Introduction

DS18B20 is a digital temperature sensor which is from DALLAS U.S. It can be used to quantify the environmental temperature testing.

The temperature range -55 ~ +125 °C, the inherent temperature resolution of 0.5 °C, support multi-point networking mesh. Three DS18B20 can be deployed on three lines, to achieve multi-point temperature measurement. It has a 9-12 bit serial output.

Specification

- Supply Voltage: 3.3V to 5V
- Temperature range: -55 °C ~ +125 °C
- Interface: Digital
- Size: 22x32mm

Connection Diagram

![Connection Diagram](image.jpg)

Sample Code

```c
#include

int DS18S20_Pin = 2; //DS18S20 Signal pin on digital 2
```

Downloaded from Arrow.com.
OneWire ds(DS18S20_Pin); // on digital pin 2

void setup(void) {
 Serial.begin(9600);
}

void loop(void) {
 float temperature = getTemp();
 Serial.println(temperature);
 delay(100); //just here to slow down the output so it is easier to read
}

float getTemp(){
 //returns the temperature from one DS18S20 in DEG Celsius
 byte data[12];
 byte addr[8];
 if (!ds.search(addr)) {
 //no more sensors on chain, reset search
 ds.reset_search();
 return -1000;
 }
 if (OneWire::crc8(addr, 7) != addr[7]) {
 Serial.println("CRC is not valid!");
 return -1000;
 }
 if (addr[0] != 0x10 && addr[0] != 0x28) {
 Serial.print("Device is not recognized");
 return -1000;
 }
 ds.reset();
 ds.select(addr);
 ds.write(0x44,1); // start conversion, with parasite power on at the end
 byte present = ds.reset();
 ds.select(addr);
 ds.write(0xBE); // Read Scratchpad

 for (int i = 0; i < 9; i++) { // we need 9 bytes
 data[i] = ds.read();
 }
 ds.reset_search();
 byte MSB = data[1];
 byte LSB = data[0];
 float tempRead = ((MSB << 8) | LSB); //using two's compliment
 float TemperatureSum = tempRead / 16;
 return TemperatureSum;
}