TC646

PWM Fan Speed Controller with Auto-Shutdown and FanSense™ Technology

Features

• Temperature Proportional Fan Speed for Acoustic Control and Longer Fan Life
• Efficient PWM Fan Drive
• 3.0V to 5.5V Supply Range:
 - Fan Voltage Independent of TC646 Supply Voltage
 - Supports any Fan Voltage
• FanSense™ Fault Detection Circuits Protect Against Fan Failure and Aid System Testing
• Shutdown Mode for “Green” Systems
• Supports Low Cost NTC/PTC Thermistors
• Space Saving 8-Pin MSOP Package
• Over-temperature Indication

Applications

• Power Supplies
• Computers
• File Servers
• Portable Computers
• Telecom Equipment
• UPS, Power Amps
• General Purpose Fan Speed Control

Available Tools

• Fan Controller Demonstration Board (TC642DEMO)
• Fan Controller Evaluation Kit (TC642EV)

Package Types

<table>
<thead>
<tr>
<th>SOIC/PDIP/MSOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_IN 1</td>
</tr>
<tr>
<td>CF 2</td>
</tr>
<tr>
<td>V_AS 3</td>
</tr>
<tr>
<td>GND 4</td>
</tr>
<tr>
<td>V_DD 8</td>
</tr>
<tr>
<td>V_OUT 7</td>
</tr>
<tr>
<td>FAULT 6</td>
</tr>
<tr>
<td>SENSE 5</td>
</tr>
</tbody>
</table>

General Description

The TC646 is a switch mode, fan speed controller for use with brushless DC fans. Temperature proportional speed control is accomplished using pulse width modulation (PWM). A thermistor (or other voltage output temperature sensor) connected to the V_IN input furnishes the required control voltage of 1.25V to 2.65V (typical) for 0% to 100% PWM duty cycle. The TC646 automatically suspends fan operation when measured temperature (V_IN) is below a user programmed minimum setting (V_AS). An integrated Start-up Timer ensures reliable motor start-up at turn-on, coming out of shutdown mode, auto-shutdown mode or following a transient fault.

The TC646 features Microchip Technology’s proprietary FanSense™ technology for increasing system reliability. In normal fan operation, a pulse train is present at SENSE (Pin 5). A missing-pulse detector monitors this pin during fan operation. A stalled, open, or unconnected fan causes the TC646 to trigger its Start-up Timer once. If the fault persists, the FAULT output goes low and the device is latched in its shutdown mode. FAULT is also asserted if the PWM reaches 100% duty cycle, indicating a possible thermal runaway situation, although the fan continues to run. See Section 5.0, “Typical Applications”, for more information and system design guidelines.

The TC646 is available in the 8-pin plastic DIP, SOIC and MSOP packages and is available in the industrial and extended commercial temperature ranges.
Functional Block Diagram

- **V_IN**
- **V_OTF**
- **PWM**
- **OTF**
- **V_DD**
- **V_OUT**
- **V_AS**
- **V_SHDN**
- **GND**
- **10kΩ**
- **70mV (typ.)**
- **FAULT**
- **SHDN**
- **SENS**
- **TC646**
- **Control Logic**
- **3 x \(T_{PWM} \)**
- **Timer**
- **Start-up Timer**
- **Missing Pulse Detect.**
- **TC646**
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage .. 6V
Input Voltage, Any Pin..... (GND – 0.3V) to (VDD+0.3V)

Package Thermal Resistance:
PDIP (RθJA) ...125°C/W
SOIC (RθJA) ..155°C/W
MSOP (RθJA) ..200°C/W

Specified Temperature Range -40°C to +125°C
Storage Temperature Range.......... -65°C to +150°C

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise specified, TMIN ≤ TA ≤ TMAX, VDD = 3.0V to 5.5V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Supply Voltage</td>
<td>3.0</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>Pins 6, 7 Open, CF = 1 µF, VIN = VCMAX</td>
</tr>
<tr>
<td>IDD</td>
<td>Supply Current, Operating</td>
<td>—</td>
<td>0.5</td>
<td>1.0</td>
<td>mA</td>
<td>Pins 6, 7 Open; Note 1</td>
</tr>
<tr>
<td>IDD(SHDN)</td>
<td>Supply Current, Shutdown/ Auto-shutdown Mode</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>µA</td>
<td>Pins 6, 7 Open; Note 1</td>
</tr>
<tr>
<td>IIN</td>
<td>VIN, VAS Input Leakage</td>
<td>-1.0</td>
<td>—</td>
<td>+1.0</td>
<td>µA</td>
<td>Note 1</td>
</tr>
<tr>
<td>VOUT</td>
<td>Rise Time</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>µsec</td>
<td></td>
</tr>
<tr>
<td>VOUT</td>
<td>Fall Time</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>µsec</td>
<td></td>
</tr>
<tr>
<td>VSHDN</td>
<td>Pulse Width(On VIN) to Clear Fault Mode</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>µsec</td>
<td></td>
</tr>
<tr>
<td>IOL</td>
<td>Sink Current at VOUT Output</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>VDD = 10% of VDD, VSHDN, VHYST</td>
</tr>
<tr>
<td>IOL</td>
<td>Source Current at VOUT Output</td>
<td>5.0</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>VDD = 80% of VDD</td>
</tr>
<tr>
<td>VTH(SENSE)</td>
<td>SENSE Input Threshold Voltage with Respect to GND</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>mV</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Ensured by design, not tested.

© 2002 Microchip Technology Inc.
DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics:

Unless otherwise specified, \(T_{\text{MIN}} \leq T_A \leq T_{\text{MAX}} \), \(V_{\text{DD}} = 3.0 \text{V to 5.5V} \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{IN}}, V_{\text{AS}}) Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{C(MAX)}}, V_{\text{OTF}}) Voltage at (V_{\text{IN}}) for 100% Duty Cycle and Overtemp. Fault</td>
<td>2.5</td>
<td>2.65</td>
<td>2.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{C(SPAN)}}) (V_{\text{C(MAX)}} - V_{\text{C(MIN)}})</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{AS}}) Auto-shutdown Threshold</td>
<td>(V_{\text{C(MAX)}}) - (V_{\text{C(SPAN)}})</td>
<td>—</td>
<td>(V_{\text{C(MAX)}})</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{SHDN}}) Voltage Applied to (V_{\text{IN}}) to ensure Reset/Shutdown</td>
<td>—</td>
<td>—</td>
<td>(V_{\text{DD}} \times 0.13)</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{REL}}) Voltage Applied to (V_{\text{IN}}) to Release Reset Mode</td>
<td>(V_{\text{DD}} \times 0.19)</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(V_{\text{DD}} = 5 \text{V, See Figure 5-11})</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{HYST}}) Hysteresis on (V_{\text{SHDN}}, V_{\text{REL}})</td>
<td>—</td>
<td>0.01 (V_{\text{DD}})</td>
<td>—</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{HAS}}) Hysteresis on Auto-shutdown Comparator</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pulse Width Modulator

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{\text{OSC}})</td>
<td>PWM Frequency</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>Hz</td>
</tr>
</tbody>
</table>

Note 1: Ensured by design, not tested.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V\text{IN}</td>
<td>Analog Input</td>
</tr>
<tr>
<td>2</td>
<td>C\text{F}</td>
<td>Analog Output</td>
</tr>
<tr>
<td>3</td>
<td>V\text{AS}</td>
<td>Analog Input</td>
</tr>
<tr>
<td>4</td>
<td>G\text{ND}</td>
<td>Ground Terminal</td>
</tr>
<tr>
<td>5</td>
<td>S\text{ENSE}</td>
<td>Analog Input</td>
</tr>
<tr>
<td>6</td>
<td>F\text{AULT}</td>
<td>Digital (Open Collector) Output</td>
</tr>
<tr>
<td>7</td>
<td>V\text{OUT}</td>
<td>Digital Output</td>
</tr>
<tr>
<td>8</td>
<td>V\text{DD}</td>
<td>Power Supply Input</td>
</tr>
</tbody>
</table>

2.1 Analog Input (V\text{IN})

The thermistor network (or other temperature sensor) connects to the V\text{IN} input. A voltage range of 1.25V to 2.65V (typical) on this pin drives an active duty cycle of 0% to 100% on the V\text{OUT} pin. The TC646 enters shutdown mode when V\text{IN} \leq V\text{SHDN}. During shutdown, the F\text{AULT} output is inactive, and supply current falls to 25 µA (typical). The TC646 exits shutdown mode when V\text{IN} \geq V\text{REL} (see Section 5.0, “Typical Applications”, for more details).

2.2 Analog Output (C\text{F})

C\text{F} is the positive terminal for the PWM ramp generator timing capacitor. The recommended C\text{F} is 1 µF for 30 Hz PWM operation.

2.3 Analog Input (V\text{AS})

An external resistor divider connected to the V\text{AS} input sets the auto-shutdown threshold. Auto-shutdown occurs when V\text{IN} \leq V\text{AS}. The fan is automatically restarted when V\text{IN} \geq V\text{AS} + V\text{HAS} (see Section 5.0, “Typical Applications”, for more details).

2.4 Ground (G\text{ND})

G\text{ND} denotes the ground terminal.

2.5 Analog Input (S\text{ENSE})

Pulses are detected at the S\text{ENSE} pin as fan rotation chops the current through a sense resistor (R\text{SENSE}). The absence of pulses indicates a fault (see Section 5.0, “Typical Applications”, for more details).

2.6 Digital Output (F\text{AULT})

The F\text{AULT} line goes low to indicate a fault condition. When F\text{AULT} goes low due to a fan fault condition, the device is latched in shutdown mode until deliberately cleared or until power is cycled. F\text{AULT} will also be asserted when the PWM reaches 100% duty cycle, indicating that maximum cooling capability has been reached and a possible over-temperature condition may occur. This is a non-latching state and the F\text{AULT} output will go high when the PWM duty cycle goes below 100%.

2.7 Digital Output (V\text{OUT})

V\text{OUT} is an active high complimentary output that drives the base of an external NPN transistor (via an appropriate base resistor) or the gate of an N-channel MOSFET. This output has asymmetrical drive (see Section 1.0, “Electrical Characteristics”).

2.8 Power Supply Input (V\text{DD})

V\text{DD} may be independent of the fan’s power supply (see Section 1.0, “Electrical Characteristics”).
3.0 DETAILED DESCRIPTION

3.1 PWM

The PWM circuit consists of a ramp generator and threshold detector. The frequency of the PWM is determined by the value of the capacitor connected to the \(C_F \) input. A frequency of 30 Hz is recommended (\(C_F = 1 \mu F \)). The PWM is also the time base for the Start-up Timer (see Section 3.3, “Start-Up Timer”). The PWM voltage control range is 1.25V to 2.65V (typical) for 0% to 100% output duty cycle.

3.2 VOUT Output

The VOUT pin is designed to drive a low cost transistor or MOSFET as the low side, power switching element in the system. Various examples of driver circuits will be shown throughout this data sheet. This output has asymmetric complementary drive and is optimized for driving NPN transistors or N-channel MOSFETs. Since the system relies on PWM rather than linear control, the power dissipation in the power switch is kept to a minimum. Generally, very small devices (TO-92 or SOT packages) will suffice.

3.3 Start-Up Timer

To ensure reliable fan start-up, the Start-up Timer turns the VOUT output on for 32 cycles of the PWM whenever the fan is started from the off state. This occurs at power-up and when coming out of shutdown or auto-shutdown mode. If the PWM frequency is 30 Hz (\(C_F = 1 \mu F \)), the resulting start-up time will be approximately one second. If a fan fault is detected, the Diagnostic Timer is triggered once, followed by the Start-up Timer. If the fault persists, the device is shut down (see Section 3.5, “FAULT Output”).

3.4 SENSE Input (FanSense™ Technology)

The SENSE input (Pin 5) is connected to a low value current sensing resistor in the ground return leg of the fan circuit. During normal fan operation, commutation occurs as each pole of the fan is energized. This causes brief interruptions in the fan current, seen as pulses across the sense resistor. If the device is not in auto-shutdown or shutdown mode, and pulses are not appearing at the SENSE input, a fault exists.

The short, rapid change in fan current (high \(\Delta I/\Delta T \)) causes a corresponding \(\Delta V/\Delta T \) across the sense resistor, \(R_{SENSE} \). The waveform on \(R_{SENSE} \) is differentiated and converted to a logic-level pulse-train by \(C_{SENSE} \) and the internal signal processing circuitry. The presence and frequency of this pulse-train is a direct indication of fan operation. See Section 5.0, “Typical Applications”, for more details.

3.5 FAULT Output

The TC646 detects faults in two ways:

First, pulses appearing at SENSE due to the PWM turning on are blanked, with the remaining pulses being filtered by a missing pulse detector. If consecutive pulses are not detected for thirty-two PWM cycles (\(\approx 1 \text{ Sec if } C_F = 1 \mu F \)), the Diagnostic Timer is activated and VOUT is driven high continuously for three PWM cycles (\(\approx 100 \text{ msec if } C_F = 1 \mu F \)). If a pulse is not detected within this window, the Start-up Timer is triggered (see Section 3.3, “Start-up Timer”). This should clear a transient fault condition. If the missing pulse detector times out again, the PWM is stopped and FAULT goes low. When FAULT is activated due to this condition, the device is latched in shutdown mode and will remain off indefinitely. Therefore, the TC646 is prevented from attempting to drive a fan under catastrophic fault conditions.

One of two things will restore operation: Cycling power off and then on again or pulling VIN below VSHDN and releasing it to a level above VRREL. When one of these two conditions is satisfied, the normal start-up cycle is triggered and operation will resume if the fault has been cleared.

The second condition by which the TC646 asserts a FAULT is when the PWM control voltage applied to VIN becomes greater than that needed to drive 100% duty cycle (see Section 1.0, “Electrical Characteristics”). This indicates that the fan is at maximum drive and the potential exists for system overheating. Either heat dissipation in the system has gone beyond the cooling system’s design limits or some subtle fault exists (such as fan bearing failure or an airflow obstruction). This output may be treated as a “System Overheat” warning and be used to trigger system shutdown or some other corrective action.

However, in this case, the fan will continue to run even when FAULT is asserted. If the system is allowed to continue operation, and the temperature (and thus VI) falls, the FAULT output will become inactive when VIN < VOTF.

3.6 Auto-Shutdown Mode

If the voltage on VIN becomes less than the voltage on VAS, the fan is automatically shut off (auto-shutdown mode). The TC646 exits auto-shutdown mode when the voltage on VIN becomes higher than the voltage on VAS by VHAS (the auto-shutdown Hysteresis Voltage (see Figure 3-1)). The Start-up Timer is triggered and normal operation is resumed upon exiting auto-shutdown mode. The FAULT output is unconditionally inactive in auto-shutdown mode.
3.7 Shutdown Mode (Reset)

If an unconditional shutdown and/or device reset is desired, the TC646 may be placed in shutdown mode by forcing \(V_{IN} \) to a logic low (i.e., \(V_{IN} < V_{SHDN} \)) (see Figure 3-1). In this mode, all functions cease and the \(\text{FAULT} \) output is unconditionally inactive. The TC646 should not be shut down unless all heat producing activity in the system is at a negligible level. The TC646 exits shutdown mode when \(V_{IN} \) becomes greater than \(V_{REL} \), the release voltage.

Entering shutdown mode also performs a complete device reset. Shutdown mode resets the TC646 into its power-up state. The Start-up and Fault Timers, and any current faults, are cleared. \(\text{FAULT} \) is unconditionally inactive in shutdown mode. Upon exiting shutdown mode \((V_{IN} > V_{REL}) \), the Start-up Timer will be triggered and normal operation will resume, assuming no fault conditions exist and \(V_{IN} > V_{AS} + V_{HAS} \).

Note: If \(V_{IN} < V_{AS} \) when the device exits shutdown mode, the fan will not restart as it will be in auto-shutdown mode.

If a fan fault has occurred and the device has latched itself into shutdown mode, performing a reset will not clear the fault unless \(V_{IN} > (V_{AS} + V_{HAS}) \). If \(V_{IN} \) is not greater than \((V_{AS} + V_{HAS}) \) upon exiting shutdown mode, the fan will not be restarted. Consequently, there is no way to establish that the fan fault has been cleared. To ensure that a complete reset takes place, the user’s circuitry must ensure that \(V_{IN} > (V_{AS} + V_{HAS}) \) when the device is released from shutdown mode. A recommended algorithm for management of the TC646 by a host microcontroller or other external circuitry is given in Section 5.0, “Typical Applications”. A small amount of hysteresis, typically one percent of \(V_{DD} \) (50 mV at \(V_{DD} = 5.0 \) V), is designed into the \(V_{SHDN} \)/\(V_{REL} \) threshold. The levels specified for \(V_{SHDN} \) and \(V_{REL} \) in Section 1.0, “Electrical Characteristics”, include this hysteresis plus adequate margin to account for normal variations in the absolute value of the threshold and hysteresis.

CAUTION: Shutdown mode is unconditional. That is, the fan will remain off as long as the \(V_{IN} \) pin is being held low or \(V_{IN} < V_{AS} + V_{HAS} \).
4.0 SYSTEM BEHAVIOR

The flowcharts describing the TC646’s behavioral algorithm are shown in Figure 4-1. They can be summarized as follows:

4.1 Power-Up

(1) Assuming the device is not being held in auto-shut-down mode (Vin > Vas)...........

(2) Turn VOUT output on for 32 cycles of the PWM clock. This ensures that the fan will start from a dead stop.

(3) During this Start-up Timer, if a fan pulse is detected, branch to Normal Operation; if none are received...

(4) Activate the 32-cycle Start-up Timer one more time and look for fan pulse; if a fan pulse is detected, proceed to Normal Operation; if none are received...

(5) Proceed to Fan Fault.

(6) End.

4.2 Normal Operation

"Normal Operation” is an endless loop which may only be exited by entering shutdown mode, auto-shutdown mode or Fan Fault. The loop can be thought of as executing at the frequency of the oscillator and PWM.

(1) Reset the missing pulse detector.

(2) Is the TC646 in shutdown or auto-shutdown mode?

If so...

a. VOUT duty cycle goes to zero.

b. FAULT is disabled.

c. Exit the loop and wait for Vin > (Vas + Vhas) to resume operation.

(3) If an over-temperature fault occurs (Vin > Votf), activate FAULT; release FAULT when Vin < VOTF.

(4) Drive VOUT to a duty cycle proportional to Vin on a cycle by cycle basis.

(5) If a fan pulse is detected, branch back to the start of the loop (1).

(6) If the missing pulse detector times out ...

(7) Activate the 3-cycle Diagnostic Timer and look for pulses; if a fan pulse is detected, branch back to the start of the loop (1); if none are received...

(8) Activate the 32-cycle Start-up Timer and look for pulses; if a fan pulse is detected, branch back to the start of the loop (1); if none are received...

(9) Quit Normal Operation and go to Fan Fault.

(10) End.

4.3 Fan Fault

Fan fault is an infinite loop wherein the TC646 is latched in shutdown mode. This mode can only be released by a reset (i.e., Vin being brought below VSHDN, then above (VAS + VHAS), or by power-cycling).

(1) While in this state, FAULT is latched on (low) and the VOUT output is disabled.

(2) A reset sequence applied to the Vin pin will exit the loop to Power-up.

(3) End.
FIGURE 4-1: TC646 Behavioral Algorithm Flowchart.
5.0 TYPICAL APPLICATIONS

Designing with the TC646 involves the following:

(1) The temperature sensor network must be configured to deliver 1.25V to 2.65V on \(V_{IN} \) for 0% to 100% of the temperature range to be regulated.

(2) The auto-shutdown temperature must be set with a voltage divider on \(V_{AS} \).

(3) The output drive transistor and associated circuitry must be selected.

(4) The SENSE network, \(R_{SENSE} \) and \(C_{SENSE} \), must be designed for maximum efficiency while delivering adequate signal amplitude.

(5) If shutdown capability is desired, the drive requirements of the external signal or circuit must be considered.

The TC642 demonstration and prototyping board (TC642DEMO) and the TC642 Evaluation Kit (TC642EV) provide working examples of TC646 circuits and prototyping aids. The TC642DEMO is a printed circuit board optimized for small size and ease of inclusion into system prototypes. The TC642EV is a larger board intended for benchtop development and analysis. At the very least, anyone contemplating a design using the TC646 should consult the documentation for both TC642EV (DS21403) and TC642DEMO (DS21401). Figure 5-1 shows the base schematic for the TC642DEMO.

![Typical Application Circuit](image-url)

NOTES:

*See cautions regarding latch-up considerations in Section 5.0, "Typical Applications".

**Optional. See Section 5.0, "Typical Applications", for details.
5.1 Temperature Sensor Design

The temperature signal connected to V_{IN} must output a voltage in the range of 1.25V to 2.65V (typical) for 0% to 100% of the temperature range of interest. The circuit in Figure 5-2 illustrates a convenient way to provide this signal.

![Figure 5-2: Temperature Sensing Circuit.](image)

These two equations facilitate solving for the two unknown variables, R_1 and R_2. More information about thermistors may be obtained from AN679, “Temperature Sensing Technologies”, and AN685, “Thermistors In Single Supply Temperature Sensing Circuits”, which can be downloaded from Microchip’s web site at www.microchip.com.

5.2 Auto-Shutdown Temperature Design

A voltage divider on V_{AS} sets the temperature where the part is automatically shut down if the sensed temperature at V_{IN} drops below the set temperature at V_{AS} (i.e., V_{IN} < V_{AS}). As with the V_{IN} input, 1.25V to 2.65V corresponds to the temperature range of interest from T_1 to T_2, respectively. Assuming that the temperature sensor network designed above is linearly related to temperature, the shutdown temperature T_{AS} is related to T_2 and T_1 by:

EQUATION

\[
\frac{V_{DD} \times R_2}{R_{TEMP}(T_1) + R_2} = V(T_1)
\]

\[
\frac{V_{DD} \times R_2}{R_{TEMP}(T_2) + R_2} = V(T_2)
\]

Where T_1 and T_2 are the chosen temperatures and R_{TEMP} is the parallel combination of the thermistor and R_1.

For example, if 1.25V and 2.65V at V_{IN} corresponds to a temperature range of T_1 = 0°C to T_2 = 125°C, and the auto-shutdown temperature desired is 25°C, then V_{AS} voltage is:

EQUATION

\[
V_{AS} = \left(\frac{2.65V - 1.25V}{T_2 - T_1} \right) \frac{T_{AS} - T_1}{T_{AS} - T_1} + 1.25V
\]

The V_{AS} voltage may be set using a simple resistor divider as shown in Figure 5-3.
5.3 Operations at Low Duty Cycle

One boundary condition which may impact the selection of the minimum fan speed is the irregular activation of the Diagnostic Timer due to the TC646 “missing” fan commutation pulses at low speeds. This is a natural consequence of low PWM duty cycles (typically 25% or less). Recall that the SENSE function detects commutation of the fan as disturbances in the current through \(R_{\text{SENSE}} \). These can only occur when the fan is energized (i.e., \(V_{\text{OUT}} \) is “on”). At very low duty cycles, the \(V_{\text{OUT}} \) output is “off” most of the time. The fan may be rotating normally, but the commutation events are occurring during the PWM’s off-time.

The phase relationship between the fan’s commutation and the PWM edges tends to “walk around” as the system operates. At certain points, the TC646 may fail to capture a pulse within the 32-cycle missing pulse detector window. If this happens, the 3-cycle Diagnostic Timer will be activated, the \(V_{\text{OUT}} \) output will be active continuously for three cycles and, if the fan is operating normally, a pulse will be detected. If all is well, the system will return to normal operation. There is no harm in this behavior, but it may be audible to the user as the fan accelerates briefly when the Diagnostic Timer fires. For this reason, it is recommended that \(V_{\text{AS}} \) be set no lower than 1.8V.

5.4 FanSense™ Network

The FanSense network, comprised of \(R_{\text{SENSE}} \) and \(C_{\text{SENSE}} \), allows the TC646 to detect commutation of the fan motor (FanSense™ technology). This network can be thought of as a differentiator and threshold detector. The function of \(R_{\text{SENSE}} \) is to convert the fan current into a voltage. \(C_{\text{SENSE}} \) serves to AC-couple this voltage signal and provide a ground-referenced input to the SENSE pin. Designing a proper SENSE network is simply a matter of scaling \(R_{\text{SENSE}} \) to provide the necessary amount of gain (i.e., the current-to-voltage conversion ratio). A 0.1 \(\mu \)F ceramic capacitor is recommended for \(C_{\text{SENSE}} \). Smaller values require larger sense resistors, and higher value capacitors are bulkier and more expensive. Using a 0.1 \(\mu \)F capacitor results in reasonable values for \(R_{\text{SENSE}} \). Figure 5-4 illustrates a typical SENSE network. Figure 5-5 shows the waveforms observed using a typical SENSE network.
Figure 5-4: SENSE Network.

Figure 5-5: SENSE Waveforms.

Table 5-1 lists the recommended values of R_{SENSE} based on the nominal operating current of the fan. Note that the current draw specified by the fan manufacturer may be a worst-case rating for near-stall conditions and not the fan’s nominal operating current. The values in Table 5-1 refer to actual average operating current. If the fan current falls between two of the values listed, use the higher resistor value. The end result of employing Table 5-1 is that the signal developed across the sense resistor is approximately 450 mV in amplitude.

Table 5-1: R_{SENSE} vs. Fan Current

<table>
<thead>
<tr>
<th>Nominal Fan Current (mA)</th>
<th>R_{SENSE} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>9.1</td>
</tr>
<tr>
<td>100</td>
<td>4.7</td>
</tr>
<tr>
<td>150</td>
<td>3.0</td>
</tr>
<tr>
<td>200</td>
<td>2.4</td>
</tr>
<tr>
<td>250</td>
<td>2.0</td>
</tr>
<tr>
<td>300</td>
<td>1.8</td>
</tr>
<tr>
<td>350</td>
<td>1.5</td>
</tr>
<tr>
<td>400</td>
<td>1.3</td>
</tr>
<tr>
<td>450</td>
<td>1.2</td>
</tr>
<tr>
<td>500</td>
<td>1.0</td>
</tr>
</tbody>
</table>

5.5 Output Drive Transistor Selection

The TC646 is designed to drive an external transistor or MOSFET for modulating power to the fan. This is shown as Q_1 in Figures 5-1, 5-4, 5-6, 5-7, 5-8 and 5-9. The V_{OUT} pin has a minimum source current of 5 mA and a minimum sink current of 1 mA. Bipolar transistors or MOSFETs may be used as the power switching element, as shown in Figure 5-7. When high current gain is needed to drive larger fans, two transistors may be used in a Darlington configuration. These circuit topologies are shown in Figure 5-7: (a) shows a single NPN transistor used as the switching element; (b) illustrates the Darlington pair; and (c) shows an N-channel MOSFET.

One major advantage of the TC646’s PWM control scheme versus linear speed control is that the power dissipation in the pass element is kept very low. Generally, low cost devices in very small packages, such as TO-92 or SOT, can be used effectively. For fans with nominal operating currents of no more than 200 mA, a single transistor usually suffices. Above 200 mA, the Darlington or MOSFET solution is recommended. For the fan sensing function to work correctly, it is imperative that the pass transistor be fully saturated when “on”.

Table 5-2 gives examples of some commonly available transistors and MOSFETs. This table should be used as a guide only since there are many transistors and MOSFETs which will work just as well as those listed. The critical issues when choosing a device to use as Q_1 are: (1) the breakdown voltage (V_{BRCEO} or V_{DS} (MOSFET)) must be large enough to withstand the highest voltage applied to the fan (Note: This will occur when the fan is off); (2) 5 mA of base drive current must be enough to saturate the transistor when conducting the full fan current (transistor must have sufficient gain); (3) the V_{OUT} voltage must be high enough to sufficiently drive the gate of the MOSFET to minimize the $R_{DS(on)}$ of the device; (4) rated fan current draw must be within the transistor’s/MOSFET’s current handling capability; and (5) power dissipation must be kept within the limits of the chosen device.
A base-current limiting resistor is required with bipolar transistors. This is shown in Figure 5-6.

The correct value for this resistor can be determined as follows:

\[
\begin{align*}
V_{OH} &= V_{R\text{SENSE}} + V_{\text{BE(SAT)}} + V_{R\text{BASE}} \\
V_{R\text{SENSE}} &= I_{F\text{AN}} \times R_{\text{SENSE}} \\
V_{R\text{BASE}} &= R_{\text{BASE}} \times I_{\text{BASE}} \\
I_{\text{BASE}} &= \frac{I_{F\text{AN}}}{h_{FE}}
\end{align*}
\]

\[V_{OH}\] is specified as 80% of \(V_{DD}\) in Section 1.0, “Electrical Characteristics”; \(V_{\text{BE(SAT)}}\) is given in the chosen transistor data sheet. It is now possible to solve for \(R_{\text{BASE}}\).

\[
R_{\text{BASE}} = \frac{V_{OH} - V_{\text{BE(SAT)}} - V_{R\text{SENSE}}}{I_{\text{BASE}}}
\]

Some applications benefit from the fan being powered from a negative supply to keep motor noise out of the positive supply rails. This can be accomplished as shown in Figure 5-8. Zener diode \(D_1\) offsets the -12V power supply voltage, holding transistor \(Q_1\) off when \(V_{OUT}\) is low. When \(V_{OUT}\) is high, the voltage at the anode of \(D_1\) increases by \(V_{OUT}\), causing \(Q_1\) to turn on. Operation is otherwise the same as in the case of fan operation from +12V.
5.6 Latch-up Considerations

As with any CMOS IC, the potential exists for latch-up if signals are applied to the device which are outside the power supply range. This is of particular concern during power-up if the external circuitry (such as the sensor network, V_{AS} divider or shutdown circuit) is powered by a supply different from that of the TC646. Care should be taken to ensure that the TC646’s V_{DD} supply powers up first. If possible, the networks attached to V_{IN} and V_{AS} should connect to the V_{DD} supply at the same physical location as the IC itself. Even if the IC and any external networks are powered by the same supply, physical separation of the connecting points can result in enough parasitic capacitance and/or inductance in the power supply connections to delay one power supply “routing” versus another.

5.7 Power Supply Routing and Bypassing

Noise present on the V_{IN} and V_{AS} inputs may cause erroneous operation of the FAULT output. As a result, these inputs should be bypassed with a 0.01 μF capacitor mounted as close to the package as possible. This is especially true of V_{IN}, which is usually driven from a high impedance source (such as a thermistor). In addition, the V_{DD} input should be bypassed with a 1 μF capacitor. Grounds should be kept as short as possible. To keep fan noise off the TC646 ground pin, individual ground returns for the TC646 and the low side of the fan current sense resistor should be used.

TABLE 5-2: TRANSISTORS AND MOSFETS FOR Q_1 ($V_{DD} = 5V$)

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Max. $V_{BE(sat)}$/V_{GS} (V)</th>
<th>Min. H_{FE}</th>
<th>V_{CEO}/V_{DS} (V)</th>
<th>Fan Current (mA)</th>
<th>Suggested R_{BASE} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMBT2222A</td>
<td>SOT-23</td>
<td>1.2</td>
<td>50</td>
<td>40</td>
<td>150</td>
<td>800</td>
</tr>
<tr>
<td>MPS2222A</td>
<td>TO-92</td>
<td>1.2</td>
<td>50</td>
<td>40</td>
<td>150</td>
<td>800</td>
</tr>
<tr>
<td>MPS6602</td>
<td>TO-92</td>
<td>1.2</td>
<td>50</td>
<td>40</td>
<td>500</td>
<td>301</td>
</tr>
<tr>
<td>SI2302</td>
<td>SOT-23</td>
<td>2.5</td>
<td>NA</td>
<td>20</td>
<td>500</td>
<td>Note 1</td>
</tr>
<tr>
<td>MGSF1N02E</td>
<td>SOT-23</td>
<td>2.5</td>
<td>NA</td>
<td>20</td>
<td>500</td>
<td>Note 1</td>
</tr>
<tr>
<td>SI4410</td>
<td>SO-8</td>
<td>4.5</td>
<td>NA</td>
<td>30</td>
<td>1000</td>
<td>Note 1</td>
</tr>
<tr>
<td>SI2308</td>
<td>SOT-23</td>
<td>4.5</td>
<td>NA</td>
<td>60</td>
<td>500</td>
<td>Note 1</td>
</tr>
</tbody>
</table>

Note 1: A series gate resistor may be used in order to control the MOSFET turn-on and turn-off times.

FIGURE 5-8: Power the Fan from a -12V Supply.
Design Example

Step 1. Calculate R_1 and R_2 based on using an NTC having a resistance of 10 kΩ at T_{MIN} (25°C) and 4.65 kΩ at T_{MAX} (45°C) (See Figure 5-9).

$R_1 = 20.5$ kΩ
$R_2 = 3.83$ kΩ

Step 2. Set auto-shutdown level $V_{\text{AS}} = 1.8$V.

Limit the divider current to 100 µA from which

$R_5 = 33$ kΩ
$R_6 = 18$ kΩ

Step 3. Design the output circuit.

Maximum fan motor current = 250 mA. Q_1 beta is chosen at 50 from which $R_7 = 800$ Ω.

FIGURE 5-9: Design Example.

5.8 TC646 as a Microcontroller Peripheral

In a system containing a microcontroller or other host intelligence, the TC646 can be effectively managed as a CPU peripheral. Routine fan control functions can be performed by the TC646 without controller intervention. The microcontroller receives temperature data from one or more points throughout the system. It calculates a fan operating speed based on an algorithm specifically designed for the application at hand. The processor controls fan speed using complementary port bits I/O1 through I/O3. Resisters R_1 through R_6 (5% tolerance) form a crude 3-bit DAC that translates the 3-bit code from the processor's outputs into a 1.6V DC control signal. A monolithic DAC or digital pot may be used instead of the circuit shown in Figure 5-10.

With V_{AS} set at 1.8V, the TC646 enters auto-shutdown when the controller's output code is 000[B]. Output codes 001[B] to 111[B] operate the fan from roughly 40% to 100% of full speed. An open-drain output from the processor (I/O0) can be used to reset the TC646 following detection of a fault condition. The FAULT output can be connected to the controller's interrupt input, or to another I/O pin, for polled operation.
FIGURE 5-10: TC646 as a Microcontroller Peripheral.

FIGURE 5-11: V_{RELEASE} vs. Temperature.

V_{DD} = 3.0V
V_{DD} = 4.0V
V_{DD} = 5.0V
V_{DD} = 5.5V

V_{RELEASE} vs. Temperature

0˚C 25˚C 85˚C
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:

<table>
<thead>
<tr>
<th>XX...X</th>
<th>Customer specific information*</th>
</tr>
</thead>
<tbody>
<tr>
<td>YY</td>
<td>Year code (last 2 digits of calendar year)</td>
</tr>
<tr>
<td>WW</td>
<td>Week code (week of January 1 is week '01')</td>
</tr>
<tr>
<td>NNN</td>
<td>Alphanumeric traceability code</td>
</tr>
</tbody>
</table>

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

* Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

Dimensions

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n MIN</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>p MIN</td>
<td>.100</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A MIN</td>
<td>.140</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2 MIN</td>
<td>.115</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1 MIN</td>
<td>.015</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E MIN</td>
<td>.300</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1 MIN</td>
<td>.240</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D MIN</td>
<td>.360</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L MIN</td>
<td>.125</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c MIN</td>
<td>.008</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1 MIN</td>
<td>.045</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B MIN</td>
<td>.014</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB MIN</td>
<td>.310</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α MIN</td>
<td>5</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β MIN</td>
<td>5</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
- JEDEC Equivalent: MS-001
- Drawing No. C04-018

© 2002 Microchip Technology Inc.
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)

```
<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.050</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.053</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.052</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
<td>.004</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.228</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.146</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.189</td>
</tr>
<tr>
<td>Chamfer Distance</td>
<td>h</td>
<td>.010</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.019</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.013</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-057
### 8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

**Unit Conversion**

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>0.026</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.044</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>0.030, 0.034, 0.038, 0.76, 0.86, 0.97</td>
</tr>
<tr>
<td>Standoff</td>
<td>§</td>
<td>0.002, 0.006, 0.05, 0.15</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>0.184, 0.193, 0.200, 4.67, 4.90, 5.08</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>0.114, 0.118, 0.122, 2.90, 3.00, 3.10</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>0.114, 0.118, 0.122, 2.90, 3.00, 3.10</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0.016, 0.022, 0.028, 0.40, 0.55, 0.70</td>
</tr>
<tr>
<td>Footprint (Reference)</td>
<td>F</td>
<td>0.035, 0.037, 0.039, 0.90, 0.95, 1.00</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td>0</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.004, 0.006, 0.008, 0.10, 0.15, 0.20</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>0.010, 0.012, 0.016, 0.25, 0.30, 0.40</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>7</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>7</td>
</tr>
</tbody>
</table>

*Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254mm) per side.

Drawing No. CD4-111
6.2 Taping Form

Component Taping Orientation for 8-Pin MSOP Devices

Standard Reel Component Orientation for 713 Suffix Device

Carrier Tape, Number of Components Per Reel and Reel Size

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Pin MSOP</td>
<td>12 mm</td>
<td>8 mm</td>
<td>2500</td>
<td>13 in</td>
</tr>
</tbody>
</table>

Component Taping Orientation for 8-Pin SOIC (Narrow) Devices

Standard Reel Component Orientation for 713 Suffix Device

Carrier Tape, Number of Components Per Reel and Reel Size

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Pin SOIC (N)</td>
<td>12 mm</td>
<td>8 mm</td>
<td>2500</td>
<td>13 in</td>
</tr>
</tbody>
</table>
ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape® or Microsoft® Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

• Latest Microchip Press Releases
• Technical Support Section with Frequently Asked Questions
• Design Tips
• Device Errata
• Job Postings
• Microchip Consultant Program Member Listing
• Links to other useful web sites related to Microchip Products
• Conferences for products, Development Systems, technical information and more
• Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and
1-480-792-7302 for the rest of the world.
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To: Technical Publications Manager                    Total Pages Sent ______
RE: Reader Response

From: Name __________________________________________

Company __________________________________________

Address __________________________________________

City / State / ZIP / Country __________________________

Telephone: (______) _________ - _________          FAX: (_____ ) _________ - _________

Application (optional):

Would you like a reply? ___Y____ N

Device: TC646                Literature Number: DS21446C

Questions:

1. What are the best features of this document?

________________________________________________________________________

2. How does this document meet your hardware and software development needs?

________________________________________________________________________

3. Do you find the organization of this document easy to follow? If not, why?

________________________________________________________________________

4. What additions to the document do you think would enhance the structure and subject?

________________________________________________________________________

5. What deletions from the document could be made without affecting the overall usefulness?

________________________________________________________________________

6. Is there any incorrect or misleading information (what and where)?

________________________________________________________________________

7. How would you improve this document?

________________________________________________________________________
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Temperature Range</td>
<td>Package</td>
</tr>
<tr>
<td>TC646</td>
<td>0°C to +85°C</td>
<td>PA</td>
</tr>
<tr>
<td></td>
<td>-40°C to +85°C</td>
<td>OA or UA</td>
</tr>
</tbody>
</table>

**Examples:**

a) TC646VOA: PWM Fan Speed Controller w/ Auto Shutdown and Fault Detection, SOIC package.

b) TC646VUA: PWM Fan Speed Controller w/ Auto Shutdown and Fault Detection, MSOP package.

c) TC646VPA: PWM Fan Speed Controller w/ Auto Shutdown and Fault Detection, PDIP package.

d) TC646EOA713: PWM Fan Speed Controller w/ Auto Shutdown and Fault Detection, SOIC package, Tape and Reel.

**Sales and Support**

**Data Sheets**

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

**New Customer Notification System**

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
## Worldwide Sales and Service

### Americas

**Corporate Office**
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

**Rocky Mountain**
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

**Atlanta**
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

**Boston**
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

**Chicago**
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

**Dallas**
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

**Detroit**
Tri-Atria Office Building
23225 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

**Kokomo**
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

**Los Angeles**
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

**New York**
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

**San Jose**
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-438-7950 Fax: 408-436-7965

**Toronto**
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

### Asia/Pacific

**Australia**
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

**China - Beijing**
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

**China - Chengdu**
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Office
Room 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-88766200 Fax: 86-28-88766599

**China - Fuzhou**
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Unit 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7535056 Fax: 86-591-7535021

**China - Hong Kong SAR**
Microchip Technology Hong Kong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

**India**
Microchip Technology India
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaughnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

**Japan**
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shin-yokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-8166 Fax: 81-45-471-6122

**Korea**
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-862
Tel: 82-2-554-7200 Fax: 82-2-558-5934

**Singapore**
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8550

**Taiwan**
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 106, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

### Europe

**Austria**
Microchip Technology Austria GmbH
Durlasistrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

**Denmark**
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballerau DK-2750 Denmark
Tel: 45 4420 9859 Fax: 45 4420 9910

**France**
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trappe
Batiment A - Ier Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

**Germany**
Microchip Technology GmbH
Steinbeissstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

**Italy**
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

**United Kingdom**
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118-921-5820

08/01/02