \) only. Since this is lesser sense resistance than for the other current paths, the current for the hold-up phase will be higher. This allows for normal currents to be drawn from the AC line to better track the input voltage sine wave while allowing a higher current during the hold-up interval.

Direct (purple paths)

When \(V_{CRPL} < V_{RAC} < (V_{CRPL} + V_{SEG1}) \), the LEDs are supplied directly from the AC line. The window when the direct phase is active is determined by \(V_{SEG1} \).

Idle (no path)

At low AC line voltages, there is not enough voltage to charge \(C_{RPL} \) sufficiently to power SEG1 and strobing will occur. Also, strobing will occur if \(C_{RPL} \) is too small.
4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend:

- XX...X: Product Code or Customer-specific information
- Y: Year code (last digit of calendar year)
- YY: Year code (last 2 digits of calendar year)
- WW: Week code (week of January 1 is week '01')
- NNN: Alphanumeric traceability code
- ☢️: Pb-free JEDEC® designator for Matte Tin (Sn)
- *: This package is Pb-free. The Pb-free JEDEC designator (☢️) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or may not include the corporate logo.
8-Lead Small Outline Integrated Circuit (5DX) - .150 In. (3.90 mm) Body [SOIC] With 3.30x2.41 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
8-Lead Small Outline Integrated Circuit (5DX) - .150 In. (3.90 mm) Body [SOIC]
With 3.30x2.41 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Dimensions

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS DIMENSION LIMITS</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>1.27 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>-</td>
<td>-1.70</td>
<td>-</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>1.25</td>
<td>1.45</td>
<td>-</td>
</tr>
<tr>
<td>Standoff</td>
<td>§</td>
<td>0.00</td>
<td>-</td>
<td>0.15</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>6.00 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>3.90 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>4.90 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
<td>1.78</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
<td>2.67</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chamfer (Optional)</td>
<td>h</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0.40</td>
<td>0.71</td>
<td>1.27</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
<td>1.04 REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.10</td>
<td>-</td>
<td>0.25</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
<td>0.31</td>
<td>-</td>
<td>0.51</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>Θ</td>
<td>0°</td>
<td>8°</td>
<td></td>
</tr>
<tr>
<td>Lead Angle</td>
<td>Θ2</td>
<td>0°</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mold Draft Angle</td>
<td>Θ1</td>
<td>0°</td>
<td>-</td>
<td>15°</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>X2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>Y2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X20)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X20)</td>
<td>Y1</td>
</tr>
<tr>
<td>Thermal Via Diameter</td>
<td>V</td>
</tr>
<tr>
<td>Thermal Via Pitch</td>
<td>EV</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances
2. For best soldering results, thermal vias, if used, should be filled or tinned to avoid solder loss during reflow process

Microchip Technology Drawing C04-2419A
APPENDIX A: REVISION HISTORY

Revision A (May 2017)

• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Tape and Reel</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CL88020</td>
<td>T</td>
<td>E</td>
<td>SE</td>
</tr>
</tbody>
</table>

Examples:

- a) CL88020T-E/SE: Sequential Linear LED Driver with 4 Taps

- Tape and Reel Option
 - T = Tape and Reel

- Temperature Range
 - E = -40°C to +125°C (Extended)
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

© 2017 Microchip Technology Inc. DS20005753A-page 19