MCT2X, MCT2EX
MCT2, MCT2E

OPTICALLY COUPLED ISOLATOR
PHOTOTRANSISTOR OUTPUT

APPROVALS
- UL recognised, File No. E91231
- VDE0884 in 3 available lead form: -STD
 - Gform
 - SMD approved to CECC 00802
- Certified to EN60950 by the following Test Bodies:
 - Nemko - Certificate No. P01102465
 - Fimko - Certificate No. FI18162
 - Semko - Reference No. 0202041/01-25
 - Demko - Certificate No. 3111681-01
- BSI approved - Certificiate No. 8001

DESCRIPTION
The MCT2 series of optically coupled isolators consist of infrared light emitting diode and NPN silicon photo transistor in a standard 6 pin dual in line plastic package.

FEATURES
- Options:
 - 10mm lead spread - add G after part no.
 - Surface mount - add SM after part no.
 - Tape&reel - add SMT&R after part no.
- High Isolation Voltage (5.3kVRMS, 7.5kVPK)
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS
- DC motor controllers
- Industrial systems controllers
- Measuring instruments
- Signal transmission between systems of different potentials and impedances

ABSOLUTE MAXIMUM RATINGS
(25°C unless otherwise specified)

- Storage Temperature: ________-55°C to + 150°C
- Operating Temperature: ________-55°C to + 100°C
- Lead Soldering Temperature: (1/16 inch (1.6mm) from case for 10 secs) 260°C

INPUT DIODE
- Forward Current: ________ 60mA
- Reverse Voltage: ________ 6V
- Power Dissipation: ________ 105mW

OUTPUT TRANSISTOR
- Collector-emitter Voltage B_{CEO}: ________ 30V
- Collector-base Voltage B_{CBO}: ________ 70V
- Emitter-collector Voltage B_{EEO}: ________ 6V
- Power Dissipation: ________ 160mW

POWER DISSIPATION
- Total Power Dissipation: ________ 200mW
 (derate linearly 2.67mW/°C above 25°C)

ISOCOM COMPONENTS LTD
Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road, Hartlepool, Cleveland, TS25 1YD
Tel: (01429) 863609 Fax: (01429) 863581
ELECTRICAL CHARACTERISTICS (\(T_A = 25^\circ C \) Unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>TEST CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Voltage ((V_F))</td>
<td>1.2</td>
<td>1.5</td>
<td>V</td>
<td>(I_F = 10mA)</td>
<td></td>
</tr>
<tr>
<td>Reverse Current ((I_R))</td>
<td>10 µA</td>
<td></td>
<td></td>
<td>(V_R = 6V)</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter Breakdown ((BV_{CEO}))</td>
<td>30</td>
<td>V</td>
<td></td>
<td>(I_C = 1mA)</td>
<td></td>
</tr>
<tr>
<td>(note 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-base Breakdown ((BV_{CBO}))</td>
<td>70</td>
<td>V</td>
<td></td>
<td>(I_B = 100\mu A)</td>
<td></td>
</tr>
<tr>
<td>Emitter-collector Breakdown ((BV_{ECD}))</td>
<td>6</td>
<td>V</td>
<td></td>
<td>(I_E = 100\mu A)</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter Dark Current ((I_{CEO}))</td>
<td>50 nA</td>
<td></td>
<td></td>
<td>(V_CE = 10V)</td>
<td></td>
</tr>
<tr>
<td>Collector-base Dark Current ((I_{CBO}))</td>
<td>20 nA</td>
<td></td>
<td></td>
<td>(V_CE = 10V)</td>
<td></td>
</tr>
<tr>
<td>Coupled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Transfer Ratio (CTR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCT2</td>
<td>20</td>
<td>%</td>
<td></td>
<td>(10mA) (I_F), 10V (V_{CE})</td>
<td></td>
</tr>
<tr>
<td>MCT2E</td>
<td>50</td>
<td>%</td>
<td></td>
<td>(10mA) (I_F), 10V (V_{CE})</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter Saturation Voltage ((V_{CESAT}))</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td>(16mA) (I_F), 2mA (I_C)</td>
<td></td>
</tr>
<tr>
<td>Input to Output Isolation Voltage ((V_{ISO}))</td>
<td>5300</td>
<td>(V_{RMS})</td>
<td></td>
<td>See note 1</td>
<td></td>
</tr>
<tr>
<td>(V_{PK})</td>
<td>7500</td>
<td></td>
<td></td>
<td>See note 1</td>
<td></td>
</tr>
<tr>
<td>Input-output Isolation Resistance ((R_{ISO}))</td>
<td>(5 \times 10^{10})</td>
<td>Ω</td>
<td></td>
<td>(V_{ISO} = 500V) (note 1)</td>
<td></td>
</tr>
<tr>
<td>Turn-on Time (t_{on})</td>
<td>3</td>
<td>µs</td>
<td></td>
<td>(V_{CC} = 10V), fig 1</td>
<td></td>
</tr>
<tr>
<td>Turn-off Time (t_{off})</td>
<td>3</td>
<td>µs</td>
<td></td>
<td>(I_C = 2mA, R_L = 100\Omega)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1 Measured with input leads shorted together and output leads shorted together.

Note 2 Special Selections are available on request. Please consult the factory.

FIG 1

![FIG 1](image-url)