SMT Power Inductors
High Current Composite Inductor - PA5004.XXXNLT and PM2204.XXXNLT

- **Height:** 3.1mm Max
- **Footprint:** 6.8mm x 6.6mm Max
- **Current Rating:** up to 40Apk
- **Inductance Range:** 0.18uH to 4.5uH
- **High current, low DCR, and high efficiency**
- **High reliability**
- **Minimized acoustic noise and minimized leakage flux noise**
- **Available in Commercial (PA5004) and Automotive (PM2204) grades**

### Electrical Specifications @ 25°C, Operating Temperature Range per Below

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Inductance</th>
<th>Rated(^2) Current</th>
<th>DC Resistance</th>
<th>Saturation(^1) Current</th>
<th>K Factor for Core Loss</th>
<th>Mechanical D</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA5004.181NLT</td>
<td>0.18</td>
<td>32</td>
<td>1.6</td>
<td>40</td>
<td>358.8</td>
<td>5.30</td>
</tr>
<tr>
<td>PM2204.181NLT</td>
<td>0.18</td>
<td>32</td>
<td>1.6</td>
<td>40</td>
<td>358.8</td>
<td>5.30</td>
</tr>
<tr>
<td>PA5004.331NLT</td>
<td>0.33</td>
<td>25</td>
<td>2.25</td>
<td>32</td>
<td>228.3</td>
<td>5.55</td>
</tr>
<tr>
<td>PM2204.331NLT</td>
<td>0.33</td>
<td>25</td>
<td>2.25</td>
<td>32</td>
<td>228.3</td>
<td>5.55</td>
</tr>
<tr>
<td>PA5004.561NLT</td>
<td>0.56</td>
<td>22</td>
<td>3</td>
<td>29</td>
<td>167.4</td>
<td>5.30</td>
</tr>
<tr>
<td>PM2204.561NLT</td>
<td>0.56</td>
<td>22</td>
<td>3</td>
<td>29</td>
<td>167.4</td>
<td>5.30</td>
</tr>
<tr>
<td>PA5004.681NLT</td>
<td>0.68</td>
<td>20</td>
<td>4.7</td>
<td>25</td>
<td>-</td>
<td>5.30</td>
</tr>
<tr>
<td>PM2204.681NLT</td>
<td>0.68</td>
<td>20</td>
<td>4.7</td>
<td>25</td>
<td>-</td>
<td>5.30</td>
</tr>
<tr>
<td>PA5004.102NLT</td>
<td>1</td>
<td>18</td>
<td>5.5</td>
<td>23</td>
<td>132.2</td>
<td>5.20</td>
</tr>
<tr>
<td>PM2204.102NLT</td>
<td>1</td>
<td>18</td>
<td>5.5</td>
<td>23</td>
<td>132.2</td>
<td>5.20</td>
</tr>
<tr>
<td>PA5004.122NLT</td>
<td>1.2</td>
<td>16</td>
<td>6.7</td>
<td>22</td>
<td>109.2</td>
<td>5.15</td>
</tr>
<tr>
<td>PM2204.122NLT</td>
<td>1.2</td>
<td>16</td>
<td>6.7</td>
<td>22</td>
<td>109.2</td>
<td>5.15</td>
</tr>
<tr>
<td>PA5004.152NLT</td>
<td>1.5</td>
<td>15</td>
<td>8.3</td>
<td>20</td>
<td>-</td>
<td>5.15</td>
</tr>
<tr>
<td>PM2204.152NLT</td>
<td>1.5</td>
<td>15</td>
<td>8.3</td>
<td>20</td>
<td>-</td>
<td>5.15</td>
</tr>
<tr>
<td>PA5004.182NLT</td>
<td>1.8</td>
<td>14</td>
<td>9.2</td>
<td>18.2</td>
<td>93</td>
<td>5.10</td>
</tr>
<tr>
<td>PM2204.182NLT</td>
<td>1.8</td>
<td>14</td>
<td>9.2</td>
<td>18.2</td>
<td>93</td>
<td>5.10</td>
</tr>
<tr>
<td>PA5004.222NLT</td>
<td>2.2</td>
<td>10</td>
<td>11</td>
<td>15.9</td>
<td>81</td>
<td>5.05</td>
</tr>
<tr>
<td>PM2204.222NLT</td>
<td>2.2</td>
<td>10</td>
<td>11</td>
<td>15.9</td>
<td>81</td>
<td>5.05</td>
</tr>
<tr>
<td>PA5004.332NLT</td>
<td>3.3</td>
<td>8</td>
<td>18.8</td>
<td>12.2</td>
<td>64.4</td>
<td>5.00</td>
</tr>
<tr>
<td>PM2204.332NLT</td>
<td>3.3</td>
<td>8</td>
<td>18.8</td>
<td>12.2</td>
<td>64.4</td>
<td>5.00</td>
</tr>
<tr>
<td>PA5004.452NLT</td>
<td>4.5</td>
<td>7</td>
<td>23</td>
<td>10</td>
<td>49.2</td>
<td>5.00</td>
</tr>
<tr>
<td>PM2204.452NLT</td>
<td>4.5</td>
<td>7</td>
<td>23</td>
<td>10</td>
<td>49.2</td>
<td>5.00</td>
</tr>
</tbody>
</table>

### Notes:

1. Actual temperature of the component during system operation (ambient plus temperature rise) must be within the standard operating range.
2. The saturation current is the current at which the initial inductance drops approximately 30% at the stated ambient temperature. This current is determined by placing the component in the specified ambient environment and applying a short duration pulse current (to eliminate self-heating effect) to the component.
3. The rated current is the DC current required to raise the component temperature by approximately 40°C. Take note that the components’ performance varies depending on the system condition. It is suggested that the component be tested at the system level, to verify the temperature rise of the component during system operation.
4. The part temperature (ambient+temp rise) should not exceed 125°C under worst case operating conditions. Circuit design, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

5. Parts shown in bold are standard catalog parts and are available through sample stock and distribution. Parts in lighter font are available but are not necessarily held in sample stock or distribution and lead times may be longer. Please contact Pulse for availability.
6. The PM2204.XXXNLT part numbers are AEC-Q200 and IATF16949 certified. The mechanical dimensions are 100% tested in production but do not necessarily meet a product capability index (Cpk) >1.33 and therefore may not strictly conform to PPAP.
SMT Power Inductors
High Current Composite Inductor - PA5004.XXXNLT and PM2204.XXXNLT

Mechanical

PA5004.XXXNLT and PM2204.XXXNLT

<table>
<thead>
<tr>
<th>Series</th>
<th>Mechanical</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA5004/PM2204</td>
<td></td>
</tr>
<tr>
<td>1.2uH &amp; below</td>
<td></td>
<td>6.8±0.2</td>
<td>6.4±0.2</td>
<td>2.9±0.2</td>
<td>SEE SPEC TABLE</td>
<td>1.4±0.2</td>
<td>2.6±0.25</td>
<td>5.6 (REF)</td>
<td>2.5 (REF)</td>
<td>5.6 (REF)</td>
</tr>
<tr>
<td>1.5uH &amp; below</td>
<td></td>
</tr>
</tbody>
</table>

All Dimensions in mm.

TAPE & REEL INFO

<table>
<thead>
<tr>
<th>SURFACE MOUNTING TYPE, REEL/TAPE LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>REEL SIZE (mm)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>PA5004/PM2204</td>
</tr>
</tbody>
</table>

Typical Performance Curves

PA5004.181NLT

Primary Axis: Inductance (μH)
Secondary Axis: Temp. Rise (°C)

DC CURRENT (A) Range: 0 to 45

PA5004.331NLT

Primary Axis: Inductance (μH)
Secondary Axis: Temp. Rise (°C)

DC CURRENT (A) Range: 0 to 35
SMT Power Inductors
High Current Composite Inductor - PA5004.XXXNLT and PM2204.XXXNLT

![Graphs showing the relationship between DC current (A) and inductance (μH), along with the temperature rise (°C).](Image)
SMT Power Inductors
High Current Composite Inductor - PA5004.XXXNLT and PM2204.XXXNLT

CORE LOSS vs FLUX DENSITY

\[ Bp-p = K \times L(uH) \times \delta I(A) \]

For More Information

Pulse Worldwide Headquarters
15255 Innovation Drive Ste 100
San Diego, CA 92128
U.S.A.

Pulse Europe
Pulse Electronics GmbH
Am Rottland 12
58540 Meinerzhagen
Germany

Pulse China Headquarters
Pulse Electronics (Shenzhen) Co., LTD
D708, Shenzhen Academy of Aerospace Technology,
The 10th Keji South Road,
Nanshan District, Shenzhen,
P.R. China 518057

Pulse North China
Room 2704/2705
Super Ocean Finance Ctr.
2067 Yan An Road West
Shanghai 200336
China

Pulse South Asia
3 Fraser Street
0428 DUO Tower
Singapore 189352

Pulse North Asia
1F., No.111 Xiyuan Rd
Zhongli City
Taoyuan City 32057
Taiwan (R.O.C)

Tel: 858 674 8100
Fax: 858 674 8262

Tel: 49 2354 777 100
Fax: 49 2354 777 168

Tel: 86 755 33966678
Fax: 86 755 33966700

Tel: 86 21 62787060
Fax: 86 2162786973

Tel: 65 6287 8998
Fax: 65 6280 0080

Tel: 886 3 4356768
Fax: 886 3 4356820

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2019. Pulse Electronics, Inc. All rights reserved.