HMC863ALC4
GaAs pHEMT MMIC 1/2 WATT POWER AMPLIFIER, 24 - 29.5 GHz

Typical Applications
The HMC863ALC4 is ideal for:
- Point-to-Point Radios
- Point-to-Multi-Point Radios
- VSAT
- Military & Space

Features
- High P1dB Output Power: +27 dBm
- High Psat Output Power: +28.5 dBm
- High Gain: 24 dB
- High Output IP3: +38.5 dBm
- Supply Voltage: +5.5 V @ 350 mA
- No External Matching Required
- 24 Lead 4x4 mm SMT Package: 16 mm²

General Description
The HMC863ALC4 is a three stage GaAs pHEMT MMIC 1/2 Watt Power Amplifier which operates between 24 and 29.5 GHz. The HMC863ALC4 provides 24 dB of gain, +28.5 dBm of saturated output power and 22.5% PAE from a +5.5V supply. High output IP3 makes the HMC863ALC4 ideal for point-to-point and point-to-multi-point radio systems as well as VSAT applications. The RF I/Os are DC blocked and matched to 50 Ohms for ease of integration into higher level assemblies. The HMC863ALC4 can be operated over a Vdd range of +4.0 to +6.0V.

Electrical Specifications, $T_A = +25^\circ$ C, $Vdd = +5.5$ V, $Idd = 350$ mA*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>24 - 29</td>
<td></td>
<td>29 - 29.5</td>
<td></td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>Gain</td>
<td>20.5</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>2</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain Variation Over Temperature</td>
<td>0.03</td>
<td></td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td>dB/°C</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>8</td>
<td></td>
<td>17.5</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>13</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Power for 1 dB Compression (P1dB)</td>
<td>24.5</td>
<td>27</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Saturated Output Power (Psat)</td>
<td>28.5</td>
<td></td>
<td>28.5</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output Third Order Intercept (IP3) *Pout/Tone = +14 dBm</td>
<td>38.5</td>
<td></td>
<td>37.5</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>4.5</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Supply Current (Idd)</td>
<td>350</td>
<td></td>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply Voltage (Vdd)</td>
<td>4</td>
<td>5.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

* Adjust Vgg1 between -2 to 0 V to achieve $Idd = 350$ mA; Typical $Vgg1 = -0.75$ V.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
HMC863ALC4

GaAs pHEMT MMIC 1/2 WATT
POWER AMPLIFIER, 24 - 29.5 GHz

Broadband Gain and Return Loss

Gain vs. Temperature

Gain vs. Vdd

Gain vs. Idd

Input Return Loss vs. Temperature

Input Return Loss vs. Vdd

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
HMC863ALC4
GaAs pHEMT MMIC 1/2 WATT
POWER AMPLIFIER, 24 - 29.5 GHz

Input Return Loss vs. Idd

Output Return Loss vs. Temperature

Output Return Loss vs. Vdd

Output Return Loss vs. Idd

Reverse Isolation vs. Temperature

Noise Figure vs. Temperature

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Downloaded from Arrow.com.
HMC863ALC4
GaAs pHEMT MMIC 1/2 WATT
POWER AMPLIFIER, 24 - 29.5 GHz

Noise Figure vs. Vdd

Noise Figure vs. Idd

P1dB vs. Temperature

P1dB vs. Vdd

P1dB vs. Idd

Psat vs. Temperature
HMC863ALC4
GaAs pHEMT MMIC 1/2 WATT POWER AMPLIFIER, 24 - 29.5 GHz

Psat vs. Vdd

Psat vs. Idd

Power Compression @ 25 GHz

PAE @ Psat vs. Frequency

Power Dissipation @ 85° C

Gain and Power vs. Vdd @ 25 GHz

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Downloaded from Arrow.com.
HMC863ALC4
GaAs pHEMT MMIC 1/2 WATT
POWER AMPLIFIER, 24 - 29.5 GHz

Gain and Power vs. Idd @ 25 GHz

OIP3 vs. Temperature
@ Pout / Tone = +14 dBm

OIP3 vs. Vdd
@ Pout / Tone = +14 dBm

OIP3 vs. Idd
@ Pout / Tone = +14 dBm

OIP3 vs. Pout / Tone
HMC863ALC4

GaAs pHEMT MMIC 1/2 WATT
POWER AMPLIFIER, 24 - 29.5 GHz

Output IM3

Output IM3 @ Vdd = +6.0 V, Idd = 350 mA

Idd vs. Vgg1,
Representative of a Typical Device

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Downloaded from Arrow.com.
HMC863ALC4

GaAs pHEMT MMIC 1/2 WATT POWER AMPLIFIER, 24 - 29.5 GHz

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Drain Supply to GND</td>
<td>+6.3 V</td>
</tr>
<tr>
<td>Gate Bias Voltage (Vgg1)</td>
<td>-3.0 to 0 Vdc</td>
</tr>
<tr>
<td>Continuous Pdiss (T= 85 °C) (derate 31.54 mW/°C above 85 °C)</td>
<td>2.88 W</td>
</tr>
<tr>
<td>RF Input Power</td>
<td>+26 dBm</td>
</tr>
<tr>
<td>Output Load VSWR</td>
<td>7:1</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 to 150 °C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 to +85 °C</td>
</tr>
<tr>
<td>Max Peak Reflow Temperature</td>
<td>260 °C</td>
</tr>
<tr>
<td>ESD Sensitivity (HBM)</td>
<td>Class 1A - Passed 350V</td>
</tr>
</tbody>
</table>

Reliability Information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction Temperature to Maintain 1 Million Hour MTTF</td>
<td>175 °C</td>
</tr>
<tr>
<td>Nominal Junction Temperature (T=85 °C, Vdd = +5.5 V)</td>
<td>145.06 °C</td>
</tr>
<tr>
<td>Thermal Resistance (channel to ground paddle)</td>
<td>31.2 °C/W</td>
</tr>
</tbody>
</table>

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only, functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Outline Drawing

ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS

Outline Drawing

24-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-24-1)
Dimensions shown in millimeters.

Package Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package Body Material</th>
<th>Lead Finish</th>
<th>MSL Rating</th>
<th>Package Marking</th>
</tr>
</thead>
</table>

[1] Max peak reflow temperature of 260 °C
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 4 - 7, 12 - 15, 17 - 19, 24 Package Bottom</td>
<td>GND</td>
<td>These pins & exposed ground paddle must be connected to RF/DC ground.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RFIN</td>
<td>The pin is AC coupled and matched to 50 Ohms.</td>
<td></td>
</tr>
<tr>
<td>8 - 11, 22, 21</td>
<td>N/C</td>
<td>These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RFOUT</td>
<td>The pin is AC coupled and matched to 50 Ohms.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Vd</td>
<td>Drain bias for amplifier. External 100 pF, 0.1 uF and 4.7 uF bypass capacitors are required.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Vgg1</td>
<td>Gate control for amplifier. Adjust VGG to achieve recommended bias current. External 100 pF, 0.1 uF and 4.7 uF bypass capacitors are required.</td>
<td></td>
</tr>
</tbody>
</table>
HMC863ALC4
GaAs pHEMT MMIC 1/2 WATT
POWER AMPLIFIER, 24 - 29.5 GHz

Evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices, Inc.
HMC863ALC4
GaAs pHEMT MMIC 1/2 WATT
POWER AMPLIFIER, 24 - 29.5 GHz

Application Circuit

![Diagram of HMC863ALC4 GaAs pHEMT MMIC 1/2 WATT POWER AMPLIFIER, 24 - 29.5 GHz](image-url)