FEATURES

- SFP/SFF MSA and SFF-8472 compliant
- SFP reference design available
- 50 Mbps to 3.3 Gbps operation
- Dual-loop control of average power and extinction ratio
- Typical rise/fall time 60 ps
- Bias current range 2 mA to 100 mA
- Modulation current range 5 mA to 90 mA
- Laser FAIL alarm and automatic laser shutdown (ALS)
- Bias and modulation current monitoring
- 3.3 V operation
- 4 mm × 4 mm LFCSP
- Voltage setpoint control
- Resistor setpoint control
- RoHS compliant

APPLICATIONS

- Multirate OC3 to OC48-FEC SFP/SFF modules
- 1×/2×/4× Fibre Channel SFP/SFF modules
- LX-4 modules
- DWDM/CWDM SFP modules
- 1GE SFP/SFF transceiver modules

GENERAL DESCRIPTION

The ADN2870 laser diode driver is designed for advanced SFP and SFF modules, using SFF-8472 digital diagnostics. The device features dual-loop control of the average power and extinction ratio, which automatically compensates for variations in laser characteristics over temperature and aging. The laser needs only to be calibrated at 25°C, eliminating the expensive and time consuming temperature calibration. The ADN2870 supports single-rate operation from 50 Mbps to 3.3 Gbps or multirate operation from 155 Mbps to 3.3 Gbps.

Average power and extinction ratios can be set with reference voltages provided by a microcontroller DAC or by adjustable resistors. The ADN2870 provides bias and modulation current monitoring as well as fail alarms and automatic laser shutdown. The device interfaces easily with the ADuC702x family of MicroConverters and with the ADN289x family of limiting amplifiers to make a complete SFP/SFF transceiver solution. An SFP reference design is available. The product is available in a space-saving 4 mm × 4 mm LFCSP specified over the −40°C to +85°C temperature range.

1 Protected by U.S. Patent 6,414,974.
ADN2870* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS
View a parametric search of comparable parts.

EVALUATION KITS
- ADN2870 Evaluation Board

DOCUMENTATION

Data Sheet
- ADN2870: 3.3 V Dual-Loop, 50 Mbps to 3.3 Gbps Laser Diode Driver Data Sheet

REFERENCE MATERIALS

Informational
- Optical and High Speed Networking ICs
- SFP Chipset and Reference Design Simplify 4.25 GBPS Transceivers

DESIGN RESOURCES
- ADN2870 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS
View all ADN2870 EngineerZone Discussions.

SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
TABLE OF CONTENTS

Features ... 1
Applications .. 1
General Description .. 1
Applications Diagram .. 1
Revision History .. 2
Specifications ... 3
SFP Timing Specifications 5
Absolute Maximum Ratings 6
ESD Caution .. 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Optical Waveforms ... 10
Multirate Performance Using Low Cost Fabry Perot Tosa NEC NX7315UA .. 10
Dual-Loop Performance Over Temperature Using DFB Tosa SUMITOMO SLT2486 10
Theory of Operation .. 11
Dual-Loop Control .. 11
Control ... 12
Voltage Setpoint Calibration 12
Resistor Setpoint Calibration 14
I_{MPD} Monitoring ... 14
Loop Bandwidth Selection 15
Power Consumption ... 15
Automatic Laser Shutdown (Tx_Enable) 15
Bias and Modulation Monitor Currents 15
Data Inputs ... 15
Laser Diode Interfacing 16
Alarms ... 17
Outline Dimensions ... 18
Ordering Guide .. 18

REVISION HISTORY

8/2016—Rev A to Rev. B
Changed CP-24-2 to CP-24-14 Throughout
Changes to Table 4 ... 7
Updated Outline Dimensions 18
Changes to Ordering Guide 18

3/2008—Rev 0 to Rev. A
Changes to Features, General Description, and Figure 1 1
Changes to Table 3 ... 6
Changes to Figure 5 .. 7
Reorganized Layout .. 8
Changes to Modulation Control Loop Section 11
Changes to Operation with Lasers with Temperature- Dependent Nonlinearity of Laser LI Curve Section 12
Changes to Voltage Setpoint Calibration Section 12
Changes to Figure 26 and Figure 27 13

Changes to Resistor Setpoint Calibration Section and I_{MPD}
Monitoring Section ... 14
Changes to Loop Bandwidth Selection Section 15
Changes to Laser Diode Interfacing Section, Figure 32, and
Figure 33 ... 16
Changes to Table 5 .. 17
Updated Outline Dimensions 18
Changes to Ordering Guide 18

8/2004—Revision 0: Initial Version
SPECIFICATIONS

\(V_{CC} = 3.0 \text{ V to } 3.6 \text{ V. All specifications } \text{T}_{\text{MIN}} \text{ to } \text{T}_{\text{MAX}}, \) unless otherwise noted.\(^1\) Typical values as specified at 25°C.

Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASER BIAS CURRENT (IBIAS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current IBIAS</td>
<td>2</td>
<td>100</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance Voltage</td>
<td>1.2</td>
<td>(V_{CC})</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBIAS when ALS High</td>
<td>0.2</td>
<td></td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCBIAS Compliance Voltage</td>
<td>1.2</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODULATION CURRENT (IMODP, IMODN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current IMOD</td>
<td>5</td>
<td>90</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance Voltage</td>
<td>1.5</td>
<td>(V_{CC})</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMOD when ALS High</td>
<td>0.05</td>
<td></td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time(^2,3)</td>
<td>60</td>
<td>104</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Time(^2,3)</td>
<td>60</td>
<td>96</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Jitter(^2,3)</td>
<td>0.8</td>
<td>1.1</td>
<td>ps</td>
<td>rms</td>
<td></td>
</tr>
<tr>
<td>Deterministic Jitter(^2,3)</td>
<td>35</td>
<td></td>
<td>ps</td>
<td>20 mA < IMOD < 90 mA</td>
<td></td>
</tr>
<tr>
<td>Pulse Width Distortion(^2,3)</td>
<td>30</td>
<td></td>
<td>ps</td>
<td>20 mA < IMOD < 90 mA</td>
<td></td>
</tr>
<tr>
<td>AVERAGE POWER SET (PAVSET)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin Capacitance</td>
<td>80</td>
<td></td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>1.1</td>
<td>1.2</td>
<td>1.35</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Photodiode Monitor Current (Average Current)</td>
<td>50</td>
<td>1200</td>
<td>(\mu \text{A})</td>
<td>Resistor setpoint mode</td>
<td></td>
</tr>
<tr>
<td>EXTINCTION RATIO SET INPUT (ERSET)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance Range</td>
<td>1.2</td>
<td>25</td>
<td>k(\Omega)</td>
<td>Resistor setpoint mode</td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>1.1</td>
<td>1.2</td>
<td>1.35</td>
<td>V</td>
<td>Resistor setpoint mode</td>
</tr>
<tr>
<td>AVERAGE POWER REFERENCE VOLTAGE INPUT (PAVREF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Range</td>
<td>0.12</td>
<td>1</td>
<td>V</td>
<td>Voltage setpoint mode (RPAV fixed at 1 k(\Omega))</td>
<td></td>
</tr>
<tr>
<td>Photodiode Monitor Current (Average Current)</td>
<td>120</td>
<td>1000</td>
<td>(\mu \text{A})</td>
<td>Voltage setpoint mode (RPAV fixed at 1 k(\Omega))</td>
<td></td>
</tr>
<tr>
<td>EXTINCTION RATIO REFERENCE VOLTAGE INPUT (ERREF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Range</td>
<td>0.1</td>
<td>1</td>
<td>V</td>
<td>Voltage setpoint mode (RERSET fixed at 1 k(\Omega))</td>
<td></td>
</tr>
<tr>
<td>DATA INPUTS (DATAP, DATAN)(^4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V p-p (Differential)</td>
<td>0.4</td>
<td>2.4</td>
<td>V</td>
<td>ac-coupled</td>
<td></td>
</tr>
<tr>
<td>Input Impedance (Single-Ended)</td>
<td>50</td>
<td></td>
<td>(\Omega)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOGIC INPUTS (ALS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>2</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>0.8</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALARM OUTPUT (FAIL)(^5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OFF})</td>
<td>>1.8</td>
<td></td>
<td>V</td>
<td>Voltage required at FAIL for IBIAS and IMOD to turn off when FAIL asserted</td>
<td></td>
</tr>
<tr>
<td>(V_{ON})</td>
<td><1.3</td>
<td></td>
<td>V</td>
<td>Voltage required at FAIL for IBIAS and IMOD to stay on when FAIL asserted</td>
<td></td>
</tr>
<tr>
<td>IBMON, IIMMON DIVISION RATIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBIAS/IBMON(^3)</td>
<td>85</td>
<td>100</td>
<td>115</td>
<td>A/A</td>
<td>11 mA < IBIAS < 50 mA</td>
</tr>
<tr>
<td>IBIAS/IIMMON(^3)</td>
<td>92</td>
<td>100</td>
<td>108</td>
<td>A/A</td>
<td>50 mA < IBIAS < 100 mA</td>
</tr>
<tr>
<td>IBMON Stability(^5,6)</td>
<td>(\pm 5)</td>
<td></td>
<td>%</td>
<td></td>
<td>10 mA < IBIAS < 100 mA</td>
</tr>
<tr>
<td>IMOD/IIMMON</td>
<td>50</td>
<td></td>
<td>A/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBMON Compliance Voltage</td>
<td>0</td>
<td>1.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>
ADN2870

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC7</td>
<td>30</td>
<td></td>
<td></td>
<td>mA</td>
<td>When IBIAS = IMOD = 0</td>
</tr>
<tr>
<td>VCC (with respect to GND)8</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

1. Temperature range: −40°C to +85°C.
2. Measured into a 15 Ω load (22 Ω resistor in parallel with digital scope 50 Ω input) using a 11110000 pattern at 2.5 Gbps, shown in Figure 2.
4. When the voltage on DATAP is greater than the voltage on DATAN, the modulation current flows in the IMODP pin.
5. Guaranteed by design. Not production tested.
6. IBIAS/IBMON ratio stability is defined in SFF-8472 revision 9 over temperature and supply variation.
7. ICC minimum for power calculation (see the Power Consumption section).
8. All VCC pins should be shorted together.

![Figure 2. High Speed Electrical Test Output Circuit](image-url)
SFP TIMING SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS Assert Time</td>
<td>t_OFF</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>μs</td>
<td>Time from the rising edge of ALS (Tx_DISABLE) to when the bias current falls below 10% of nominal.</td>
</tr>
<tr>
<td>ALS Negate Time(^1)</td>
<td>t_ON</td>
<td>0.83</td>
<td>0.95</td>
<td>10</td>
<td>ms</td>
<td>Time from the falling edge of ALS to when the modulation current rises above 90% of nominal.</td>
</tr>
<tr>
<td>Time to Initialize, Including Reset of FAIL(^1)</td>
<td>t_INIT</td>
<td>25</td>
<td>275</td>
<td>280</td>
<td>ms</td>
<td>Time from power-on or negation of FAIL using ALS.</td>
</tr>
<tr>
<td>FAIL Assert Time</td>
<td>t_FAULT</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>μs</td>
<td>Time from fault to FAIL on.</td>
</tr>
<tr>
<td>ALS to Reset Time</td>
<td>t_RESET</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>μs</td>
<td>Tx_DISABLE must be held high to reset Tx_FAULT.</td>
</tr>
</tbody>
</table>

\(^1\) Guaranteed by design and characterization. Not production tested.

![Figure 3. Signal Level Definition](image)

![Figure 4. Recommended SFP Supply](image)
Absolute Maximum Ratings

Table 3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC to GND</td>
<td>4.2 V</td>
</tr>
<tr>
<td>IMODN, IMODP</td>
<td>−0.3 V to +4.8 V</td>
</tr>
<tr>
<td>PAVCAP, ERCAP, PAVSET, PAVREF, ERREF, IBIAS, IBMON, IMMON, ALS, CCBIAS, RPAV, ERSET, FAIL</td>
<td>−0.3 V to +3.9 V</td>
</tr>
<tr>
<td>DATAP, DATAN (Single-Ended Differential)</td>
<td>1.5 V</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>−40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Junction Temperature (T_J max)</td>
<td>125°C</td>
</tr>
<tr>
<td>LFCSP Package</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation (W)¹</td>
<td>(T_J, max − T_A) / θ_JA</td>
</tr>
<tr>
<td>θ_JA Thermal Impedance²</td>
<td>30°C/W</td>
</tr>
<tr>
<td>θ_JC Thermal Impedance</td>
<td>29.5°C/W</td>
</tr>
</tbody>
</table>

1 Power consumption equations are provided in the Power Consumption section.
2 θ_JA is defined when the part is soldered on a 4-layer board.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CCBIAS</td>
<td>Control Output Current</td>
</tr>
<tr>
<td>2</td>
<td>PAVSET</td>
<td>Average Optical Power Set Pin</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Supply Ground</td>
</tr>
<tr>
<td>4</td>
<td>VCC</td>
<td>Supply Voltage</td>
</tr>
<tr>
<td>5</td>
<td>PAVREF</td>
<td>Reference Voltage Input for Average Optical Power Control</td>
</tr>
<tr>
<td>6</td>
<td>RPAV</td>
<td>Average Power Resistor When Using PAVREF</td>
</tr>
<tr>
<td>7</td>
<td>ERCAP</td>
<td>Extinction Ratio Loop Capacitor</td>
</tr>
<tr>
<td>8</td>
<td>PAVCAP</td>
<td>Average Power Loop Capacitor</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Supply Ground</td>
</tr>
<tr>
<td>10</td>
<td>DATAP</td>
<td>Data, Positive Differential Input</td>
</tr>
<tr>
<td>11</td>
<td>DATAN</td>
<td>Data, Negative Differential Input</td>
</tr>
<tr>
<td>12</td>
<td>ALS</td>
<td>Automatic Laser Shutdown</td>
</tr>
<tr>
<td>13</td>
<td>ERSET</td>
<td>Extinction Ratio Set Pin</td>
</tr>
<tr>
<td>14</td>
<td>IMMON</td>
<td>Modulation Current Monitor Current Source</td>
</tr>
<tr>
<td>15</td>
<td>ERREF</td>
<td>Reference Voltage Input for Extinction Ratio Control</td>
</tr>
<tr>
<td>16</td>
<td>VCC</td>
<td>Supply Voltage</td>
</tr>
<tr>
<td>17</td>
<td>IBMON</td>
<td>Bias Current Monitor Current Source</td>
</tr>
<tr>
<td>18</td>
<td>FAIL</td>
<td>FAIL Alarm Output</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>Supply Ground</td>
</tr>
<tr>
<td>20</td>
<td>VCC</td>
<td>Supply Voltage</td>
</tr>
<tr>
<td>21</td>
<td>IMODP</td>
<td>Modulation Current Positive Output (Current Sink), Connect to Laser Diode</td>
</tr>
<tr>
<td>22</td>
<td>IMODN</td>
<td>Modulation Current Negative Output (Current Sink)</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td>Supply Ground</td>
</tr>
<tr>
<td>24</td>
<td>IBIAS</td>
<td>Laser Diode Bias (Current Sink to Ground)</td>
</tr>
<tr>
<td></td>
<td>EPAD</td>
<td>Exposed Pad. The LFCSP package has an exposed paddle that must be connected to ground.</td>
</tr>
</tbody>
</table>
Figure 6. Rise Time vs. Modulation Current, $I_{BIAS} = 20$ mA

Figure 7. Fall Time vs. Modulation Current, $I_{BIAS} = 20$ mA

Figure 8. Deterministic Jitter vs. Modulation Current, $I_{BIAS} = 20$ mA

Figure 9. Random Jitter vs. Modulation Current, $I_{BIAS} = 20$ mA

Figure 10. Total Supply Current vs. Modulation Current, $I_{BIAS} = 20, 40, 80 mA$

Figure 11. Supply Current (I_{CC}) vs. Temperature with ALS Asserted, $I_{BIAS} = 20$ mA
Figure 12. IBIAS/IBMON Gain vs. Temperature, $I_{BIAS} = 20\ mA$

Figure 13. ALS Assert Time, 5 μs/DIV

Figure 14. ALS Negate Time, 200 μs/DIV

Figure 15. IMOD/IMMON Gain vs. Temperature, $I_{MOD} = 30\ mA$

Figure 16. FAIL Assert Time, 1 μs/DIV

Figure 17. Time to Initialize, Including Reset, 40 ms/DIV
OPTICAL WAVEFORMS

$V_{CC} = 3.3\, \text{V}$ and $T_A = 25^\circ\text{C}$, unless otherwise noted. Note that in Figure 18 through Figure 22, there is no change to the PAVCAP and ERCAP values using either of the lasers or at any of the data rates tested.

MULTIRATE PERFORMANCE USING LOW COST FABRY PEROT TOSA NEC NX7315UA

Figure 18. Optical Eye 2.488 Gbps, 65 ps/DIV, PRBS $2^{23}-1$, $PAV = -4.5\, \text{dBm}, ER = 9\, \text{dB}, Mask\ Margin\ 25\%$

Figure 19. Optical Eye 622 Mbps, 264 ps/DIV, PRBS $2^{23}-1$, $PAV = -4.5\, \text{dBm}, ER = 9\, \text{dB}, Mask\ Margin\ 50\%$

Figure 20. Optical Eye 155 Mbps, 1.078 ns/DIV, PRBS $2^{23}-1$, $PAV = -4.5\, \text{dBm}, ER = 9\, \text{dB}, Mask\ Margin\ 50\%$

DUAL-LOOP PERFORMANCE OVER TEMPERATURE USING DFB TOSA SUMITOMO SLT2486

Figure 21. Optical Eye 2.488 Gbps, 65 ps/DIV, PRBS $2^{23}-1$, $PAV = 0\, \text{dBm}, ER = 9\, \text{dB}, Mask\ Margin\ 22\%, T_A = 25^\circ\text{C}$

Figure 22. Optical Eye 2.488 Gbps, 65 ps/DIV, PRBS $2^{23}-1$, $PAV = -0.2\, \text{dBm}, ER = 8.96\, \text{dB}, Mask\ Margin\ 21\%, T_A = 85^\circ\text{C}$
THEORY OF OPERATION

Laser diodes have a current-in to light-out transfer function, as shown in Figure 23. Two key characteristics of this transfer function are the threshold current, Ith, and slope in the linear region beyond the threshold current, referred to as slope efficiency, LI.

\[
ER = \frac{P_1}{P_0} = \frac{P_1 + P_0}{2}
\]

Figure 23. Laser Transfer Function

DUAL-LOOP CONTROL

Typically, laser threshold current and slope efficiency are both functions of temperature. For FP and DFB type lasers, the threshold current increases and the slope efficiency decreases with increasing temperature. In addition, these parameters vary as the laser ages. To maintain a constant optical average power and a constant optical extinction ratio over temperature and laser lifetime, it is necessary to vary the applied electrical bias current and modulation current to compensate for the laser changing LI characteristics.

Single-loop compensation schemes use the average monitor photodiode current to measure and maintain the average optical output power over temperature and laser aging. The ADN2870 is a dual-loop device, implementing both this primary average power control loop and a secondary control loop, which maintains a constant optical extinction ratio. The dual-loop control of the average power and extinction ratio implemented in the ADN2870 can be used successfully both with lasers that maintain good linearity of LI transfer characteristics over temperature and with those that exhibit increasing nonlinearity of the LI characteristics over temperature.

Dual Loop

The ADN2870 uses a proprietary patented method to control both average power and extinction ratio. The ADN2870 is constantly sending a test signal on the modulation current signal and reading the resulting change in the monitor photodiode (MPD) current as a means of detecting the slope of the laser in real time. This information is used in a servo to control the ER of the laser, which is done in a time-multiplexed manner at a low frequency, typically 80 Hz. Figure 24 shows the dual-loop control implementation on the ADN2870.

A dual loop is made up of an average power control loop (APCL) and the extinction ratio control loop (ERCL), which are separated into two time states. During Time Φ1, the APC loop is operating, and during Time Φ2, the ER loop is operating.

Average Power Control Loop

The APCL compensates for changes in Ith and LI by varying IBias. APC control is performed by measuring MPD current, IMPD. This current is bandwidth limited by the MPD. This is not a problem because the APCL must be low frequency; the APCL must respond to the average current from the MPD. The APCL compares IMPD × RPAVSET to the BGAP voltage, VBGAP. If IMPD falls, the bias current is increased until IMPD × RPAVSET equals VBGAP. Conversely, if the IMPD increases, IBias is decreased.

Modulation Control Loop

The ERCL measures the slope efficiency, LI, of the LD and changes IMPD as LI changes. During the ERCL, IMPD is temporarily increased by ΔIMOD. The ratio between IMPD and ΔIMOD is a fixed ratio of 50:1, but during startup, this ratio is increased to decrease settling time.

During ERCL, switching in ΔIMOD causes a temporary increase in average optical power, ΔPavg. However, the APC loop is disabled during ERCL, and the increase is kept small enough so as not to disturb the optical eye. When ΔIMOD is switched into the laser circuit, an equal current, IEX, is switched into the PAVSET resistor. The user sets the value of IEX; this is the ERSET setpoint. If IMPD is too small, the control loop knows that LI has decreased and increases IMPD and, therefore, ΔIMOD accordingly until IMPD is equal to IEX. The previous time state values of the bias and mod settings are stored on the hold capacitors, PAVCAP and ERCAP.

The ERCL is constantly measuring the actual LI curve; therefore, it compensates for the effects of temperature and for changes in the LI curve due to laser aging. Therefore, the laser can be calibrated once at 25°C and can then automatically control the laser over temperature. This eliminates expensive and time consuming temperature calibration of the laser.
Operation with Lasers with Temperature-Dependent Nonlinearity of Laser LI Curve

The ADN2870 ERCL extracts information from the monitor photodiode signal relating to the slope of the LI characteristics at the Optical 1 level (P1). For lasers with good linearity over temperature, the slope measured by the ADN2870 at the Optical 1 level is representative of the slope anywhere on the LI curve. This slope information is used to set the required modulation current to achieve the required optical extinction ratio.

The ER correction scheme, while using the average nonlinearity for the laser population, in fact, supplies a corrective measurement based on each laser’s actual performance as measured during operation. The ER correction scheme corrects for errors due to laser nonlinearity while the dual loop continues to adjust for changes in the Laser LI.

For more details on maintaining average optical power and extinction ratio over temperature when working with lasers displaying a temperature-dependent nonlinearity of LI curve, refer to the Application Note AN-743 available through Analog Devices sales.

CONTROL

The ADN2870 has two methods for setting the average power \(P_{AV} \) and extinction ratio \(ER \). The average power and extinction ratio can be voltage set using a microcontroller’s voltage DAC outputs to provide controlled reference voltages to \(PAVREF \) and \(ERREF \). Alternatively, the average power and extinction ratio can be resistor set using potentiometers at the \(PAVSET \) and \(ERSET \) pins, respectively.

VOLTAGE SETPOINT CALIBRATION

The ADN2870 allows an interface to a microcontroller for both control and monitoring (see Figure 26). The average power at the \(PAVSET \) pin and extinction ratio at the \(ERSET \) pin can be set using the microcontroller’s DAC to provide controlled reference voltages \(PAVREF \) and \(ERREF \). After power-on, the ADN2870 starts an initial process that takes 25 ms before enabling the alarms; therefore, the customer must ensure that stable reference voltages to \(PAVREF \) and \(ERREF \) are available within 20 ms.

\[
PAVREF = P_{AV} \times R_{SP} \times RPAV \quad \text{(Volts)}
\]

\[
ERREF = R_{ERSET} \times \frac{I_{MPD,CW}}{P_{CW}} \times \frac{ER - 1}{ER + 1} \times P_{AV} \quad \text{(Volts)}
\]

where:
- \(R_{SP} \) (A/W) is the monitor photodiode responsivity.
- \(P_{CW} \) (mW) is the dc optical power specified on the laser data sheet.
- \(I_{MPD,CW} \) (mA) is the MPD current at the specified \(P_{CW} \).
- \(P_{AV} \) (mW) is the average power required.
- \(ER \) is the desired extinction ratio (\(ER = P1/P0 \)).

In voltage setpoint, \(RPAV \) and \(R_{ERSET} \) must be 1 k\(\Omega \) resistors with a 1% tolerance and a temperature coefficient of 50 ppm/°C.
Figure 26. Using MicroConverter Calibration and Monitoring

Figure 27. Using Resistor Setpoint Calibration of Average Power and Energy Ratio
RESISTOR SETPOINT CALIBRATION

In resistor setpoint calibration, PAV R E F, ERREF, and RPAV pins must all be tied to VCC. Average power and extinction ratio can be set using the PAVSET and ERSET pins, respectively. A resistor is placed between the pin and GND to set the current flowing in each pin, as shown in Figure 27. The ADN2870 ensures that both PAVSET and ERSET are kept 1.2 V above GND. The resistors connected to PAVSET and ERSET are given by

\[
R_{\text{PAVSET}} = \frac{1.23\text{ V}}{P_{\text{AV}} \times R_{\text{SP}}} \quad (\Omega)
\]

\[
R_{\text{ERSET}} = \frac{1.23\text{ V}}{P_{\text{CW}} \times \frac{ER - 1}{ER + 1} \times P_{\text{AV}}} \quad (\Omega)
\]

where:
- \(R_{\text{SP}}\) (A/W) is the monitor photodiode responsivity.
- \(P_{\text{CW}}\) (mW) is the dc optical power specified on the laser data sheet.
- \(I_{\text{MPD,CW}}\) (mA) is MPD current at that specified \(P_{\text{CW}}\).
- \(P_{\text{AV}}\) (mW) is the average power required.
- \(ER\) is the desired extinction ratio (\(ER = P_1/P_0\)).

IMPD MONITORING

IMPD monitoring can be implemented for voltage setpoint and resistor setpoint as described in the sections that follow.

Voltage Setpoint

In voltage setpoint calibration, the following methods can be used for \(I_{\text{MPD}}\) monitoring.

Method 1: Measuring Voltage at RPAV

The \(I_{\text{MPD}}\) current is equal to the voltage at RPAV divided by the value of RPAV (see Figure 28) as long as the laser is on and is being controlled by the control loop. This method does not provide a valid \(I_{\text{MPD}}\) reading when the laser is in shutdown or fail mode. A microconverter-buffered A/Ds input can be connected to RPAV to make this measurement. No decoupling or filter capacitors should be placed on the RPAV node because this can disturb the control loop.

Method 2: Measuring \(I_{\text{MPD}}\) Across a Sense Resistor

The second method has the advantage of providing a valid \(I_{\text{MPD}}\) reading at all times but has the disadvantage of requiring a differential measurement across a sense resistor directly in series with the \(I_{\text{MPD}}\). As shown in Figure 29, a small resistor, \(R_x\), is placed in series with the \(I_{\text{MPD}}\). If the laser used in the design has a pinout where the monitor photodiode cathode and the lasers anode are not connected, a sense resistor can be placed in series with the photodiode cathode and VCC, as shown in Figure 30. When choosing the value of the resistor, the user must take into account the expected \(I_{\text{MPD}}\) value in normal operation. The resistor must be large enough to make a significant signal for the buffered A/Ds to read, but small enough so as not to cause a significant voltage reduction across the \(I_{\text{MPD}}\). The voltage across the sense resistor should not exceed 250 mV when the laser is in normal operation. It is recommended that a 10 pF capacitor be placed in parallel with the sense resistor.

Resistor Setpoint

In resistor setpoint calibration, the current through the resistor from PAVSET to ground is the \(I_{\text{MPD}}\) current. The recommended method for measuring the \(I_{\text{MPD}}\) current is to place a small resistor in series with the PAVSET resistor (or potentiometer) and measure the voltage across this resistor, as shown in Figure 31. The \(I_{\text{MPD}}\) current is then equal to this voltage divided by the value of resistor used. In resistor setpoint, PAVSET is held to 1.2 V nominal; it is recommended that the sense resistor be selected so that the voltage across the sense resistor does not exceed 250 mV.
LOOP BANDWIDTH SELECTION

To ensure that the ADN2870 control loops have sufficient bandwidth, the average power loop capacitor (PAVCAP) and the extinction ratio loop capacitor (ERCAP) are calculated using the laser slope efficiency and the average power required.

For resistor setpoint control:

\[
P_{AV} = \frac{LI}{P_{AV}} \quad \text{(Farad)}
\]

\[
ERCAP = \frac{PAVCAP}{2} \quad \text{(Farad)}
\]

For voltage setpoint control:

\[
P_{AV} = 1.28 \times 10^{-6} \times \frac{LI}{P_{AV}} \quad \text{(Farad)}
\]

\[
ERCAP = \frac{PAVCAP}{2} \quad \text{(Farad)}
\]

where:

- \(P_{AV}\) (mW) is the average power required.
- \(LI\) (mW/mA) is the typical slope efficiency at 25°C of a batch of lasers that are used in a design.

The capacitor value equation is used to get a centered value for the particular type of laser that is used in a design and average power setting. The Laser LI can vary by a factor of 7 between different physical lasers of the same type and across temperature without the need to recalculate the PAVCAP and ERCAP values. In the ac coupling configuration, LI can be calculated as

\[
LI = \frac{P1 - P0}{I_{MOD}} \quad \text{(mW/mA)}
\]

where \(P1\) is the optical power (mW) at the one level, and \(P0\) is the optical power (mW) at the zero level.

These capacitors are placed between the PAVCAP and ERCAP pins and ground. It is important that these capacitors are low leakage multilayer ceramics with an insulation resistance greater than 100 GΩ or a time constant of 1000 sec, whichever is less. The capacitor tolerance may be ±30% from the calculated value to the available off-the-shelf value, including the tolerance of the capacitors.

POWER CONSUMPTION

The ADN2870 die temperature must be kept below 125°C. The LFCSP package has an exposed paddle that should be connected such that it is at the same potential as the ADN2870 ground pins. Power consumption can be calculated as

\[
I_{CC} = I_{CC \ min} + 0.3 I_{MOD}
\]

\[
P = V_{CC} \times I_{CC} + (I_{BIAS} \times V_{BIAS_PIN}) + I_{MOD} (V_{MODP_PIN} + V_{MODN_PIN})/2
\]

\[
T_{DIE} = T_{AMBIENT} + \theta_{JA} \times P
\]

Thus, the maximum combination of \(I_{BIAS} + I_{MOD}\) must be calculated.

where:

- \(I_{CC \ min}\) is 30 mA, the typical value of \(I_{CC}\) provided in the Specifications with \(I_{BIAS} = I_{MOD} = 0\).
- \(T_{AMBIENT}\) is the ambient temperature.
- \(V_{BIAS_PIN}\) is the voltage at the IBIAS pin.
- \(V_{MODP_PIN}\) is the voltage at the IMODP pin.
- \(V_{MODN_PIN}\) is the voltage at the IMODN pin.

AUTOMATIC LASER SHUTDOWN (Tx_DISABLE)

ALS (Tx_DISABLE) is an input that is used to shut down the transmitter optical output. The ALS pin is pulled up internally with a 6 kΩ resistor and conforms to SFP MSA specification. When ALS is logic high or open, both the bias and modulation currents are turned off.

BIAS AND MODULATION MONITOR CURRENTS

IBMON and IMMON are current-controlled current sources that mirror a ratio of the bias and modulation current. The monitor bias current, IBMON, and the monitor modulation current, IMMON, should both be connected to ground through a resistor to provide a voltage proportional to the bias current and modulation current, respectively. When using a microcontroller, the voltage developed across these resistors can be connected to two of the ADC channels, making available a digital representation of the bias and modulation current.

DATA INPUTS

Data inputs should be ac-coupled (10 nF capacitors are recommended) and are terminated via a 100 Ω internal resistor between the DATAP and DATAN pins. A high impedance circuit sets the common-mode voltage and is designed to allow maximum input voltage headroom over temperature. It is necessary to use ac coupling to eliminate the need for matching between common-mode voltages.
LASER DIODE INTERFACING

The schematic in Figure 32 describes the recommended circuit for interfacing the ADN2870 to most TO-Can or coax lasers. These lasers typically have impedances of 5 Ω to 7 Ω and have axial leads. The circuit shown works over the full range of data rates from 155 Mbps to 3.3 Gbps including multirate operation (with no change to PAVCAP and ERCAP values); see the Typical Performance Characteristics for multirate performance examples.

Coax lasers have special characteristics that make them difficult to interface to. They tend to have higher inductance, and their impedance is not well controlled. The circuit in Figure 32 operates by deliberately misterminating the transmission line on the laser side, while providing a very high quality matching network on the driver side. The impedance of the driver side matching network is very flat vs. frequency and enables multirate operation. A series damping resistor should not be used.

The 30 Ω transmission line used is a compromise between drive current required and total power consumed. Other transmission line values can be used, with some modification of the component values. The R and C snubber values in Figure 32, 24 Ω and 2.2 pF, respectively, represent a starting point and must be tuned for the particular model of laser being used. Rz, the pull-up resistor, is in series with a very small (0.5 nH) inductor. In some cases, an inductor is not required or can be accommodated with deliberate parasitic inductance, such as a thin trace or a via placed on the PC board.

Care should be taken to mount the laser as close as possible to the PC board, minimizing the exposed lead length between the laser can and the edge of the board. The axial lead of a coax laser is very inductive (approximately 1 nH per mm). Long exposed leads result in slower edge rates and reduced eye margin. Recommended component layouts and gerber files are available by contacting sales at Analog Devices. Note that the circuit in Figure 32 can supply up to 56 mA of modulation current to the laser, sufficient for most lasers available today. Higher currents can be accommodated by changing transmission lines and backmatch values; contact sales at Analog Devices for recommendations. This interface circuit is not recommended for butterfly-style lasers or other lasers with 25 Ω characteristic impedance. Instead, a 25 Ω transmission line and inductive (instead of resistive) pull-up is recommended; contact sales for recommendations.

The ADN2870 also supports differential drive schemes. These can be particularly useful when driving VCSELs or other lasers with slow fall times. Differential drive can be implemented by adding a few extra components. A possible implementation is shown in Figure 33.

In the circuits shown in Figure 32 and Figure 33, Resistor Rz is required to achieve optimum eye quality. The recommended value is approximately 200 Ω ~ 500 Ω.
ALARMS

The ADN2870 has a latched active high monitoring alarm (FAIL). The FAIL alarm output is an open drain in conformance to SFP MSA specification requirements.

The ADN2870 has a three-fold alarm system that recognizes:

- Use of a bias current higher than expected, most likely as a result of laser aging.
- Out-of-bounds average voltage at the MPD input, indicating an excessive amount of laser power or a broken loop.
- Undervoltage in IBIAS pin (laser diode cathode) that increases laser power.

The bias current alarm trip point is set by selecting the value of resistor on the IBMON pin to GND. The alarm is triggered when the voltage on the IBMON pin goes above 1.2 V. FAIL is activated when the single-point faults in Table 5 occur.

The table below lists the alarm conditions and their respective responses:

Table 5. ADN2870 Single-Point Alarms

<table>
<thead>
<tr>
<th>Alarm Type</th>
<th>Mnemonic</th>
<th>Over Voltage or Short to VCC Condition</th>
<th>Under Voltage or Short to GND Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bias Current</td>
<td>IBMON</td>
<td>Alarm if > 1.2 V</td>
<td>Ignore</td>
</tr>
<tr>
<td>2. MPD Current</td>
<td>PAVSET</td>
<td>Alarm if > 1.7 V</td>
<td>Alarm, if <0.9 V</td>
</tr>
<tr>
<td>3. Crucial Nodes</td>
<td>ERREF (the ERREF designed tied to VCC in resistor setting mode.) IBIAS</td>
<td>Alarm if shorted to VCC (the alarm is valid for voltage setting mode only) Ignore</td>
<td>Alarm, if shorted to GND</td>
</tr>
</tbody>
</table>

Table 6. ADN2870 Response to Various Single-Point Faults in AC-Coupled Configuration, as Shown in Figure 32

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Short to VCC</th>
<th>Short to GND</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCBIAS</td>
<td>Fault state occurs</td>
<td>Fault state occurs</td>
<td>Does not increase laser average power</td>
</tr>
<tr>
<td>PAVSET</td>
<td>Fault state occurs</td>
<td>Fault state occurs</td>
<td>Fault state occurs</td>
</tr>
<tr>
<td>PAVREF</td>
<td>Voltage mode: Fault state occurs</td>
<td>Normal currents</td>
<td>Voltage mode: Fault state occurs</td>
</tr>
<tr>
<td>RPAV</td>
<td>Voltage mode: Fault state occurs</td>
<td>Fault state occurs</td>
<td>Resistor mode: Does not increase average power</td>
</tr>
<tr>
<td>ERCAP</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
<td>Fault state occurs</td>
</tr>
<tr>
<td>PAVCAP</td>
<td>Fault state occurs</td>
<td>Fault state occurs</td>
<td>Fault state occurs</td>
</tr>
<tr>
<td>DATAP</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
<td>Output currents shut off</td>
</tr>
<tr>
<td>DATAN</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
</tr>
<tr>
<td>ALS</td>
<td>Output currents shut off</td>
<td>Normal currents</td>
<td>Normal currents</td>
</tr>
<tr>
<td>ERSET</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
</tr>
<tr>
<td>IMMON</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
</tr>
<tr>
<td>ERREF</td>
<td>Voltage mode: Fault state occurs</td>
<td>Voltage mode: Does not increase average power</td>
<td>Does not increase laser average power</td>
</tr>
<tr>
<td>IBMON</td>
<td>Resistor mode: Tied to VCC</td>
<td>Resistor mode: Fault state occurs</td>
<td>Does not increase laser average power</td>
</tr>
<tr>
<td>FAIL</td>
<td>Fault state occurs</td>
<td>Does not increase laser average power</td>
<td>Fault state occurs</td>
</tr>
<tr>
<td>IMODP</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
</tr>
<tr>
<td>IMODN</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
<td>Does not increase laser average power</td>
</tr>
<tr>
<td>IBIAS</td>
<td>Fault state occurs</td>
<td>Fault state occurs</td>
<td>Fault state occurs</td>
</tr>
</tbody>
</table>
OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WG08.

Figure 34. 24-Lead Lead Frame Chip Scale Package [LFCSP]
4 mm x 4 mm Body and 0.75 mm Package Height
(CP-24-14)
Dimensions shown in millimeters

ORDERING GUIDE

<table>
<thead>
<tr>
<th>Model</th>
<th>Temperature Range</th>
<th>Package Description</th>
<th>Package Option</th>
<th>Ordering Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN2870ACPZ</td>
<td>−40°C to +85°C</td>
<td>24-Lead Lead Frame Chip Scale Package [LFCSP]</td>
<td>CP-24-14</td>
<td>490</td>
</tr>
<tr>
<td>ADN2870ACPZ-RL7</td>
<td>−40°C to +85°C</td>
<td>24-Lead Lead Frame Chip Scale Package [LFCSP], 7” Tape and Reel</td>
<td>CP-24-14</td>
<td>1,500</td>
</tr>
</tbody>
</table>

1 Z = RoHS Compliant Part.