MPIA25-V2
Automotive grade
High current, low profile, miniature power inductors

Product features
• AEC-Q200 qualified
• High current carrying capacity in a compact standard 1008 (2520 metric) footprint
• Magnetically shielded, Low EMI
• Rugged construction
• Self resonant frequency (SRF) greater than 25 MHz
• Inductance range from 0.33 μH to 4.7 μH
• Current range from 1.2 A to 7.5 A
• 2.7 mm x 2.2 mm footprint surface mount package in 1.05 mm, 1.25 mm heights
• Moisture Sensitivity Level (MSL): 1

Applications
• Body electronics
 ▫ Central body control module
 ▫ Vehicle access control system
 ▫ Headlamps, tail lamps, interior lighting and LED lighting
 ▫ Doors, window lift and seat control
• Advanced driver assistance systems
 ▫ 77 GHz radar system
 ▫ Basic and smart surround, and rear and front view camera
 ▫ Adaptive cruise control (ACC)
 ▫ Automatic parking control
 ▫ Car black box system
• Infotainment and cluster electronics
 ▫ Active noise cancellation (ANC)
 ▫ Audio subsystem: head unit and trunk amp
 ▫ Digital instrument cluster
 ▫ In-vehicle infotainment (IVI) and navigation

Environmental data
• Storage temperature range (Component): -40 °C to +125 °C
• Operating temperature range: -40 °C to +125 °C (ambient plus self-temperature rise)
• Solder reflow temperature: J-STD-020 (latest revision) compliant
• Halogen free, lead free, RoHS compliant
Technical Data

MPIA25-V2
Automotive grade
High current, low profile, miniature power inductors

Product Specifications

<table>
<thead>
<tr>
<th>Part Number*</th>
<th>OCL (μH) ±20%</th>
<th>I rms (A)</th>
<th>I sat (A)</th>
<th>DCR (mΩ) typical @ +20 °C</th>
<th>DCR (mΩ) maximum @ +20 °C</th>
<th>SRF (MHz) typical</th>
<th>K-factor*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 mm height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPIA2510V2-R33-R</td>
<td>0.33</td>
<td>4.8</td>
<td>6.6</td>
<td>15</td>
<td>20</td>
<td>120</td>
<td>6336</td>
</tr>
<tr>
<td>MPIA2510V2-R47-R</td>
<td>0.47</td>
<td>4.4</td>
<td>6.0</td>
<td>19</td>
<td>25</td>
<td>100</td>
<td>5093</td>
</tr>
<tr>
<td>MPIA2510V2-R68-R</td>
<td>0.68</td>
<td>3.1</td>
<td>4.3</td>
<td>37</td>
<td>44</td>
<td>80</td>
<td>5733</td>
</tr>
<tr>
<td>MPIA2510V2-1R0-R</td>
<td>1.00</td>
<td>3.1</td>
<td>4.3</td>
<td>41</td>
<td>52</td>
<td>55</td>
<td>3372</td>
</tr>
<tr>
<td>MPIA2510V2-1R5-R</td>
<td>1.50</td>
<td>2.5</td>
<td>2.8</td>
<td>65</td>
<td>85</td>
<td>45</td>
<td>4695</td>
</tr>
<tr>
<td>MPIA2510V2-2R2-R</td>
<td>2.20</td>
<td>2.1</td>
<td>2.8</td>
<td>88</td>
<td>110</td>
<td>45</td>
<td>2873</td>
</tr>
<tr>
<td>MPIA2510V2-3R3-R</td>
<td>3.30</td>
<td>1.6</td>
<td>2.1</td>
<td>140</td>
<td>170</td>
<td>35</td>
<td>1893</td>
</tr>
<tr>
<td>MPIA2510V2-4R7-R</td>
<td>4.70</td>
<td>1.22</td>
<td>1.8</td>
<td>220</td>
<td>262</td>
<td>25</td>
<td>1616</td>
</tr>
<tr>
<td>1.2 mm height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPIA2512V2-R33-R</td>
<td>0.33</td>
<td>5.1</td>
<td>7.5</td>
<td>14</td>
<td>19</td>
<td>130</td>
<td>6560</td>
</tr>
<tr>
<td>MPIA2512V2-R47-R</td>
<td>0.47</td>
<td>4.9</td>
<td>6.7</td>
<td>17</td>
<td>23</td>
<td>100</td>
<td>3628</td>
</tr>
<tr>
<td>MPIA2512V2-R68-R</td>
<td>0.68</td>
<td>3.4</td>
<td>6.0</td>
<td>29</td>
<td>35</td>
<td>70</td>
<td>3633</td>
</tr>
<tr>
<td>MPIA2512V2-1R0-R</td>
<td>1.00</td>
<td>3.3</td>
<td>4.4</td>
<td>36</td>
<td>44</td>
<td>70</td>
<td>3083</td>
</tr>
<tr>
<td>MPIA2512V2-1R5-R</td>
<td>1.50</td>
<td>2.3</td>
<td>3.2</td>
<td>64</td>
<td>77</td>
<td>45</td>
<td>4850</td>
</tr>
<tr>
<td>MPIA2512V2-2R2-R</td>
<td>2.20</td>
<td>2.2</td>
<td>3.5</td>
<td>73</td>
<td>87</td>
<td>30</td>
<td>2924</td>
</tr>
<tr>
<td>MPIA2512V2-3R3-R</td>
<td>3.30</td>
<td>1.8</td>
<td>2.8</td>
<td>110</td>
<td>135</td>
<td>35</td>
<td>1965</td>
</tr>
<tr>
<td>MPIA2512V2-4R7-R</td>
<td>4.70</td>
<td>1.4</td>
<td>1.9</td>
<td>196</td>
<td>235</td>
<td>25</td>
<td>1580</td>
</tr>
</tbody>
</table>

1. Open Circuit Inductance (OCL) Test Parameters: 1.0 MHz, 0.1 Vrms, 0.0 Ads, +25 °C.
2. I rms: DC current for an approximate temperature rise of 40 °C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed +125 °C under worst case operating conditions verified in the end application.
3. I sat: Peak current for approximately 30% rolloff @ +25 °C.
4. K-factor: Used to determine Bp-p for core loss (see graph). Bp-p = K * L * ΔI. Bp-p (Gauss), K = (K-factor from table), L = (Inductance in μH), ΔI = (Peak to peak ripple current in Amps).
5. Part Number Definition: MPIA25xxV2-xxx-R
 MPIA25 = Product code
 xx = Height indicator
 V2 = Version indicator
 xxx = Inductance value in μH, R = decimal point, If no R is present then last character equals number of zeros
 - R suffix = RoHS compliant

Dimensions (mm)

Dimension A

| MPIA2510V2 | 1.05 maximum |
| MPIA2512V2 | 1.25 maximum |

Recommended Pad Layout

Schematic

- No marking
- All soldering surfaces to be coplaner within 0.10 millimeters
- Tolerances are ±0.2 millimeters unless stated otherwise
- Pad layout tolerances are ±0.1 millimeters unless stated otherwise
- Do not route traces or vias underneath the inductor

www.eaton.com/electronics
MPIA25-V2
Automotive grade
High current, low profile, miniature power inductors

Packaging information (mm)
Supplied in tape and reel packaging, 3000 parts per 7” diameter reel

Core loss vs. Bp-p (+25 °C)

MPIA2510V2-R33-R
MPIA2510V2-R47-R

Downloaded from Arrow.com.
Core loss vs. Bp-p (+25 °C)

MPIA2510V2-68-R

MPIA2510V2-1R0-R

MPIA2510V2-1R5-R

MPIA2510V2-2R2-R

MPIA2510V2-3R3-R

MPIA2510V2-4R7-R
MPIA25-V2
Automotive grade
High current, low profile, miniature power inductors

Core loss vs. Bp-p (+25 °C)
Technical Data 10650
Effective July 2018

MPIA25-V2
Automotive grade
High current, low profile, miniature power inductors

Core loss vs. Bp-p (+25 °C)

Inductance and Q vs. Frequency
MPIA25-V2
Automotive grade
High current, low profile, miniature power inductors

Inductance and Q vs. Frequency

MPIA2510V2-1R5-R

MPIA2510V2-2R2-R

MPIA2510V2-3R3-R

MPIA2510V2-4R7-R

MPIA2512V2-R33-R

MPIA2512V2-R47-R
High current, low profile, miniature power inductors

Inductance and Q vs. Frequency

MPIA2512V2-R68-R

MPIA2512V2-1R0-R

MPIA2512V2-1R5-R

MPIA2512V2-2R2-R

MPIA2512V2-3R3-R

MPIA2512V2-4R7-R

MPIA25-V2
Automotive grade

Effective July 2018

 MPIA25-V2
Automotive grade
High current, low profile, miniature power inductors

www.eaton.com/electronics
MPIA25-V2
Automotive grade
High current, low profile, miniature power inductors

Inductance and temperature rise vs. Current

MPIA2510V2-R33-R

MPIA2510V2-R47-R

MPIA2510V2-R68-R

MPIA2510V2-1R0-R

MPIA2510V2-1R5-R

MPIA2510V2-2R2-R
MPIA25-V2
Automotive grade
High current, low profile, miniature power inductors

Inductance and temperature rise vs. Current

MPIA2510V2-3R3-R

MPIA2510V2-4R7-R

MPIA2512V2-R33-R

MPIA2512V2-R47-R

MPIA2512V2-R68-R

MPIA2512V2-1R0-R
MPIA25-V2
Automotive grade
High current, low profile, miniature power inductors

Inductance and temperature rise vs. Current
Solder reflow profile

Reference JDEC J-STD-020

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Standard SnPb Solder</th>
<th>Lead (Pb) Free Solder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preheat and Soak</td>
<td>• Temperature min. (T_{min})</td>
<td>100 °C</td>
</tr>
<tr>
<td></td>
<td>• Temperature max. (T_{max})</td>
<td>150 °C</td>
</tr>
<tr>
<td></td>
<td>• Time (T_{min} to T_{max})</td>
<td>60-120 Seconds</td>
</tr>
<tr>
<td>Average ramp up rate (T_{max} to T_{P})</td>
<td>3°C/ Second Max.</td>
<td>3 °C/ Second Max.</td>
</tr>
<tr>
<td>Liquidous temperature (T_{L})</td>
<td>183 °C</td>
<td>217 °C</td>
</tr>
<tr>
<td>Time at liquidous (T_{L})</td>
<td>60-150 Seconds</td>
<td>60-150 Seconds</td>
</tr>
<tr>
<td>Peak package body temperature (T_{P})</td>
<td>Table 1</td>
<td>Table 2</td>
</tr>
<tr>
<td>Time (T_{P})** within 5 °C of the specified classification temperature (T_{C})</td>
<td>20 Seconds**</td>
<td>30 Seconds**</td>
</tr>
<tr>
<td>Average ramp-down rate (T_{D} to T_{max})</td>
<td>6 °C/ Second Max.</td>
<td>6 °C/ Second Max.</td>
</tr>
<tr>
<td>Time 25 °C to Peak Temperature</td>
<td>6 Minutes Max.</td>
<td>8 Minutes Max.</td>
</tr>
</tbody>
</table>

* Tolerance for peak profile temperature (T_{P}) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (T_{P}) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.