Typical Applications
The HMC985ALP4KE is ideal for:
- Point-to-Point Radio
- VSAT Radio
- Test Instrumentation
- Microwave Sensors
- Military, ECM & Radar

Features
- Wide Bandwidth: 10 - 40 GHz
- Excellent Linearity: +32 dB Input IP3
- Wide Attenuation Range: 35 dB
- No External Matching
- 24 Lead 4x4 mm SMT Package: 16 mm²

General Description
The HMC985ALP4KE is an absorptive Voltage Variable Attenuator (VVA) which operates from 10 - 40 GHz and is ideal in designs where an analog DC control signal must be used to control RF signal levels over a 35 dB dynamic range. It features two shunt-type attenuators which are controlled by two analog voltages, Vctl1 and Vctl2. Optimum linearity performance of the attenuator is achieved by first varying Vctl1 of the first attenuation stage from -5V to 0V with Vctl2 fixed at -5V. The control voltage of the second attenuation stage, Vctl2, should then be varied from -5V to 0V with Vctl1 fixed at 0V.

If the Vctl1 and Vctl2 pins are connected together it is possible to achieve the full analog attenuation range with only a small degradation in input IP3 performance. Applications include AGC circuits and temperature compensation of multiple gain stages in microwave point-to-point and VSAT radios.

Electrical Specifications, $T_A = +25 \, ^\circ C$, Test Condition Vctl1 = Vctl2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss $^{[1]}$</td>
<td>10 - 20 GHz</td>
<td>3.1</td>
<td>3.9</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 - 30 GHz</td>
<td>2.1</td>
<td>3.5</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 - 40 GHz</td>
<td>2.9</td>
<td>4.0</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Attenuation Range</td>
<td>10 - 20 GHz</td>
<td>25</td>
<td>30</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 - 30 GHz</td>
<td>30</td>
<td>39</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 - 40 GHz</td>
<td>35</td>
<td>42</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>10 - 40 GHz</td>
<td>13</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>10 - 40 GHz</td>
<td>13</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Input Third Order Intercept</td>
<td>(two-tone input Power = 10 dBm Each Tone) $^{[2]}$</td>
<td>32</td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
</tbody>
</table>

$^{[1]}$ Vctl1 = Vctl2 = -4V
$^{[2]}$ Vctl1 = Vctl2 = -3.4V worst case

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D
GaAs MMIC VOLTAGE - VARIABLE ATTENUATOR, 10 - 40 GHz

Attenuation vs. Frequency over Vctl1 = Variable, Vctl2 = -5V

Attenuation vs. Frequency over Vctl1 = 0V, Vctl2 = Variable

Attenuation vs. Vctl1 Over Temperature @ 25 GHz, Vctl2 = -5V

Attenuation vs. Vctl2 Over Temperature @ 30 GHz, Vctl1 = 0V

Attenuation vs. Pin @ 20 GHz over Vctl1 Vctl1 = Variable, Vctl2 = -3V

Attenuation vs. Pin @ 20 GHz over Vctl2 Vctl2 = Variable, Vctl1 = 0V

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
HMC985ALP4KE

GaAs MMIC VOLTAGE - VARIABLE ATTENUATOR, 10 - 40 GHz

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

[1] Worst Case IP3
Input IP3 vs. Input Power Over Temperature @ 20 GHz, Vctl1 = -3.4V, Vctl2 = -5V [1]

Input IP3 vs. Input Power @ 20 GHz Vctl2 = Variable, Vctl1 = 0V

Input IP3 vs. Input Power Over Frequency Vctl2 = -3.4V, Vctl1 = 0V [1]

Input IP3 vs Input Power over Temperature @ 20 GHz, Vctl2 = -3.4V, Vctl1 = 0V [1]

[1] Worst Case IP3
HMC985ALP4KE
GaAs MMIC VOLTAGE - VARIABLE
ATTENUATOR, 10 - 40 GHz

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Attenuation vs Frequency Over Vctrl
Vctl1 = Vctl2

Attenuation vs. Vctrl Over Temperature
@ 20 GHz, Vctl1 = Vctl2

Attenuation vs. Pin @ 20 GHz Over Vctl
Vctl1 = Vctl2

Input Return Loss, Vctl1 = Vctl2

Input IP3 vs. Input Power Over Vctl @ 20 GHz, Vctl1 = Vctl2
HMC985ALP4KE
GaAs MMIC VOLTAGE - VARIABLE ATTENUATOR, 10 - 40 GHz

Input IP3 vs. Input Power Over Frequency
Vctl1 = Vctl2

Input IP3 vs. Input Power Over Temperature @ 20 GHz Vctl1 = Vctl2
HMC985ALP4KE

GaAs MMIC VOLTAGE - VARIABLE ATTENUATOR, 10 - 40 GHz

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Voltage</td>
<td>+0.3 to -6.0V</td>
</tr>
<tr>
<td>Input RF Power</td>
<td>30 dBm</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>175 °C</td>
</tr>
<tr>
<td>Thermal Resistance ($R_{th}$)</td>
<td>65 °C/W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to 150°C</td>
</tr>
<tr>
<td>ESD Sensitivity (HBM)</td>
<td>Class 1B</td>
</tr>
</tbody>
</table>

Control Voltages

| Vctl1 (#)                          | -5V to 0V @ 10μA, typical |
| Vctl2 (#)                          | -5V to 0V @ 10μA, typical  |

[1] $V_{ctl1} = V_{ctl2} = -4.0V$

Outline Drawing

Package Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package Body Material</th>
<th>Lead Finish</th>
<th>MSL Rating</th>
<th>Package Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC985ALP4KE</td>
<td>RoHS-compliant Low Stress Injection Molded Plastic</td>
<td>100% matte Sn</td>
<td>MSL3 [1]</td>
<td>985A XXXX</td>
</tr>
</tbody>
</table>

[1] Max peak reflow temperature of 260 °C
[2] 4-Digit lot number XXXX

ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS

NOTES:
1. PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY.
3. LEAD AND GROUND PADDLE PLATING: 100% MATTE TIN
4. DIMENSIONS ARE IN INCHES (MILLIMETERS).
5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
6. CHARACTERS TO BE HELVETICA MEDIUM, .025 HIGH, WHITE INK, OR LASER MARK LOCATED APPROX. AS SHOWN.
7. PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.05mm MAX.
8. PACKAGE WARP SHALL NOT EXCEED 0.05mm
9. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
10. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
**Pin Descriptions**

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Pin Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 4-7, 12-15, 17-19, 24</td>
<td>GND</td>
<td>These pins and package bottom must be connected to RF/DC ground externally.</td>
<td><img src="image" alt="GND" /></td>
</tr>
<tr>
<td>3</td>
<td>RFIN</td>
<td>This pad is DC coupled and matched to 50 Ohms.</td>
<td><img src="image" alt="RFIN" /></td>
</tr>
<tr>
<td>8</td>
<td>Vctl1</td>
<td>Control Voltage 1.</td>
<td><img src="image" alt="Vctl1" /></td>
</tr>
<tr>
<td>9, 11, 20-23</td>
<td>NC</td>
<td>These pins are not connected internally, however all data shown herein was measured with these pins connected to RF/DC ground externally.</td>
<td><img src="image" alt="NC" /></td>
</tr>
<tr>
<td>10</td>
<td>Vctl2</td>
<td>Control Voltage 2.</td>
<td><img src="image" alt="Vctl2" /></td>
</tr>
<tr>
<td>16</td>
<td>RFOUT</td>
<td>This pad is DC coupled and matched to 50 Ohms.</td>
<td><img src="image" alt="RFOUT" /></td>
</tr>
</tbody>
</table>

**Assembly Diagram**

![Assembly Diagram](image)

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Downloaded from Arrow.com.
Evaluation PCB

List of Materials for Evaluation PCB EV1HMC985ALP4K

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1-J2, J6-J7</td>
<td>K Connectors.</td>
</tr>
<tr>
<td>J3-J5</td>
<td>DC Pins.</td>
</tr>
<tr>
<td>C1-C2</td>
<td>100pF Capacitors, 0402 Pkg.</td>
</tr>
<tr>
<td>C3-C4</td>
<td>0.01 µF Capacitor, 0603 Pkg.</td>
</tr>
<tr>
<td>C5-C6</td>
<td>4.7 µF Case A, Tantalum.</td>
</tr>
<tr>
<td>U1</td>
<td>HMC985ALP4KE VVA.</td>
</tr>
<tr>
<td>PCB</td>
<td>600-00220-00 Evaluation PCB.</td>
</tr>
</tbody>
</table>

[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request.
HMC985ALP4KE

GaAs MMIC VOLTAGE - VARIABLE ATTENUATOR, 10 - 40 GHz

Notes: