R66
MKT Series

METALLIZED POLYESTER FILM CAPACITOR

D.C. MULTIPURPOSE APPLICATIONS

Typical applications: this series combines small size, good performances in by-passing, blocking and interference suppression in low voltage applications (i.e.: AUTOMOTIVE).

PRODUCT CODE: R66

p = 7.5mm

Note: R66 series has replaced the R84 series (available only upon request).

For new design we suggest the use of the R66 series

<table>
<thead>
<tr>
<th>Pitch</th>
<th>Box thickness (B)</th>
<th>Maximum dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mm)</td>
<td>(mm)</td>
<td>B max</td>
</tr>
<tr>
<td>7.5</td>
<td>All</td>
<td>B +0.1</td>
</tr>
</tbody>
</table>

GENERAL TECHNICAL DATA

Dielectric: polyester film (polyethylene terephthalate).

Plates: aluminium layer deposited by evaporation under vacuum.

Winding: non-inductive type.

Leads: tinned wire.

Protection: plastic case, thermosetting resin filled. Box material is solvent resistant and flame retardant according to UL94.

Marking: Capacitance, tolerance, D.C. rated voltage.

Climatic category: 55/105/56 IEC 60068-1

Operating temperature range: -55 to +105°C For stacked technology an upper operating temperature of +125°C is allowed for a max operating time of 1000 h.

Related documents: IEC 60384-2

Winding scheme

(single sided metallized polyester film)

PRODUCT CODE SYSTEM

The part number, comprising 14 digits, is formed as follows:

<table>
<thead>
<tr>
<th>Digit 1 to 3</th>
<th>Series code.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digit 4</td>
<td>d.c. rated voltage:</td>
</tr>
<tr>
<td></td>
<td>C = 50V D = 63V E = 100V</td>
</tr>
<tr>
<td></td>
<td>I = 250V M = 400V P = 630V</td>
</tr>
<tr>
<td>Digit 5</td>
<td>Pitch: D = 7.5 mm</td>
</tr>
<tr>
<td>Digit 6 to 9</td>
<td>Digits 7 - 8 - 9 indicate the first three digits of Capacitance value and the 6th digit indicates the number of zeros that must be added to obtain the Rated Capacitance in pF.</td>
</tr>
<tr>
<td>Digit 10 to 11</td>
<td>Mechanical version and/or packaging (table1)</td>
</tr>
<tr>
<td>Digit 12</td>
<td>Identifies the dimensions and electrical characteristics.</td>
</tr>
<tr>
<td>Digit 13</td>
<td>Internal use</td>
</tr>
<tr>
<td>Digit 14</td>
<td>Capacitance tolerance: J=5%; K=10%; M=20%.</td>
</tr>
</tbody>
</table>

Table 1 (for more detailed information, please refer to page 14).

<table>
<thead>
<tr>
<th>Standard packaging style</th>
<th>Lead length (mm)</th>
<th>Taping style</th>
<th>Ordering code (Digit 10 to 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMMO-PACK</td>
<td></td>
<td>1</td>
<td>DQ</td>
</tr>
<tr>
<td>AMMO-PACK</td>
<td></td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Reel Ø 355 mm</td>
<td></td>
<td>1</td>
<td>CK</td>
</tr>
<tr>
<td>Loose, short leads</td>
<td>4</td>
<td>1</td>
<td>AA</td>
</tr>
<tr>
<td>Loose, long leads</td>
<td>17</td>
<td>2</td>
<td>Z3</td>
</tr>
</tbody>
</table>

All dimensions are in mm.
R66
MKT Series
METALLIZED POLYESTER FILM CAPACITOR
D.C. MULTIPURPOSE APPLICATIONS
p = 7.5 mm
PRODUCT CODE: R66

STACKED VERSION

<table>
<thead>
<tr>
<th>Rated Cap.</th>
<th>50Vdc/30Vac Std dimensions</th>
<th>Max dv/dt</th>
<th>Max K0</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.68 µF</td>
<td>3.0 8.0 10.0 7.5</td>
<td>100</td>
<td>10 E3</td>
<td>R66CD3680--6--</td>
</tr>
<tr>
<td>1.0 µF</td>
<td>3.0 8.0 10.0 7.5</td>
<td>100</td>
<td>10 E3</td>
<td>R66CD4100--6--</td>
</tr>
<tr>
<td>1.5 µF</td>
<td>4.0 9.0 10.0 7.5</td>
<td>100</td>
<td>10 E3</td>
<td>R66CD4150--6--</td>
</tr>
<tr>
<td>2.2 µF</td>
<td>5.0 10.5 10.0 7.5</td>
<td>100</td>
<td>10 E3</td>
<td>R66CD4220--6--</td>
</tr>
<tr>
<td>4.7 µF</td>
<td>6.0 12.0 10.5 7.5</td>
<td>100</td>
<td>10 E3</td>
<td>R66CD4470--6--</td>
</tr>
</tbody>
</table>

Note: If the working voltage (V) is lower than the rated voltage (V_r), the capacitor may work at higher dv/dt. In this case the pulse characteristic K_0 depends on the voltage wave-form and in any case it cannot overcome the value given in the above table.

<table>
<thead>
<tr>
<th>Rated Cap.</th>
<th>63Vdc/40Vac Std dimensions</th>
<th>Max dv/dt</th>
<th>Max K0</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33 µF</td>
<td>3.0 8.0 10.0 7.5</td>
<td>120</td>
<td>15 E3</td>
<td>R66DD3330--6--</td>
</tr>
<tr>
<td>0.47 µF</td>
<td>3.0 8.0 10.0 7.5</td>
<td>120</td>
<td>15 E3</td>
<td>R66DD3470--6--</td>
</tr>
<tr>
<td>0.68 µF</td>
<td>4.0 9.0 10.0 7.5</td>
<td>120</td>
<td>15 E3</td>
<td>R66DD3680--6--</td>
</tr>
<tr>
<td>1.0 µF</td>
<td>4.0 9.0 10.0 7.5</td>
<td>120</td>
<td>15 E3</td>
<td>R66DD4100--7--</td>
</tr>
<tr>
<td>1.5 µF</td>
<td>5.0 10.5 10.0 7.5</td>
<td>120</td>
<td>15 E3</td>
<td>R66DD4150--7--</td>
</tr>
<tr>
<td>2.2 µF</td>
<td>6.0 12.0 10.5 7.5</td>
<td>120</td>
<td>15 E3</td>
<td>R66DD4220--6--</td>
</tr>
<tr>
<td>3.3 µF</td>
<td>6.0 12.0 10.5 7.5</td>
<td>120</td>
<td>15 E3</td>
<td>R66DD4330--6--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rated Cap.</th>
<th>100Vdc/63Vac Std dimensions</th>
<th>Max dv/dt</th>
<th>Max K0</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.068 µF</td>
<td>3.0 8.0 10.0 7.5</td>
<td>150</td>
<td>30 E3</td>
<td>R66ED2680--7--</td>
</tr>
<tr>
<td>0.1 µF</td>
<td>3.0 8.0 10.0 7.5</td>
<td>150</td>
<td>30 E3</td>
<td>R66ED3100--7--</td>
</tr>
<tr>
<td>0.15 µF</td>
<td>3.0 8.0 10.0 7.5</td>
<td>150</td>
<td>30 E3</td>
<td>R66ED3150--7--</td>
</tr>
<tr>
<td>0.22 µF</td>
<td>4.0 9.0 10.0 7.5</td>
<td>150</td>
<td>30 E3</td>
<td>R66ED3220--7--</td>
</tr>
<tr>
<td>0.33 µF</td>
<td>4.0 9.0 10.0 7.5</td>
<td>150</td>
<td>30 E3</td>
<td>R66ED3330--7--</td>
</tr>
<tr>
<td>0.47 µF</td>
<td>4.0 9.0 10.0 7.5</td>
<td>150</td>
<td>30 E3</td>
<td>R66ED3470--7--</td>
</tr>
<tr>
<td>0.68 µF</td>
<td>4.0 9.0 10.0 7.5</td>
<td>150</td>
<td>30 E3</td>
<td>R66ED3680--7--</td>
</tr>
<tr>
<td>1.0 µF</td>
<td>5.0 10.5 10.0 7.5</td>
<td>150</td>
<td>30 E3</td>
<td>R66ED4100--7--</td>
</tr>
<tr>
<td>1.5 µF</td>
<td>6.0 12.0 10.5 7.5</td>
<td>150</td>
<td>30 E3</td>
<td>R66ED4150--6--</td>
</tr>
</tbody>
</table>

All dimensions are in mm.

Note: If the working voltage (V) is lower than the rated voltage (V_r), the capacitor may work at higher dv/dt. In this case the maximum value allowed is obtained multiplying the above value (see table dv/dt) with the ratio V/V_r.

The pulse characteristic K_0 depends on the voltage wave-form and in any case it cannot overcome the value given in the above table.

*Not suitable for across-the-line applications. Please refer to Interference Suppression Capacitors (page 145).
ELECTRICAL CHARACTERISTICS

Rated voltage (V_R):
- 50 Vdc
- 63 Vdc
- 100 Vdc
- 250 Vdc
- 400 Vdc
- 630 Vdc

Rated temperature (T_R): +85 °C

Temperature derated voltage:
for temperatures between +85°C and the upper operating temperature (+105°C for wound technology and +125°C for stacked technology) a decreasing factor of 1.25% per degree °C on the rated voltage V_R (d.c. and a.c.) has to be applied.

Capacitance range: 1000 pF to 4.7 µF

Capacitance values:
E6 series (IEC 60063 Norm).

Capacitance tolerances (measured at 1 kHz):
- ±5% (J)
- ±10% (K)
- ±20% (M)

Total self-inductance (L): ≈8nH
(lead length ~2mm)

Dissipation factor (DF):
$tgδ$ 10⁻⁴ at +25°C *5°C

<table>
<thead>
<tr>
<th>kHz</th>
<th>$tgδ \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≤ 100</td>
</tr>
<tr>
<td>10</td>
<td>≤ 150</td>
</tr>
</tbody>
</table>

Insulation resistance:

Test conditions
- Temperature: +25°C ±5°C
- Voltage charge time: 1 min
- Voltage charge:
 - 50 Vdc for $V_R <100$ Vdc
 - 100 Vdc for $V_R \geq 100$ Vdc

Performance
- For $V_R \leq 100$ Vdc
 - ≥ 3750 MΩ for C ≤0.33µF (5000 MΩ)*
 - ≥ 1250 S for C >0.33µF (5000 S)*
- For $V_R >100$ Vdc
 - ≥ 30000 MΩ (50000 MΩ)*
 - *Typical value

Test voltage between terminals:
1.6xV_R applied for 2 s at +25°C ± 5°C

TEST METHOD AND PERFORMANCE

Damp heat, steady state:

Test conditions
- Temperature: +40°C ±2°C
- Relative humidity (RH): 93% ±2%
- Test duration: 56 days

Performance
- Capacitance change ($\Delta C/C$): ≤5%
- DF change ($\Delta tgδ$): ≤50x10⁻⁴ at 1kHz
- Insulation resistance: ≥50% of initial limit.

Endurance:

Test conditions
- Temperature: +105°C ±2°C
- Test duration: 2000 h
- Voltage applied: 1.25xV_R

Performance
- Capacitance change ($\Delta C/C$): ≤5%
- DF change ($\Delta tgδ$): ≤50 10⁻⁴ at 10kHz
- Insulation resistance: ≥50% of initial limit.

Resistance to soldering heat:

Test conditions
- Solder bath temperature: +260°C ±5°C
- Dipping time (with heat screen): 10 s ±1 s

Performance
- Capacitance change ($\Delta C/C$): ≤2%
- DF change ($\Delta tgδ$): ≤50x10⁻⁴ at 10kHz
- Insulation resistance: ≥ initial limit.

Long term stability (after two years):

Storage
- standard environmental conditions (see page 12).

Performance
- Capacitance change ($\Delta C/C$): ≤3% for C≤0.1µF
- ≤2% for C>0.1µF

RELIABILTY

Reference MIL HDB 217

Application conditions:
- Temperature: +40°C ±2°C
- Voltage: 0.5xV_R
- Failure rate: ≤2 FIT
 - (1 FIT = 1 10⁻⁹ failures/components h)
- Failure criteria:
 - (according to DIN 44122)
 - Short or open circuit
- Capacitance change ($\Delta C/C$): >10%
- DF change ($\Delta tgδ$): >2 x initial limit.
- Insulation resistance: <0.005 x initial limit.

09/2008
R66

MKT Series

MeTAllIZeD POlyeSTeR FIlM CAPACITOR

D.C. MulTIPuRPOSe APPlICATIONS

p = 7.5 mm

PRoDUCT CoDe: R66

MAX. VOLTAGE (Vr.m.s.) VERSUS FREQUENCY (sinusoidal wave-form / Th ≤ 40°C)

Note: p (pitch) in mm.

Not for new design. Use new F611-F612 Series.
MAX. CURRENT (Ir.m.s.) VERSUS FREQUENCY (sinusoidal wave-form / Th ≤ 40°C)

Statements of suitability for certain applications are based on our knowledge of typical operating conditions for such applications, but are not intended to constitute – and we specifically disclaim – any warranty concerning suitability for a specific customer application or use. This Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by us with reference to the use of our products is given gratis, and we assume no obligation or liability for the advice given or results obtained.

Note: p (pitch) in mm.

Downloaded from Arrow.com.