Rotary Encoder

This is a 12-step rotary encoder with a nice ‘clicking’ feel. It’s breadboard friendly, and has a pretty handy select switch (by pushing in on the knob). The encoder is different from a potentiometer in that an encoder has full rotation without limits. The unit outputs gray code so that you can tell how much and in which direction the encoder has been turned.

This unit does not come with a knob, but a working knob is related below.

Rotary Encoder Product Help and Resources

Core Skill: Soldering

This skill defines how difficult the soldering is on a particular product. It might be a couple simple solder joints, or require special reflow tools.

Skill Level: Noob - Some basic soldering is required, but it is limited to a just a few pins, basic through-hole soldering, and couple (if any) polarized components. A basic soldering iron is all you should need.

Customer Reviews

4.4 out of 5

Based on 5 ratings:

- 5 star: 2
- 4 star: 3
- 3 star: 0
- 2 star: 0
- 1 star: 0

Currently viewing all customer reviews.
I got this as a general purpose rotary encoder to go in my prototyping box. The linked tutorials make it real easy to get up and running quickly. If you want to be able to add / remove this to a breadboard I’d recommend making your own breakout board for it as the pins are soft and break pretty easily. If you’re just going to panel mount it then you should be good to go. I’d get/use a knob with this as the actual shaft is pretty small making it harder to grip than the sort of potentiometers you get for hobby electronics.

The encoder is as shown and the examples make it easy to work with. However, look carefully, this particular encoder does not have a threaded shaft. It is intended to be PCB mounted (and then standoffs on the PCB mount to the panel.) Similar units elsewhere do have a threaded shaft, so make sure to pick the one that meets your needs. The illuminated version of this encoder here at Sparkfun does have a threaded shaft.

Rotary Encoder is well made and works well.

Cheap and reliable hardware. But I found the example code pretty confusing. For somewhat more comprehensible code I recommend a look at this webpage: http://w264779-www.fnweb.no/rotary_encoder

Definitely not as breadboard friendly as you would think. Even though the spacing is correct, the pins are much wider that a standard IC pin or wire. Almost impossible to place in a breadboard. I tried a bunch. On the one I could get the pins in, it wouldn’t stay secure because the pins are too short. I ended up soldering the part to a small through hole prototyping board and added some header pins.