IS1U20

IrDA1.0 Compliant OPIC Light Detector

Features
1. Compliant with IrDA 1.0 (Transmission rate: 2.4 to 115.2kbps)
2. Compact design due to OPIC
3. For both 5V and 3V power supplies (Operating supply voltage: 2.7 to 5.5V)
4. Visible light cut-off type
5. Pair use with GL1F20 is recommended

Applications
1. Personal computers
2. Personal information tools
3. Printers
4. Word processors

IrDA: Abbreviation of the Infrared Data Association established for standardization of infrared communication specifications

Absolute Maximum Ratings (Tα=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>VCC</td>
<td>0 to 6.0</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Tmin</td>
<td>−10 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td>−20 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>Tbsf</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

*1 No dew formation
*2 For MAX. 3s at the position of 2mm from the resin edge.
 At mounting on PCB (Thickness: 1.0mm)

Outline Dimensions (Unit: mm)

Black epoxy resin (visible light cut-off type)

“OPIC” (Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a signal chip.

Notice
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

Internet
Internet address for Electronic Components Group: http://www.sharp.co.jp/ecg/
Recommended Operating Conditions (Ta=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>VCC</td>
<td>2.7 to 5.5</td>
<td>V</td>
</tr>
<tr>
<td>Transmission rate</td>
<td>BR</td>
<td>2.4 to 115.2</td>
<td>kbps</td>
</tr>
</tbody>
</table>

Electro-optical Characteristics (Ta=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissipation current</td>
<td>Icc1</td>
<td>Vcc=5V, no input light, output terminal OPEN</td>
<td>–</td>
<td>1.0</td>
<td>1.4</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Icc2</td>
<td>Vcc=3V, no input light, output terminal OPEN</td>
<td>–</td>
<td>0.7</td>
<td>1.0</td>
<td>mA</td>
</tr>
<tr>
<td>High level output voltage</td>
<td>VOH1</td>
<td>Vcc=5V</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>VOH2</td>
<td>Vcc=3V</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Low level output voltage</td>
<td>VOL1</td>
<td>** Vcc=5V, Io=400μA</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>VOL2</td>
<td>** Vcc=3V, Io=400μA</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Low level pulse width</td>
<td>tw1</td>
<td>** BR=2.4kbps</td>
<td>0.8</td>
<td>–</td>
<td>16.0</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>tw2</td>
<td>** BR=115.2kbps</td>
<td>0.8</td>
<td>–</td>
<td>8.0</td>
<td>μs</td>
</tr>
<tr>
<td>Rise time</td>
<td>tR</td>
<td>** BR=115.2kbps</td>
<td>–</td>
<td>–</td>
<td>1.2</td>
<td>μs</td>
</tr>
<tr>
<td>Fall time</td>
<td>tF</td>
<td>** BR=115.2kbps</td>
<td>–</td>
<td>–</td>
<td>0.2</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum receiving distance</td>
<td>L</td>
<td>Vcc, Vcc, tR, t and t shall be satisfied at φ=15°</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>m</td>
</tr>
</tbody>
</table>

*3 Refer to Fig.1, Fig.2, Fig.3.

Fig.1 Standard Optical System

- Eₐ: illuminance of detector face <10 lx
- φ: Indicates horizontal and vertical directions.

1) GL1F20 or GL1F201 (λₑ=850 to 900nm) is used for the transmitter, and its radiation intensity shall be adjusted to 40mW/sr.
Fig. 2 Input Signal Waveform

Transmitter radiant intensity: 40mW/sr

At BR=2.4kbps, T1=416.7µs, T2=78.1µs
At BR=115.2kbps, T1=8.68µs, T2=1.63µs

Fig. 3 Output Waveform Specification

V_{OH}

90%
50%
10%

V_{OL}

Fig. 4 Internal Block Diagram
Fig. 5 Example of Infrared Data Communication System

1) UART (Universal Asynchronous Receiver/Transmitter)
2) Please select the most suitable C and R according to the noise level and noise frequency of power supply.
 EX.: C=47μF, R=47Ω
 * GL1F20 (source voltage 5V) or GL1F201 (source voltage 3V) is recommended for infrared emitting diode with this sensor as pair.

Fig. 6 Signal Waveform

- Transmitting data
- Encoder output
- Optical signal
- IS1U20 output
- Receiving data

Data rate: 2.4kbps, 9.6kbps, 19.2kbps,
38.4kbps, 57.6kbps, 115.2kbps
Ambient Light Characteristics

In the optical system of Fig.7, output signal shall satisfy $V_{Oh}, V_{Oh}, t_r,$ t_f shown in electrical characteristics, at $L=0.2$ to $1m$, $Ee^{\mu_s^2}=1000$ lx, $\phi=0^\circ$.

1) Illuminance of detector face.

2) CIE standard light source A shall be used and placed at 30° form the perpendicular axis at the center of detector face.

Fig.7 Standard Optical System

3) GL1F20 or GL1F201 ($\lambda_p=850$ to $900nm$) is used for the transmitter, and its radiation intensity shall be adjusted to 40mW/sr.

Ambient Light Characteristics

In the optical system of Fig.7, output signal shall satisfy $V_{Oh}, V_{Oh}, t_r,$ t_f shown in electrical characteristics, at $L=0.2$ to $1m$, $Ee^{\mu_s^2}=1000$ lx, $\phi=0^\circ$.

1) Illuminance of detector face.

2) CIE standard light source A shall be used and placed at 30° form the perpendicular axis at the center of detector face.

Fig.7 Standard Optical System

3) GL1F20 or GL1F201 ($\lambda_p=850$ to $900nm$) is used for the transmitter, and its radiation intensity shall be adjusted to 40mW/sr.

Fig.8 Relative Sensitivity vs. Wavelength

Fig.9 Maximum Receiving Distance vs. Supply Voltage

Downloaded from Arrow.com.
Fig. 10 Relative Receiving Distance vs. Ambient Temperature

Fig. 11 Relative Receiving Distance vs. Angular Displacement

Fig. 12 Pulse Width vs. Receiving Distance
NOTICE

The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.

Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.

Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:

(i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - Personal computers
 - Office automation equipment
 - Telecommunication equipment [terminal]
 - Test and measurement equipment
 - Industrial control
 - Audio visual equipment
 - Consumer electronics

(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - Traffic signals
 - Gas leakage sensor breakers
 - Alarm equipment
 - Various safety devices, etc.

(iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - Space applications
 - Telecommunication equipment [trunk lines]
 - Nuclear power control equipment
 - Medical and other life support equipment (e.g., scuba).

Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.

If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.

This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.