FEATURES

- Software-Selectable Cable Termination for:
 - RS232 (V.28)
 - RS423 (V.10)
 - RS422 (V.11)
 - RS485
 - RS449
 - EIA530
 - EIA530-A
 - V.35
 - V.36
 - X.21

- Outputs Won’t Load the Line with Power Off

APPLICATIONS

- Data Networking
- CSU and DSU
- Data Routers

DESCRIPTION

The LTC® 1344 features six software-selectable multiprotocol cable terminators. Each terminator can be configured as an RS422 (V.11) 100 ohm minimum differential load, V.35 T-network load or an open circuit for use with RS232 (V.28) or RS423 (V.10) transceivers that provide their own termination. When combined with the LTC1343, the LTC1344 forms a complete software-selectable multiprotocol serial port. A data bus latch feature allows sharing of the select lines between multiple interface ports.

The LTC1344 is available in a 24-lead SSOP.

LT and LT are registered trademarks of Linear Technology Corporation.
LTC1344

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Positive Supply Voltage (V\text{CC}) ... 7V

Negative Supply Voltage (V\text{EE}) ... −13.2V

Input Voltage (Logic Inputs) V\text{EE} − 0.3V to V\text{CC} + 0.3V

Input Voltage (Load Inputs) .. ±18V

Operating Temperature Range

LTC1344C .. 0°C to 70°C

LTC1344I .. −40°C to 85°C

Storage Temperature Range−65°C to 150°C

Lead Temperature (Soldering, 10 sec) 300°C

ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at \(T_A = 25°C \). \(V\text{CC} = 5V \pm 5\%, \ V\text{EE} = −5V \pm 5\% \), \(T_A = T_{\text{MIN}} \) to \(T_{\text{MAX}} \) *(Notes 2, 3)* unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I\text{CC}</td>
<td>Supply Current</td>
<td>All Digital Pins = GND or V\text{CC}</td>
<td>●</td>
<td>200</td>
<td>700</td>
<td>μA</td>
</tr>
<tr>
<td>R\text{V,35}</td>
<td>Differential Mode Impedance</td>
<td>All Loads (Figure 1), −2V ≤ V\text{CM} ≤ 2V (Commercial)</td>
<td>●</td>
<td>90</td>
<td>103</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Loads (Figure 2), −2V ≤ V\text{CM} ≤ 2V (Commercial)</td>
<td>●</td>
<td>135</td>
<td>153</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Loads (Figure 1), −2V ≤ V\text{CM} ≤ 2V (Commercial)</td>
<td>●</td>
<td>90</td>
<td>104</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Loads (Figure 2), −2V ≤ V\text{CM} ≤ 2V (Commercial)</td>
<td>●</td>
<td>130</td>
<td>153</td>
<td>170</td>
</tr>
<tr>
<td>R\text{V,11}</td>
<td>Differential Mode Impedance</td>
<td>All Loads (Figure 1), −7V ≤ V\text{CM} ≤ 7V (Commercial)</td>
<td>●</td>
<td>100</td>
<td>104</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Loads (Figure 1), V\text{CM} = 0V (Commercial)</td>
<td>●</td>
<td>100</td>
<td>104</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Loads (Figure 1), V\text{CM} = 0V (Industrial)</td>
<td>●</td>
<td>95</td>
<td>104</td>
<td>125</td>
</tr>
<tr>
<td>I\text{LEAK}</td>
<td>High Impedance Leakage Current</td>
<td>All Loads, −7V ≤ V\text{CM} ≤ 7V (Commercial)</td>
<td>●</td>
<td>±1</td>
<td>±50</td>
<td>μA</td>
</tr>
</tbody>
</table>

Logic Inputs

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\text{IH}</td>
<td>Input High Voltage</td>
<td>All Logic Input Pins</td>
<td>●</td>
<td>2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V\text{IL}</td>
<td>Input Low Voltage</td>
<td>All Logic Input Pins</td>
<td>●</td>
<td>0.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I\text{IN}</td>
<td>Input Current</td>
<td>All Logic Input Pins</td>
<td>●</td>
<td>±10</td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are reference to ground unless otherwise specified.

Note 3: All typicals are given at \(V\text{CC} = 5V \), \(V\text{EE} = −5V \), \(T_A = 25°C \).
TYPICAL PERFORMANCE CHARACTERISTICS

V.11 or V.35 Differential Mode Impedance vs Temperature

![Graph showing Impedance vs Temperature for V.11 or V.35 Differential Mode](image)

V.11 or V.35 Differential Mode Impedance vs Common Mode Voltage (VCM)

![Graph showing Impedance vs Common Mode Voltage for V.11 or V.35 Differential Mode](image)

V.11 or V.35 Differential Mode Impedance vs Supply Voltage (VCC)

![Graph showing Impedance vs Supply Voltage for V.11 or V.35 Differential Mode](image)

V.11 or V.35 Differential Mode Impedance vs Negative Supply Voltage (VEE)

![Graph showing Impedance vs Negative Supply Voltage for V.11 or V.35 Differential Mode](image)

V.35 Common Mode Impedance vs Temperature

![Graph showing Common Mode Impedance vs Temperature for V.35 Common Mode](image)

V.35 Common Mode Impedance vs Common Mode Voltage

![Graph showing Common Mode Impedance vs Common Mode Voltage for V.35 Common Mode](image)

V.35 Common Mode Impedance vs Supply Voltage (VCC)

![Graph showing Common Mode Impedance vs Supply Voltage for V.35 Common Mode](image)

V.35 Common Mode Impedance vs Negative Supply Voltage (VEE)

![Graph showing Common Mode Impedance vs Negative Supply Voltage for V.35 Common Mode](image)

Supply Current vs Temperature

![Graph showing Supply Current vs Temperature](image)
PIN FUNCTIONS

M0 (Pin 1): TTL Level Mode Select Input. The data on M0 is latched when **LATCH** is high.

V_{EE} (Pin 2): Negative Supply Voltage Input. Can connect directly to the LTC1343 V_{EE} pin.

R1C (Pin 3): Load 1 Center Tap.

R1B (Pin 4): Load 1 Node B.

R1A (Pin 5): Load 1 Node A.

R2A (Pin 6): Load 2 Node A.

R2B (Pin 7): Load 2 Node B.

R2C (Pin 8): Load 2 Center Tap.

R3A (Pin 9): Load 3 Node A.

R2B (Pin 10): Load 2 Node B.

R3C (Pin 11): Load 3 Center Tap.

GND (Pin 12): Ground Connection for Load 1 to Load 3.

GND (Pin 13): Ground Connection for Load 4 to Load 6.

V_{CC} (Pin 14): Positive Supply Input. 4.75V ≤ V_{CC} ≤ 5.25V.

LATCH (Pin 21): TTL Level Logic Signal Latch Input. When it is low the input buffers on M0, M1, M2 and DCE/DTE are transparent. When it is high the logic pins are latched into their respective input buffers. The data latch allows the select lines to be shared between multiple I/O ports.

DCE/DTE (Pin 22): TTL Level Mode Select Input. The DCE mode is selected when it is high and DTE mode when low. The data on DCE/DTE is latched when LATCH is high.

M2 (Pin 23): TTL Level Mode Select Input 1. The data on M2 is latched when LATCH is high.

M1 (Pin 24): TTL Level Mode Select Input 2. The data on M1 is latched when LATCH is high.

R4B (Pin 15): Load 4 Node B.

R4A (Pin 16): Load 4 Node A.

R5B (Pin 17): Load 5 Node B.

R5A (Pin 18): Load 5 Node A.

R6B (Pin 20): Load 6 Node B.

R6A (Pin 19): Load 6 Node A.

TEST CIRCUITS

Figure 1. Differential V.11 or V.35 Impedance Measurement

Figure 2. V.35 Common Mode Impedance Measurement
MODE SELECTION

<table>
<thead>
<tr>
<th>LTC1344 MODE NAME</th>
<th>DCE/DTÉ</th>
<th>M2</th>
<th>M1</th>
<th>M0</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.10/RS423</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>RS530A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
</tr>
<tr>
<td>Reserved</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
</tr>
<tr>
<td>X.21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
</tr>
<tr>
<td>V.35</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>V.35</td>
<td>Z</td>
<td>Z</td>
<td>V.35</td>
<td>V.35</td>
<td>V.35</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>V.35</td>
<td>Z</td>
<td>Z</td>
<td>V.35</td>
<td>V.35</td>
<td>V.35</td>
</tr>
<tr>
<td>RS530/RS449/V.36</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
</tr>
<tr>
<td>V.28/RS232</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
</tr>
<tr>
<td>No Cable</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
<td>V.11</td>
</tr>
</tbody>
</table>

X = don’t care, 0 = logic low, 1 = logic high

![V.11 Mode Diagram](image1)
![V.35 Mode Diagram](image2)
![Hi-Z Mode Diagram](image3)

Figure 3. LTC1344 Modes
APPLICATIONS INFORMATION

Multiprotocol Cable Termination

One of the most difficult problems facing the designer of a multiprotocol serial interface is how to allow the transmitters and receivers for different electrical standards to share connector pins. In some cases the transmitters and receivers for each interface standard can be simply tied together and the appropriate circuitry enabled. But the biggest problem still remains: how to switch the various cable terminations required by the different standards.

Traditional implementations have included switching resistors with expensive relays or requiring the user to change termination modules every time the interface standard has changed. Custom cables have been used with the termination in the cable head or separate terminations are built on the board, and a custom cable routes the signals to the appropriate termination. Switching the terminations using FETs is difficult because the FETs must remain off even though the signal voltage is beyond the supply voltage for the FET drivers or the power is off.

The LTC1344 solves the cable termination switching problem via software control. The LTC1344 provides termination for the V.10 (RS423), V.11 (RS422), V.28 (RS232) and V.35 electrical protocols.

V.10 (RS423) Termination

A typical V.10 unbalanced interface is shown in Figure 4. A V.10 single-ended generator output A with ground C is connected to a differential receiver with inputs A' connected to A and input B' connected to the signal return ground C. The receiver’s ground C’ is separate from the signal return. Usually no cable termination is required for V.10 interfaces but the receiver inputs must be compliant with the impedance curve shown in Figure 5.

In V.10 mode, both switches S1 and S2 are turned off so the only cable termination is the input impedance of the V.10 receiver.

V.11 (RS422) Termination

A typical V.11 balanced interface is shown in Figure 6. A V.11 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C’, inputs A’ connected to A, B’ connected to B. The V.11 interface requires a different termination at the receiver end that has a minimum value of 100Ω. The receiver inputs must also be compliant with the impedance curve shown in Figure 7.

In V.11 mode, switch S1 is turned on and S2 is turned off so the cable is terminated with a 103Ω impedance.
V.28 (RS232) Termination

A typical V.28 unbalanced interface is shown in Figure 8. A V.28 single-ended generator output A with ground C is connected to a single-ended receiver with inputs A’ connected to A, ground C’ connected via the signal return ground to C. The V.28 standard requires a 5k terminating resistor to ground which is included in almost all compliant receivers as shown in Figure 9. Because the termination is included in the receiver, both switches S1 and S2 in the LTC1344 are turned off.

V.35 Termination

A typical V.35 balanced interface is shown in Figure 10. A V.35 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C’, inputs A’ connected to A, B’ connected to B. The V.35 interface requires a T-network termination at the receiver end and the generator end. In V.35 mode both switches S1 and S2 in the LTC1344 are turned on as shown in Figure 11.

The differential impedance measured at the connector must be 100Ω±10Ω and the impedance between shorted terminals A’ and B’ to ground C’ must be 150Ω±15Ω. The input impedance of the V.35 receiver is connected in parallel with the T-network inside the LTC1344, which can cause the overall impedance to fail the specification on the
The generator differential impedance must be 50Ω to 150Ω and the impedance between shorted terminals A and B to ground C must be 150Ω ±15Ω. For the generator termination, switches S1 and S2 are both on and the top side of the center resistor is brought out to a pin so it can be bypassed with an external capacitor to reduce common mode noise as shown in Figure 12.

Any mismatch in the driver rise and fall times or skew in the driver propagation delays will force current through the center termination resistor to ground causing a high frequency common mode spike on the A and B terminals. The common mode spike can cause EMI problems that are reduced by capacitor C1 which shunts much of the common mode energy to ground rather than down the cable.

The **LATCH** Pin

The **LATCH** pin (21) allows the select lines (M0, M1, M2 and DCE/DTE) to be shared with multiple LTC1344s, each with its own **LATCH** signal. When the **LATCH** pin is held low the select line input buffers are transparent. When the **LATCH** pin is pulled high, the select line input buffers latch the state of the Select pins so that changes on the select lines are ignored until **LATCH** is pulled low again. If the latch feature is not used, the **LATCH** pin should be tied to ground.
TYPICAL APPLICATIONS

Figure 13 shows a typical application for the LTC1344 using the LTC1343 mixed mode transceiver chip to generate the clock and data signals for a serial interface. The LTC1344 VEE supply is generated from the LTC1343 charge pump and the select lines M0, M1, M2, DCE and LATCH are shared by both chips. Each driver output and receiver input is connected to one of the LTC1344 termination ports. Each electrical protocol can then be chosen using the digital select lines.

Figure 13. Typical Application Using the LTC1344
TYPICAL APPLICATIONS

Cable Selectable Multiprotocol DTE Port with DB-25 Connector

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

G Package
24-Lead Plastic SSOP (0.209)
(LTC DWG # 05-08-1640)

NOTE: DIMENSIONS ARE IN MILLIMETERS

* DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.152mm (0.006") PER SIDE

** DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE

RELATED PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC1334</td>
<td>Single Supply RS232/RS485 Transceiver</td>
<td>2 RS485 Dr/Rx or 4 RS232 Dr/Rx Pairs</td>
</tr>
<tr>
<td>LTC1343</td>
<td>Multiprotocol Serial Transceiver</td>
<td>Software Selectable Mulitprotocol Interface</td>
</tr>
<tr>
<td>LTC1345</td>
<td>Single Supply V.35 Transceiver</td>
<td>3 Dr/3 Rx for Data and CLK Signals</td>
</tr>
<tr>
<td>LTC1346A</td>
<td>Dual Supply V.35 Transceiver</td>
<td>3 Dr/3 Rx for Data and CLK Signals</td>
</tr>
<tr>
<td>LTC1344A</td>
<td>Multiprotocol Cable Terminator, Pin Compatible to LTC1344</td>
<td>Allows Separate RS449 Mode</td>
</tr>
<tr>
<td>LTC1543</td>
<td>Multiprotocol Serial Transceiver</td>
<td>3 Dr/3 Rx for Data and CLK Signals</td>
</tr>
<tr>
<td>LTC1544</td>
<td>Multiprotocol Serial Transceiver</td>
<td>4 Dr/4 Rx for Control Signals and LL</td>
</tr>
<tr>
<td>LTC1545</td>
<td>Multiprotocol Serial Transceiver</td>
<td>5 Dr/5 Rx for Control Signals, LL, RL and TM</td>
</tr>
</tbody>
</table>