Cree® XLamp® CMA1840 LED

PRODUCT DESCRIPTION

Cree’s XLamp® High-Current LED Array family is optimized for best-in-class lumen output, efficacy and reliability at high drive currents. XLamp CMA LEDs share the same package design and LES sizes as Cree’s industry-leading CXA2 Standard Density LEDs, enabling lighting manufacturers to address a range of performance requirements for applications such as track, downlight and outdoor lighting using a single easy-to-use platform.

High-Current LED Arrays are now available in two different versions: Standard and eTone™ LEDs.

The eTone version delivers beautiful 90 CRI light quality at the same efficacy as today’s standard 80 CRI LEDs. Featuring the same mechanical and optical characteristics as the Standard version, the eTone LEDs allow easy upgrades from 80 CRI to 90 CRI without sacrificing performance.

FEATURES

• 14-mm optical source
• Optical design consistent with CXA1830 and CXB1830 LEDs
• Cree EasyWhite® 2-, 3- and 5-step binning
• Premium Color 2- and 3-step binning
• Standard & Premium Color LEDs available in 70, 80, 90 and 95 CRI minimum options
• eTone LEDs available in 90 and 95 CRI minimum options
• Forward voltage option: 36-V class
• 85 °C binning and characterization
• Maximum drive current: 2300 mA
• 115° viewing angle, uniform chromaticity profile
• Top-side solder connections
• RoHS and REACh compliant
• UL® recognized component (E349212)

TABLE OF CONTENTS

Characteristics .. 2
Operating Limits .. 3
Flux Characteristics, Order Codes & Bins - Standard LEDs ... 4
Flux Characteristics, Order Codes & Bins - Standard LEDs, Premium Color 5
Flux Characteristics, Order Codes and Bins - eTone™ LEDs .. 6
Relative Spectral Power Distribution - Standard LEDs ... 7
Relative Spectral Power Distribution - Standard LEDs, Premium Color .. 8
Relative Spectral Power Distribution - eTone™ LEDs ... 10
Electrical Characteristics ... 11
Relative Luminous Flux ... 12
Typical Spatial Distribution .. 12
Performance Groups - Chromaticity 13
Premium Color Performance Groups - Chromaticity ... 14
Cree EasyWhite® Bins Plotted on the 1931 CIE Color Space .. 15
Cree Premium Color Bins Plotted on the 1931 CIE Color Space .. 16
Bin and Order Code Formats 18
Mechanical Dimensions ... 19
Thermal Design ... 20
Notes .. 21
Packaging .. 22
CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Unit</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing angle (FWHM)</td>
<td>degrees</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD withstand voltage (JEDEC JS-001-2012)</td>
<td>V</td>
<td>Class 3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC forward current - Standard</td>
<td>mA</td>
<td>2300*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC forward current - eTone</td>
<td>mA</td>
<td>1260*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse current</td>
<td>mA</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage (@ 1100 mA, 85 °C)</td>
<td>V</td>
<td>34.7</td>
<td>38.2</td>
<td></td>
</tr>
</tbody>
</table>

* Refer to the Operating Limits section.
OPERATING LIMITS

The maximum current rating of the CMA1840 depends on the case temperature (Tc) when the LED has reached thermal equilibrium under steady-state operation. The graph shown below assumes that the system design employs good thermal management (thermal interface material and heat sink) and may vary when poor thermal management is employed. Either solder pad shown in the Mechanical Dimensions section on page 3 can be used as the Tc measurement point.

Another important factor in good thermal management is the temperature of the Light Emitting Surface (LES). Cree recommends a maximum LES temperature of 140 °C to ensure optimal LED lifetime. Please refer to the Thermal Design section on page 3 for more information on LES temperature measurement.
FLUX CHARACTERISTICS, ORDER CODES & BINS - STANDARD LEDS (I_f = 1100 mA, T_J = 85 °C)

The following table provides order codes for XLamp CMA1840 LEDs. For a complete description of the order code nomenclature, please see the Bin and Order Code Formats section (page 18).

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI</th>
<th>Minimum Luminous Flux (lm)</th>
<th>Typical Luminous Flux (lm)</th>
<th>2-Step</th>
<th>3-Step</th>
<th>5-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Typ</td>
<td>Group</td>
<td>Order Code</td>
<td>Group</td>
<td>Order Code</td>
</tr>
<tr>
<td>6500 K</td>
<td>70</td>
<td>73</td>
<td>5686</td>
<td>6114</td>
<td>65E</td>
<td>CMA1840-0000-000N0B0A65E</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>82</td>
<td>5312</td>
<td>5712</td>
<td>65E</td>
<td>CMA1840-0000-000N0H0A65E</td>
</tr>
<tr>
<td>5700 K</td>
<td>70</td>
<td>73</td>
<td>5802</td>
<td>6238</td>
<td>57E</td>
<td>CMA1840-0000-000N0B0A57E</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>82</td>
<td>5420</td>
<td>5828</td>
<td>57E</td>
<td>CMA1840-0000-000N0H0A57E</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>4610</td>
<td>4957</td>
<td>57G</td>
<td>CMA1840-0000-000N0U0A57G</td>
</tr>
<tr>
<td>5000 K</td>
<td>70</td>
<td>73</td>
<td>5634</td>
<td>6058</td>
<td>50E</td>
<td>CMA1840-0000-000N0B0A50E</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>82</td>
<td>5263</td>
<td>5659</td>
<td>50G</td>
<td>CMA1840-0000-000N0H0A50G</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>4610</td>
<td>4957</td>
<td>50G</td>
<td>CMA1840-0000-000N0U0A50G</td>
</tr>
<tr>
<td>4000 K</td>
<td>70</td>
<td>73</td>
<td>5591</td>
<td>6012</td>
<td>40E</td>
<td>CMA1840-0000-000N0B0A40E</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>82</td>
<td>5203</td>
<td>5595</td>
<td>40H</td>
<td>CMA1840-0000-000N0H0A40H</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>4480</td>
<td>4817</td>
<td>40G</td>
<td>CMA1840-0000-000N0U0A40G</td>
</tr>
<tr>
<td>3500 K</td>
<td>80</td>
<td>82</td>
<td>5076</td>
<td>5458</td>
<td>35H</td>
<td>CMA1840-0000-000N0H0A35H</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>4357</td>
<td>4685</td>
<td>35G</td>
<td>CMA1840-0000-000N0U0A35G</td>
</tr>
<tr>
<td>3000 K</td>
<td>70</td>
<td>73</td>
<td>5203</td>
<td>5595</td>
<td>30E</td>
<td>CMA1840-0000-000N0B0A30E</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>82</td>
<td>4929</td>
<td>5300</td>
<td>30H</td>
<td>CMA1840-0000-000N0H0A30H</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>4167</td>
<td>4481</td>
<td>30G</td>
<td>CMA1840-0000-000N0U0A30G</td>
</tr>
<tr>
<td>2700 K</td>
<td>80</td>
<td>82</td>
<td>4730</td>
<td>5086</td>
<td>27H</td>
<td>CMA1840-0000-000N0H0A27H</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>92</td>
<td>3979</td>
<td>4278</td>
<td>27G</td>
<td>CMA1840-0000-000N0U0A27G</td>
</tr>
<tr>
<td>2200 K</td>
<td>80</td>
<td>82</td>
<td>4167</td>
<td>4481</td>
<td>22G</td>
<td>CMA1840-0000-000N0H0A22G</td>
</tr>
</tbody>
</table>

Notes

- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 21).
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
Notes

- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 21).
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
FLUX CHARACTERISTICS, ORDER CODES AND BINS - ETONE™ LEDS ($I_f = 1100$ mA, $T_j = 85$ °C)

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI Min.</th>
<th>CRI Typ.</th>
<th>2-Step</th>
<th>3-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 K</td>
<td>90</td>
<td>92</td>
<td>4787</td>
<td>5147</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>98</td>
<td>4256</td>
<td>4576</td>
</tr>
<tr>
<td>3500 K</td>
<td>90</td>
<td>92</td>
<td>4721</td>
<td>5076</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>98</td>
<td>4226</td>
<td>4544</td>
</tr>
<tr>
<td>3000 K</td>
<td>90</td>
<td>92</td>
<td>4683</td>
<td>5035</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>98</td>
<td>4014</td>
<td>4340</td>
</tr>
<tr>
<td>2700 K</td>
<td>90</td>
<td>92</td>
<td>4493</td>
<td>4831</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>98</td>
<td>3796</td>
<td>4104</td>
</tr>
</tbody>
</table>

Specialty

<table>
<thead>
<tr>
<th>Nominal CCT</th>
<th>CRI Min.</th>
<th>CRI Typ.</th>
<th>2-Step</th>
<th>3-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>3100 K</td>
<td>90</td>
<td>92</td>
<td>4633</td>
<td>4982</td>
</tr>
<tr>
<td>3000 K</td>
<td>90</td>
<td>92</td>
<td>4683</td>
<td>5035</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>98</td>
<td>3885</td>
<td>4200</td>
</tr>
</tbody>
</table>

Notes
- Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 21).
- For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.
RELATIVE SPECTRAL POWER DISTRIBUTION - STANDARD LEDS

The following graphs are the result of a series of pulsed measurements at 1100 mA and $T_J = 85 \, ^\circ C$.

![Graph of Relative Spectral Power Distribution](image)

- 6500 K, 70 CRI
- 5700 K, 70 CRI
- 5000 K, 70 CRI
- 4000 K, 70 CRI
- 3000 K, 70 CRI

- 6500 K, 80 CRI
- 5700 K, 80 CRI
- 5000 K, 80 CRI
- 4000 K, 80 CRI
- 3500 K, 80 CRI
- 3000 K, 80 CRI
- 2700 K, 80 CRI
- 2200 K, 80 CRI
RELATIVE SPECTRAL POWER DISTRIBUTION - STANDARD LEDS (CONTINUED)

The following graphs are the result of a series of pulsed measurements at 1100 mA and $T_J = 85^\circ C$.

Fidelity

The following graphs are the result of a series of pulsed measurements at 1100 mA and $T_J = 85^\circ C$.

Fidelity
RELATIVE SPECTRAL POWER DISTRIBUTION - STANDARD LEDS, PREMIUM COLOR (CONTINUED)

Specialty

Relative Spectral Power

Wavelength (nm)

31Q, 3100 K, 90 CRI
30Q, 3000 K, 90 CRI
30U, 3000 K, 90 CRI
L7B, 3000 K, 80 CRI
L7C, 3000 K, Z CRI
RELATIVE SPECTRAL POWER DISTRIBUTION - ETONE™ LEDs

The following graphs are the result of a series of pulsed measurements at 1100 mA and $T_J = 85 \, ^{\circ}\text{C}$.

![Graph 1](image1.png)

![Graph 2](image2.png)
ELECTRICAL CHARACTERISTICS

The following graph is the result of a series of steady-state measurements.

![Graph showing the relationship between Voltage (V) and Current (mA) at different temperatures (Tc = 25 °C, 55 °C, 85 °C, 105 °C).](image-url)
RELATIVE LUMINOUS FLUX

The relative luminous flux values provided below are the ratio of measurements of the CMA1840 LED at steady-state operation at the given conditions, divided by the flux measured during binning, which is a pulsed measurement at 1100 mA at $T_J = 85 \, ^\circ C$.

For example, at steady-state operation of $T_c = 55 \, ^\circ C$, $I_F = 1300 \, mA$, the relative luminous flux ratio is 120% in the chart below. A CMA1840 LED that measures 5300 lm during binning will deliver 6360 lm (5300 * 1.2) at steady-state operation of $T_c = 55 \, ^\circ C$, $I_F = 1300 \, mA$.

![Relative Luminous Flux Chart]

TYPICAL SPATIAL DISTRIBUTION

![Typical Spatial Distribution Chart]
PERFORMANCE GROUPS - CHROMATICITY (T₀ = 85 °C)

XLamp CMA1840 LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates.

<table>
<thead>
<tr>
<th>Code</th>
<th>CCT</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>40H</td>
<td>4000 K</td>
<td>0.3777</td>
<td>0.3739</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3797</td>
<td>0.3816</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3861</td>
<td>0.3855</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3838</td>
<td>0.3777</td>
</tr>
<tr>
<td>35H</td>
<td>3500 K</td>
<td>0.4022</td>
<td>0.3858</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4053</td>
<td>0.3942</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4125</td>
<td>0.3977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4091</td>
<td>0.3891</td>
</tr>
<tr>
<td>30H</td>
<td>3000 K</td>
<td>0.4287</td>
<td>0.3975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4328</td>
<td>0.4064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4390</td>
<td>0.4086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4347</td>
<td>0.3996</td>
</tr>
<tr>
<td>27H</td>
<td>2700 K</td>
<td>0.4524</td>
<td>0.4048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4574</td>
<td>0.4140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4633</td>
<td>0.4154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4581</td>
<td>0.4062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>CCT</th>
<th>Center Point</th>
<th>Major Axis</th>
<th>Minor Axis</th>
<th>Rotation Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57G</td>
<td>5700 K</td>
<td>0.3287</td>
<td>0.3417</td>
<td>0.00738</td>
<td>0.00360</td>
</tr>
<tr>
<td>50G</td>
<td>5000 K</td>
<td>0.3447</td>
<td>0.3553</td>
<td>0.00840</td>
<td>0.00312</td>
</tr>
<tr>
<td>40G</td>
<td>4000 K</td>
<td>0.3818</td>
<td>0.3797</td>
<td>0.00939</td>
<td>0.00402</td>
</tr>
<tr>
<td>35G</td>
<td>3500 K</td>
<td>0.4073</td>
<td>0.3917</td>
<td>0.00927</td>
<td>0.00414</td>
</tr>
<tr>
<td>30G</td>
<td>3000 K</td>
<td>0.4338</td>
<td>0.4030</td>
<td>0.00834</td>
<td>0.00408</td>
</tr>
<tr>
<td>27G</td>
<td>2700 K</td>
<td>0.4577</td>
<td>0.4099</td>
<td>0.00834</td>
<td>0.00420</td>
</tr>
<tr>
<td>22G</td>
<td>2200 K</td>
<td>0.5066</td>
<td>0.4158</td>
<td>0.00980</td>
<td>0.00480</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>CCT</th>
<th>Center Point</th>
<th>Major Axis</th>
<th>Minor Axis</th>
<th>Rotation Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65E</td>
<td>6500 K</td>
<td>0.3123</td>
<td>0.3282</td>
<td>0.01110</td>
<td>0.00550</td>
</tr>
<tr>
<td>57E</td>
<td>5700 K</td>
<td>0.3287</td>
<td>0.3417</td>
<td>0.01230</td>
<td>0.00600</td>
</tr>
<tr>
<td>50E</td>
<td>5000 K</td>
<td>0.3447</td>
<td>0.3553</td>
<td>0.01400</td>
<td>0.00520</td>
</tr>
<tr>
<td>40E</td>
<td>4000 K</td>
<td>0.3818</td>
<td>0.3797</td>
<td>0.01565</td>
<td>0.00670</td>
</tr>
<tr>
<td>30E</td>
<td>3000 K</td>
<td>0.4338</td>
<td>0.4030</td>
<td>0.01390</td>
<td>0.00680</td>
</tr>
</tbody>
</table>
XLamp CMA1840 LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates.

Fidelity

<table>
<thead>
<tr>
<th>Code</th>
<th>CCT</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5A</td>
<td>4000 K</td>
<td>0.3764</td>
<td>0.3711</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3784</td>
<td>0.3787</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3847</td>
<td>0.3826</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3825</td>
<td>0.3748</td>
</tr>
<tr>
<td>35H</td>
<td>3500 K</td>
<td>0.4022</td>
<td>0.3858</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4053</td>
<td>0.3942</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4125</td>
<td>0.3977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4091</td>
<td>0.3891</td>
</tr>
<tr>
<td>30H</td>
<td>3000 K</td>
<td>0.4287</td>
<td>0.3975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4328</td>
<td>0.4064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4390</td>
<td>0.4086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4347</td>
<td>0.3996</td>
</tr>
<tr>
<td>27H</td>
<td>2700 K</td>
<td>0.4524</td>
<td>0.4048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4574</td>
<td>0.4140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4633</td>
<td>0.4154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4581</td>
<td>0.4062</td>
</tr>
</tbody>
</table>

Specialty

<table>
<thead>
<tr>
<th>Code</th>
<th>CCT</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>L7B</td>
<td>3000 K</td>
<td>0.4263</td>
<td>0.3848</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4296</td>
<td>0.3916</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4361</td>
<td>0.3938</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4326</td>
<td>0.3868</td>
</tr>
<tr>
<td>L7C</td>
<td>3000 K</td>
<td>0.4192</td>
<td>0.3754</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4224</td>
<td>0.3823</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4291</td>
<td>0.3847</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4257</td>
<td>0.3777</td>
</tr>
</tbody>
</table>

EasyWhite Color Temperatures – 3-Step Ellipse

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>CCT</th>
<th>Center Point</th>
<th>Major Axis</th>
<th>Minor Axis</th>
<th>Rotation Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31Q</td>
<td>3100 K</td>
<td>0.4236</td>
<td>0.3888</td>
<td>0.00848</td>
<td>0.00455</td>
</tr>
<tr>
<td>30Q</td>
<td>3000 K</td>
<td>0.4305</td>
<td>0.3935</td>
<td>0.00834</td>
<td>0.00408</td>
</tr>
<tr>
<td>30U</td>
<td>3000 K</td>
<td>0.4274</td>
<td>0.3837</td>
<td>0.00834</td>
<td>0.00408</td>
</tr>
</tbody>
</table>
CREE EASYWHITE® BINS PLOTTED ON THE 1931 CIE COLOR SPACE (T_J = 85 °C)
CREE PREMIUM COLOR BINS PLOTTED ON THE 1931 CIE COLOR SPACE (T_j = 85 °C)

Fidelity (2-step)

CCy

CCx

ANSI C78.377 Quadrangle

35H

30H

27H

Downloaded from Arrow.com.
CREE PREMIUM COLOR BINS PLOTTED ON THE 1931 CIE COLOR SPACE (T_J = 85 °C) - CONTINUED

Speciality (2-step)

![Graph showing CREE PREMIUM COLOR BINS plotted on the 1931 CIE color space with 85 °C. The graph includes lines for 3000 K, 3500 K, and 30000 K, with quadrangles for L7B and L7C, and ANSI C78.377 Quadrangle marked.]

Speciality (3-step)

![Graph showing CREE PREMIUM COLOR BINS plotted on the 1931 CIE color space with 85 °C. The graph includes lines for 3000 K, 3500 K, and 30000 K, with quadrangles for 31Q, 30Q, and 36U, and ANSI C78.377 Quadrangle marked.]

Copyright © 2017-2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, XLamp® and EasyWhite® are registered trademarks and eTone® is a trademark of Cree, Inc. UL® and the UR logo are registered trademarks of UL LLC.
BIN AND ORDER CODE FORMATS

Bin codes and order codes are configured as follows:

Order Code
- Series = CMA18
- Internal code
- Version
 - 0 = Standard
 - P = eTone
- CRI Specification
 - B = 70 CRI minimum
 - H = 80 CRI minimum
 - U = 90 CRI minimum
 - Z = 95 CRI minimum
- Kit code
- Vf class
 - N0 = 36-V class
- Performance class

Bin Code
- Series = CMA18
- Chromaticity bin
- Vf class
 - N0 = 36-V class
- Version
 - 0 = Standard
 - P = eTone
- Internal code
- CRI Specification
 - B = 70 CRI minimum
 - H = 80 CRI minimum
 - U = 90 CRI minimum
 - Z = 95 CRI minimum
- Flux bin
 - 0A = Not binned into flux bins
- Performance class
MECHANICAL DIMENSIONS

Dimensions are in mm.
Tolerances unless otherwise specified: ±0.13
x° ±1°

Meaning of LED marking
M1840N = 36-V CMA1840
M1840Ne = 36-V CMA1840 eTone
X, X, X, X, X

X1 CCT
 1 = 6500 K
 8 = 2700 K

X2 M = EasyWhite or
 Fidelity LED on the
 black-body line
 Q = Specialty LED below
 the black-body line
 U = Specialty LED below
 the black-body line

X3 X4 Flux bin
 0A = Not binned into flux
 bins

X5 CRI
 B = 70 CRI min
 H = 80 CRI min
 U = 90 CRI min
 Z = 95 CRI min

Tc measurement point: either the anode or cathode solder pad
THERMAL DESIGN

The CMA family of LED arrays can include over a hundred different LED die inside one package, and thus over a hundred different junction temperatures (T_J). Cree has intentionally removed junction-temperature-based operating limits and replaced the commonplace maximum T_J calculations with maximum ratings based on forward current (I_F) and case temperature (T_c). No additional calculations are required to ensure that the CMA LED is being operated within its designed limits. LES temperature measurement provides additional verification of good thermal design. Please refer to page 3 for the Operating Limit specification.

There is no need to calculate for T_J inside the package, as the thermal management design process, specifically from solder point (T_sp) to ambient (T_a), remains identical to any other LED component. For more information on thermal management of Cree XLamp LEDs, please refer to the Thermal Management application note. For CMA soldering recommendations and information on thermal interface materials (TIM), LES temperature measurement, and connection methods, please refer to the Cree XLamp CM Family LEDs soldering and handling document.

To keep the CMA1840 LED at or below the maximum rated T_c, the case to ambient temperature thermal resistance (R_c-a) must be at or below the maximum R_c-a value shown on the following graph, depending on the operating environment. The y-axis in the graph is a base 10 logarithmic scale.

As the figure at right shows, the R_c-a value is the sum of the thermal resistance of the TIM (R_tim) plus the thermal resistance of the heat sink (R_hs).
NOTES

Measurements
The luminous flux, radiant power, chromaticity, forward voltage and CRI measurements in this document are binning specifications only and solely represent product measurements as of the date of shipment. These measurements will change over time based on a number of factors that are not within Cree's control and are not intended or provided as operational specifications for the products. Calculated values are provided for informational purposes only and are not intended or provided as specifications.

Pre-Release Qualification Testing
Please read the LED Reliability Overview for details of the qualification process Cree applies to ensure long-term reliability for XLamp LEDs and details of Cree's pre-release qualification testing for XLamp LEDs. Cree did not perform Room Temperature Operating Life (RTOL) testing on the CMA1840 LED.

Lumen Maintenance
Cree now uses standardized IES LM-80-08 and TM-21-11 methods for collecting long-term data and extrapolating LED lumen maintenance. For information on the specific LM-80 data sets available for this LED, refer to the public LM-80 results document.

Please read the Long-Term Lumen Maintenance application note for more details on Cree's lumen maintenance testing and forecasting. Please read the Thermal Management application note for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature.

RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Ecology section of the Cree website.

REACH Compliance
REACH substances of very high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

UL® Recognized Component
This product meets the requirements to be considered a UL Recognized Component with Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750.

Vision Advisory
WARNING: Do not look at an exposed lamp in operation. Eye injury can result. For more information about LEDs and eye safety, please refer to the LED Eye Safety application note.
PACKAGING

Cree CMA1840 LEDs are packaged in trays of 20. Five trays are sealed in an anti-static bag and placed inside a carton, for a total of 100 LEDs per carton. Each carton contains 100 LEDs from the same performance bin.

Dimensions are in inches. Tolerances: ±0.13 X° ±1°