IGLD60R070D1

600V CoolGaN™ enhancement-mode Power Transistor

Features
- Enhancement mode transistor – Normally OFF switch
- Ultra fast switching
- No reverse-recovery charge
- Capable of reverse conduction
- Low gate charge, low output charge
- Superior commutation ruggedness
- Qualified for industrial applications according to JEDEC Standards (JESD47 and JESD22)

Benefits
- Improves system efficiency
- Improves power density
- Enables higher operating frequency
- System cost reduction savings
- Reduces EMI

Applications
Industrial, telecom, datacenter SMPS based on the half-bridge topology (half-bridge topologies for hard and soft switching such as Totem pole PFC, high frequency LLC).
For other applications: review CoolGaN™ reliability white paper and contact Infineon regional support

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Key Performance Parameters at $T_j = 25 , ^\circ C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>$V_{DS,max}$</td>
<td>600</td>
</tr>
<tr>
<td>$R_{DS(on),max}$</td>
<td>70</td>
</tr>
<tr>
<td>$Q_{G,typ}$</td>
<td>5.8</td>
</tr>
<tr>
<td>$I_{D,pulse}$</td>
<td>60</td>
</tr>
<tr>
<td>$Q_{oss @ 400 , V}$</td>
<td>41</td>
</tr>
<tr>
<td>Q_{rr}</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Ordering Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type / Ordering Code</td>
<td>Package</td>
</tr>
<tr>
<td>IGLD60R070D1</td>
<td>PG-LSON-8-1</td>
</tr>
</tbody>
</table>
Table of Contents

Features..1
Benefits..1
Applications...1
Table of Contents ..2

1 Maximum ratings ...3
2 Thermal characteristics ..4
3 Electrical characteristics ..5
4 Electrical characteristics diagrams ...7
5 Test Circuits ..13
6 Package Outlines ..14
7 Appendix A ...15
8 Revision History ...16
1 Maximum ratings

at $T_j = 25 \, ^\circ C$, unless otherwise specified.

Continuous application of maximum ratings can deteriorate transistor lifetime. For further information, contact your local Infineon sales office.

Table 3 Maximum ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Source Voltage 1</td>
<td>$V_{DS,max}$</td>
<td>-</td>
<td>-</td>
<td>$V_{GS} = 0 , V$</td>
</tr>
<tr>
<td>Continuous current, drain source</td>
<td>I_D</td>
<td>-</td>
<td>-</td>
<td>$15 , A$</td>
</tr>
<tr>
<td>Pulsed current, drain source 2 3</td>
<td>$I_{D,pulse}$</td>
<td>-</td>
<td>-</td>
<td>$60 , A$</td>
</tr>
<tr>
<td>Pulsed current, drain source 3 4</td>
<td>$I_{D,pulse}$</td>
<td>-</td>
<td>-</td>
<td>$35 , A$</td>
</tr>
<tr>
<td>Gate current, continuous 3 4 5</td>
<td>$I_{G,avg}$</td>
<td>-</td>
<td>-</td>
<td>$20 , mA$</td>
</tr>
<tr>
<td>Gate current, pulsed 3 5</td>
<td>$I_{G,pulse}$</td>
<td>-</td>
<td>-</td>
<td>$2000 , mA$</td>
</tr>
<tr>
<td>Gate source voltage, continuous 5</td>
<td>V_{GS}</td>
<td>-</td>
<td>-</td>
<td>$-10 , V$</td>
</tr>
<tr>
<td>Gate source voltage, pulsed 6</td>
<td>$V_{GS,pulse}$</td>
<td>-</td>
<td>-</td>
<td>$-25 , V$</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>-</td>
<td>-</td>
<td>$114 , W$</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_j</td>
<td>-</td>
<td>-</td>
<td>-55 to $150 , ^\circ C$</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-</td>
<td>-</td>
<td>-55 to $150 , ^\circ C$</td>
</tr>
<tr>
<td>Drain-source voltage slew-rate</td>
<td>dV/dt</td>
<td>-</td>
<td>-</td>
<td>$200 , V/\text{ns}$</td>
</tr>
</tbody>
</table>

1 All devices are 100% tested at $I_{DS} = 12.2 \, mA$ to assure $V_{DS} \geq 800 \, V$
2 Limits derived from product characterization, parameter not measured during production
3 Ensure that average gate drive current, $I_{G,avg}$ is $\leq 20 \, mA$. Please see figure 27 for $I_{G,avg}$, $I_{G,pulse}$ and I_{G} details
4 Parameter is influenced by rel-requirements. Please contact the local Infineon Sales Office to get an assessment of your application.
5 We recommend using an advanced driving technique to optimize the device performance. Please see gate drive application note for details.
2 Thermal characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance, junction-case</td>
<td>R_{thJC}</td>
<td>-</td>
<td>1.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>Reflow soldering temperature</td>
<td>T_{sold}</td>
<td>-</td>
<td>245</td>
<td>°C</td>
</tr>
</tbody>
</table>

Table 4 Thermal characteristics
3 Electrical characteristics

at $T_j = 25 \, ^\circ\mathrm{C}$, unless specified otherwise

Table 5 Static characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate threshold voltage</td>
<td>$V_{GS(th)}$</td>
<td>0.9</td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Drain-Source leakage current</td>
<td>I_{DSS}</td>
<td>-</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>Drain-Source leakage current at application conditions1</td>
<td>$I_{DSS(app)}$</td>
<td>-</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>Gate-Source leakage current</td>
<td>I_{GSS}</td>
<td>-1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Drain-Source on-state resistance</td>
<td>$R_{DS(on)}$</td>
<td>-0.055</td>
<td>0.070</td>
<td>-70</td>
</tr>
<tr>
<td>$I_G = 26.1 , mA; I_D = 8 , A; T_j = 25 , ^\circ\mathrm{C}$</td>
<td>$I_G = 26.1 , mA; I_D = 8 , A; T_j = 150 , ^\circ\mathrm{C}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate resistance</td>
<td>$R_{G,int}$</td>
<td>0.78</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LCR impedance measurement; $f = f_{res};$ open drain;</td>
</tr>
</tbody>
</table>

Table 6 Dynamic characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>-</td>
<td>380</td>
<td>- pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>-</td>
<td>72</td>
<td>- pF</td>
</tr>
<tr>
<td>Reverse Transfer capacitance</td>
<td>C_{rss}</td>
<td>-</td>
<td>0.3</td>
<td>- pF</td>
</tr>
<tr>
<td>Effective output capacitance, energy related2</td>
<td>$C_{o(er)}$</td>
<td>-</td>
<td>80</td>
<td>- pF</td>
</tr>
<tr>
<td>Effective output capacitance, time related3</td>
<td>$C_{o(tr)}$</td>
<td>-</td>
<td>102.5</td>
<td>- pF</td>
</tr>
<tr>
<td>Output charge</td>
<td>Q_{oss}</td>
<td>-</td>
<td>41</td>
<td>- nC</td>
</tr>
<tr>
<td>Turn- on delay time</td>
<td>$t_{d(on)}$</td>
<td>-</td>
<td>15</td>
<td>- ns</td>
</tr>
<tr>
<td>Turn- off delay time</td>
<td>$t_{d(off)}$</td>
<td>-</td>
<td>15</td>
<td>- ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>-</td>
<td>9</td>
<td>- ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>-</td>
<td>13</td>
<td>- ns</td>
</tr>
</tbody>
</table>

1 Parameter represents end of use leakage in applications

2 $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400 V

3 $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400 V
Table 7 Gate charge characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate charge</td>
<td>Q_G</td>
<td>-</td>
<td>5.8</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$I_{GS} = 0$ to 10 mA; $V_{DS} = 400$ V; $I_D = 8$ A</td>
</tr>
</tbody>
</table>

Table 8 Reverse conduction characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source-Drain reverse voltage</td>
<td>V_{SD}</td>
<td>-</td>
<td>2.2</td>
<td>2.5 V</td>
</tr>
<tr>
<td>Pulsed current, reverse</td>
<td>$I_{S,pulse}$</td>
<td>-</td>
<td>-</td>
<td>60 A</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_{rr}^1</td>
<td>-</td>
<td>0</td>
<td>- nC</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>-</td>
<td>0</td>
<td>- ns</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{rrm}</td>
<td>-</td>
<td>0</td>
<td>- A</td>
</tr>
</tbody>
</table>

1 Excluding Qoss
4 Electrical characteristics diagrams

at $T_j = 25$ °C, unless specified otherwise

Figure 1 Power dissipation

\[P_{\text{tot}} = f(T_c) \]

\[Z_{\text{thJC}} = f(t_p, D) \]

Figure 2 Max. transient thermal impedance

Figure 3 Safe operating area

\[I_D = f(V_{DS}); \ T_C = 25 \text{ °C} \]

Figure 4 Safe operating area

\[I_D = f(V_{DS}); \ T_C = 125 \text{ °C} \]
Figure 5 Repetitive safe operating area

![Figure 5](image1)

\[I_D = f(V_{DS}, I_G); T_j = 25 \, ^\circ C \]

\[I_D = f(V_{DS}, I_G); T_j = 125 \, ^\circ C \]

Figure 6 Repetitive safe operating area

![Figure 6](image2)

\[T_c = 25 \, ^\circ C; T_j \leq 150 \, ^\circ C \]

\[T_c = 125 \, ^\circ C; T_j \leq 150 \, ^\circ C \]

Figure 7 Typ. output characteristics

![Figure 7](image3)

\[I_D = f(V_{DS}, I_G); T_j = 25 \, ^\circ C \]

\[I_D = f(V_{DS}, I_G); T_j = 125 \, ^\circ C \]

Figure 8 Typ. output characteristics

![Figure 8](image4)

1 Parameter is influenced by rel-requirements. Please contact the local Infineon Sales Office to get an assessment of your application.
Figure 9
Typ. Drain-source on-state resistance

\[
R_{\text{DS(on)}}(\text{m} \Omega) = f(I_D, I_G); T_j = 125 ^\circ \text{C}
\]

Figure 10
Drain-source on-state resistance

\[
R_{\text{DS(on)}}(\text{m} \Omega) = f(T_j); I_D = 8 \text{ A}
\]

Figure 11
Typ. gate characteristics forward

\[
I_G = f(V_{GS}); \text{open drain}
\]

Figure 12
Typ. gate characteristics reverse

\[
I_G = f(V_{GS}); T_j = 25 ^\circ \text{C}
\]
Figure 13 Typ. transfer characteristics

\[I_D, I_G = f(V_{GS}); \ V_{DS} = 8 \text{ V}; \ T_j = 25 \degree \text{C} \]

\[I_D, I_G = f(V_{GS}); \ V_{DS} = 8 \text{ V}; \ T_j = 125 \degree \text{C} \]

Figure 15 Typ. channel reverse characteristics

\[V_{DS} = f(I_D, V_{GS}); \ T_j = 25 \degree \text{C} \]

\[V_{DS} = f(I_D, V_{GS}); \ T_j = 125 \degree \text{C} \]
IGLD60R070D1
600V CoolGaN™ enhancement-mode Power Transistor

Figure 17 Typ. channel reverse characteristics

$I_D = f(V_{DS}, V_{GS})$; $T_J = 25 \, ^\circ C$

Figure 18 Typ. channel reverse characteristics

$I_D = f(V_{DS}, V_{GS})$; $T_J = 125 \, ^\circ C$

Figure 19 Typ. gate charge

$V_{GS} = f(Q_d)$; $V_{DCLINK} = 400 \, V$; $I_D = 8 \, A$

Figure 20 Typ. capacitances

$C_{iss} = f(V_{DS})$
Figure 21 Typ. output charge

\[Q_{\text{OSS}} = f(V_{DS}) \]

Figure 22 Typ. Coss stored Energy

\[E_{\text{OSS}} = f(V_{DS}) \]
5 Test Circuits

Figure 23 Switching times with inductive load

\[I_D = 8A, R_{ON} = 10 \, \Omega; \quad R_{OFF} = 10 \, \Omega; \quad R_{SS} = 820 \, \Omega; \quad C_G = 2 \, nF; \quad V_{DRV} = 12V \]

Figure 24 Switching times waveform

The recovery charge is \(Q_{OSS} \) only, no additional \(Q_{rr} \)

Figure 25 Reverse Channel Characteristics Test

Figure 26 Typical Reverse Channel Recovery

Figure 27 Gate current switching waveform
6 Package Outlines

Figure 28 PG-LSON-8-1 Package Outline, dimensions (mm)

All dimensions are in units mm
The drawing is in compliance with ISO 128-30, Projection Method 1\[\text{[ISO 128-30]} \]
Appendix A

Table 9 Related links

- IFX CoolGaN™ webpage: www.infineon.com/why-coolgan
- IFX CoolGaN™ reliability white paper: www.infineon.com/gan-reliability
- IFX CoolGaN™ gate drive application note: www.infineon.com/driving-coolgan
- IFX CoolGaN™ applications information:
 - www.infineon.com/gan-in-server-telecom
 - www.infineon.com/gan-in-wirelesscharging
 - www.infineon.com/gan-in-audio
 - www.infineon.com/gan-in-adapter-charger
8 Revision History

Major changes since the last revision

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2018-10-12</td>
<td>Final version release</td>
</tr>
</tbody>
</table>
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-di™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowiRaudio™, PowiRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-10-12
Published by
Infineon Technologies AG
81726 München, Germany

© 2018 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this document?
Email: erratum@infineon.com

Document reference
ifx1

IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.