Typical Applications
The HMC812LC4 is ideal for:
- Point-to-Point Radio
- VSAT Radio
- Test Instrumentation
- Microwave Sensors
- Military, ECM & Radar

Functional Diagram

![Functional Diagram](attachment:image.png)

General Description
The HMC812LC4 is an absorptive Voltage Variable Attenuator (VVA) which operates from 5 - 30 GHz and is ideal in designs where an analog DC control signal must be used to control RF signal levels over a 30 dB amplitude range. It features two shunt-type attenuators which are controlled by two analog voltages, Vctrl1 and Vctrl2. Optimum linearity performance of the attenuator is achieved by first varying Vctrl1 of the 1st attenuation stage from -3V to 0V with Vctrl2 fixed at -3V. The control voltage of the 2nd attenuation stage, Vctrl2, should then be varied from -3V to 0V, with Vctrl1 fixed at 0V. The HMC812LC4 is housed in a RoHS compliant 4x4 mm QFN leadless ceramic package.

However, if the Vctrl1 and Vctrl2 pins are connected together it is possible to achieve the full analog attenuation range with only a small degradation in input IP3 performance. Applications include AGC circuits and temperature compensation of multiple gain stages in microwave point-to-point and VSAT radios.

Electrical Specifications, $T_A = +25\degree C$, 50 Ohm system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>dB</td>
</tr>
<tr>
<td>Attenuation Range</td>
<td>30</td>
<td>dB</td>
<td>dB</td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>12</td>
<td>dB</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>8</td>
<td>dB</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input Power for 1 dB Compression (any attenuation)</td>
<td>25</td>
<td>dBm</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Input Third Order Intercept</td>
<td>28</td>
<td>dBm</td>
<td></td>
<td>dBm</td>
</tr>
</tbody>
</table>

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
HMC812* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS
View a parametric search of comparable parts.

EVALUATION KITS
• HMC812LC4 Evaluation Board

DOCUMENTATION
Data Sheet
• HMC812 Data Sheet

TOOLS AND SIMULATIONS
• HMC812 S-Parameter

REFERENCE MATERIALS
Quality Documentation
• Package/Assembly Qualification Test Report: LC4, LC4B (QTR: 2014-00380 REV: 01)

DESIGN RESOURCES
• HMC812 Material Declaration
• PCN-PDN Information
• Quality And Reliability
• Symbols and Footprints

DISCUSSIONS
View all HMC812 EngineerZone Discussions.

SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
HMC812LC4
GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

Downloaded from Arrow.com.
HMC812LC4

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz

Input Return Loss

Vctrl1 = 0V, Vctrl2 = Variable

Output Return Loss

Vctrl1 = Variable, Vctrl2 = -3V

Input Return Loss

Vctrl1 = 0V, Vctrl2 = Variable

Output Return Loss

Vctrl1 = Variable, Vctrl2 = -3V

Input IP3 vs Input Power @ 10 GHz

Vctrl1 = Variable, Vctrl2 = -3V

Input IP3 vs. Input Power Over Frequency

Vctrl1 = -2.2V, Vctrl2 = -3V (Worst Case IP3)

Input IP3 vs. Input Power Over Temperature @ 10 GHz

Vctrl1 = -2.2V, Vctrl2 = -3V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
HMC812LC4

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz

Attenuation vs. Frequency over Vctrl
Vctrl1 = Vctrl2

Attenuation vs. Input Power over Vctrl
Vctrl1 = Vctrl2

Output Return Loss, Vctrl1 = Vctrl2

Input IP3 vs. Input Power Over
Vctrl @ 10 GHz, Vctrl1 = Vctrl2

For price, delivery, and to place orders: Analog Devices, Inc.,
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Input Power</td>
<td>+30 dBm</td>
</tr>
<tr>
<td>Control Voltage Range</td>
<td>+1 to -5V</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>150 °C</td>
</tr>
<tr>
<td>Continuous Pdiss (T = 85 °C)</td>
<td>1.07 W</td>
</tr>
<tr>
<td>Thermal Resistance (Channel to ground paddle)</td>
<td>61 °C/W</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 to +150 °C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 to +85 °C</td>
</tr>
</tbody>
</table>

Control Voltages

- Vctrl1: -3 to 0V @ 10 µA
- Vctrl2: -3 to 0V @ 10 µA

Outline Drawing

BOTTOM VIEW

Package Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package Body Material</th>
<th>Lead Finish</th>
<th>MSL Rating</th>
<th>Package Marking [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC812LC4</td>
<td>Alumina, White</td>
<td>Gold over Nickel</td>
<td>MSL3 [1]</td>
<td>H812 XXXX</td>
</tr>
</tbody>
</table>

[1] Max peak reflow temperature of 260 °C
[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 6 - 8, 11 - 13, 17 - 24</td>
<td>N/C</td>
<td>These pins are not connected internally, however these pins must be connected to RF/DC ground externally.</td>
<td></td>
</tr>
<tr>
<td>3, 5, 14, 16</td>
<td>GND</td>
<td>These pins and the exposed ground paddle must be connected to RF/DC ground.</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>RFIN</td>
<td>This pad is DC coupled and matched to 50 Ohms. A blocking capacitor is required if RF line potential is not equal to 0V.</td>
<td>RFIN</td>
</tr>
<tr>
<td>15</td>
<td>RFOUT</td>
<td></td>
<td>RFOUT</td>
</tr>
<tr>
<td>9</td>
<td>Vctrl1</td>
<td>Control Voltage 1</td>
<td>Vctrl1</td>
</tr>
<tr>
<td>10</td>
<td>Vctrl2</td>
<td>Control Voltage 2</td>
<td>Vctrl2</td>
</tr>
</tbody>
</table>

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz

Application Circuit
List of Materials for Evaluation PCB 123768

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1, J2</td>
<td>2.9 mm PC Mount RF Connector</td>
</tr>
<tr>
<td>J3, J4</td>
<td>DC Pin</td>
</tr>
<tr>
<td>C1, C2</td>
<td>100 pF Capacitor, 0402 Pkg.</td>
</tr>
<tr>
<td>C3, C4</td>
<td>1000 pF Capacitor, 0402 Pkg.</td>
</tr>
<tr>
<td>C5, C6</td>
<td>4.7 µF Capacitor, CASE A</td>
</tr>
<tr>
<td>U1</td>
<td>HMC812LC4 Analog VVA</td>
</tr>
<tr>
<td>PCB</td>
<td>123766 Evaluation PCB</td>
</tr>
</tbody>
</table>

[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.