New 3.0V SCC Series Supercapacitors
High Capacitance Cylindrical Supercapacitors

The new series of cylindrical electrochemical double-layer capacitors offers excellent pulse power handling characteristics based on the combination of very high capacitance and very low ESR. Used by themselves or in conjunction with primary or secondary batteries, they provide extended back up time, longer battery life, and provide instantaneous power pulses as needed. Offers great solutions to Hold-Up, Energy Harvesting, and Pulse Power Applications.

FEATURES
• Cap Values from 1F – 50F
• High pulse power capability
• Low ESR
• Low Leakage Current
• Capability to couple with battery

APPLICATIONS
• Camera Flash Systems
• Energy Harvesting
• GSM/GPRS Pulse Applications
• UPS/Industrial
• Wireless Alarms
• Remote Metering
• Scanners
• Toys and Games

HOW TO ORDER

<table>
<thead>
<tr>
<th>SCC</th>
<th>S</th>
<th>30</th>
<th>E</th>
<th>106</th>
<th>S</th>
<th>R</th>
<th>B</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperCap</td>
<td>Q = 6.3mm</td>
<td>Two digits</td>
<td>E = 3.0V</td>
<td>1st two digits</td>
<td>M = ±20%</td>
<td>R = Radial</td>
<td>B = Bulk</td>
<td>A1 = 4mm Bent Leads*</td>
</tr>
<tr>
<td>Cylindrical</td>
<td>R = 8mm</td>
<td>Represent case</td>
<td></td>
<td>significant figures</td>
<td>S = +30%/-10%</td>
<td></td>
<td>T = Tray*</td>
<td>C1 = 2mm Bent Leads*</td>
</tr>
<tr>
<td></td>
<td>S = 10mm</td>
<td>Length in mm</td>
<td></td>
<td>3rd digit represents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T = 12.5mm</td>
<td></td>
<td></td>
<td>multiplier (number of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U = 16mm</td>
<td></td>
<td></td>
<td>zeros to follow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V = 18mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUALITY INSPECTION
Parts are tested for Life Cycle, high temperature load life, temperature characteristics, vibration resistance, and humidity characteristics. See page 2 for more information.

TERMINATION
These supercapacitors are compatible with hand soldering, as well as reflow and wave soldering processes, so long as appropriate precautions are followed. See page 4 for more information.

OPERATING TEMPERATURE
-40°C to +65°C @ 3.0V
-40°C to +85°C @ 2.5V

Downloaded from Arrow.com.
New 3.0V SCC Series Supercapacitors

High Capacitance Cylindrical Supercapacitors

RATINGS & PART NUMBER REFERENCE

<table>
<thead>
<tr>
<th>AVX Part Number</th>
<th>Diameter (mm)</th>
<th>Length (mm)</th>
<th>Capacitance (μF)</th>
<th>Capacitance Tolerance</th>
<th>Rated Voltage (V)</th>
<th>Rated Temperature (°C)</th>
<th>DCL Max @ 72 Hrs (μA)</th>
<th>ESR Max @ 1000 Hz (mΩ)</th>
<th>ESR Max @ DC (mΩ)</th>
<th>Peak Current (A)</th>
<th>Power Density (W/kg)</th>
<th>Max Energy (Wh)</th>
<th>Energy Density (Wh/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCQ12E105SRB</td>
<td>6.3</td>
<td>12</td>
<td>1</td>
<td>+30%/−10%</td>
<td>3.0</td>
<td>65</td>
<td>6</td>
<td>240</td>
<td>1500</td>
<td>1.000</td>
<td>2791.3580</td>
<td>0.0011</td>
<td>1.5556</td>
</tr>
<tr>
<td>SCCR12E105SRB</td>
<td>8</td>
<td>12</td>
<td>1</td>
<td>+30%/−10%</td>
<td>3.0</td>
<td>65</td>
<td>6</td>
<td>180</td>
<td>860</td>
<td>1.000</td>
<td>2517.2840</td>
<td>0.0011</td>
<td>1.3333</td>
</tr>
<tr>
<td>SCCR16E205SRB</td>
<td>8</td>
<td>16</td>
<td>2</td>
<td>+30%/−10%</td>
<td>3.0</td>
<td>65</td>
<td>10</td>
<td>100</td>
<td>360</td>
<td>1.7444</td>
<td>2765.4321</td>
<td>0.0022</td>
<td>2.1111</td>
</tr>
<tr>
<td>SCCR20E335SRB</td>
<td>8</td>
<td>20</td>
<td>3.3</td>
<td>+30%/−10%</td>
<td>3.0</td>
<td>65</td>
<td>12</td>
<td>95</td>
<td>280</td>
<td>2.5778</td>
<td>2803.7037</td>
<td>0.0037</td>
<td>3.0000</td>
</tr>
<tr>
<td>SCCR25E505SRB</td>
<td>8</td>
<td>25</td>
<td>5</td>
<td>+30%/−10%</td>
<td>3.0</td>
<td>65</td>
<td>15</td>
<td>85</td>
<td>220</td>
<td>4.5444</td>
<td>2812.3457</td>
<td>0.0057</td>
<td>2.6667</td>
</tr>
<tr>
<td>SCCS20E505SRB</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>+30%/−10%</td>
<td>3.0</td>
<td>65</td>
<td>15</td>
<td>70</td>
<td>170</td>
<td>4.5444</td>
<td>2812.3457</td>
<td>0.0057</td>
<td>2.6667</td>
</tr>
<tr>
<td>SCCS25E705SRB</td>
<td>10</td>
<td>25</td>
<td>7</td>
<td>+30%/−10%</td>
<td>3.0</td>
<td>65</td>
<td>24</td>
<td>60</td>
<td>150</td>
<td>5.1222</td>
<td>4637.0370</td>
<td>0.0079</td>
<td>3.1111</td>
</tr>
<tr>
<td>SCS30E106SRB</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>+30%/−10%</td>
<td>3.0</td>
<td>65</td>
<td>30</td>
<td>50</td>
<td>75</td>
<td>10.0000</td>
<td>4297.5309</td>
<td>0.112</td>
<td>3.6667</td>
</tr>
<tr>
<td>SCT20E106SRB</td>
<td>12.5</td>
<td>20</td>
<td>10</td>
<td>+30%/−10%</td>
<td>3.0</td>
<td>65</td>
<td>30</td>
<td>50</td>
<td>75</td>
<td>10.0000</td>
<td>4637.0370</td>
<td>0.0112</td>
<td>3.3333</td>
</tr>
<tr>
<td>SCT30E156SRB</td>
<td>12.5</td>
<td>30</td>
<td>15</td>
<td>±20%</td>
<td>3.0</td>
<td>65</td>
<td>50</td>
<td>40</td>
<td>60</td>
<td>10.2222</td>
<td>3067.9012</td>
<td>0.0169</td>
<td>3.8889</td>
</tr>
<tr>
<td>SCCU25E256MRB</td>
<td>16</td>
<td>25</td>
<td>25</td>
<td>±20%</td>
<td>3.0</td>
<td>65</td>
<td>60</td>
<td>27</td>
<td>50</td>
<td>16.6667</td>
<td>3013.5802</td>
<td>0.0281</td>
<td>3.8889</td>
</tr>
<tr>
<td>SCCU30E356MRB</td>
<td>16</td>
<td>30</td>
<td>35</td>
<td>±20%</td>
<td>3.0</td>
<td>65</td>
<td>70</td>
<td>20</td>
<td>40</td>
<td>20.4444</td>
<td>3264.1975</td>
<td>0.0398</td>
<td>4.1111</td>
</tr>
<tr>
<td>SCCV40E506SRB</td>
<td>18</td>
<td>40</td>
<td>50</td>
<td>+30%/−10%</td>
<td>3.0</td>
<td>65</td>
<td>75</td>
<td>18</td>
<td>20</td>
<td>45.0000</td>
<td>4259.2593</td>
<td>0.0562</td>
<td>4.4444</td>
</tr>
</tbody>
</table>

QUALIFICATION TEST SUMMARY

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Method</th>
<th>Parameter</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Cycle</td>
<td>Capacitors are cycled between specified voltage and half-rated voltage under constant current at +25°C for 500,000 cycles</td>
<td>Capacitance Change</td>
<td>≤30% of initial value</td>
</tr>
<tr>
<td>High Temperature Load Life</td>
<td>Temperature: 60 ± 2°C Voltage: V<sub>V</sub>
Test Duration: 1,000 +48/-0 hours</td>
<td>ESR Appearance</td>
<td>≤200% initial value</td>
</tr>
<tr>
<td>Shelf Life</td>
<td>Storage Duration: 12 hours No Load Temperature: Maintain at 25°C</td>
<td>Capacitance Change</td>
<td>≤30% of initial value</td>
</tr>
<tr>
<td>Vibration Resistance</td>
<td>Amplitude: 1.5mm Frequency: 10 ~ 55Hz Direction: X, Y, Z (Each for 2 hours)</td>
<td>ESR Appearance</td>
<td>≤200% initial value</td>
</tr>
<tr>
<td>Humidity</td>
<td>Voltage: V<sub>V</sub>
RH: 90~95% Temperature: 40 ± 2°C Test Duration: 240 hours</td>
<td>Capacitance Change</td>
<td>≤30% of initial value</td>
</tr>
</tbody>
</table>

Downloaded from Arrow.com.
QUALITY AND RELIABILITY

Capacitance vs. Temperature

Leakage Current vs. Temperature

Equivalent Series Resistance vs. Temperature

New 3.0V SCC Series Supercapacitors
High Capacitance Cylindrical Supercapacitors
MECHANICAL SPECIFICATIONS
Radial Lead Type 1F – 50F

<table>
<thead>
<tr>
<th>AVX PN</th>
<th>D (mm)</th>
<th>L (mm)</th>
<th>P (mm)</th>
<th>d (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCQ12E105SRB</td>
<td>6.3</td>
<td>12</td>
<td>2.3</td>
<td>0.6</td>
</tr>
<tr>
<td>SCCR12E105SRB</td>
<td>8</td>
<td>12</td>
<td>3.5</td>
<td>0.6</td>
</tr>
<tr>
<td>SCCR16E205SRB</td>
<td>8</td>
<td>16</td>
<td>3.5</td>
<td>0.6</td>
</tr>
<tr>
<td>SCCR20E335SRB</td>
<td>8</td>
<td>20</td>
<td>3.5</td>
<td>0.6</td>
</tr>
<tr>
<td>SCCS20E505SRB</td>
<td>8</td>
<td>25</td>
<td>5.5</td>
<td>0.6</td>
</tr>
<tr>
<td>SCCS25E705SRB</td>
<td>10</td>
<td>25</td>
<td>5.5</td>
<td>0.6</td>
</tr>
<tr>
<td>SCCS30E106SRB</td>
<td>10</td>
<td>30</td>
<td>5.5</td>
<td>0.6</td>
</tr>
<tr>
<td>SCTX20E106SRB</td>
<td>12.5</td>
<td>20</td>
<td>5.5</td>
<td>0.6</td>
</tr>
<tr>
<td>SCTX30E156SRB</td>
<td>12.5</td>
<td>30</td>
<td>5.5</td>
<td>0.6</td>
</tr>
<tr>
<td>SCCU22E256MRB</td>
<td>16</td>
<td>25</td>
<td>7.5</td>
<td>0.8</td>
</tr>
<tr>
<td>SCCU30E356MRB</td>
<td>16</td>
<td>30</td>
<td>7.5</td>
<td>0.8</td>
</tr>
<tr>
<td>SCCV40E506SRB</td>
<td>18</td>
<td>40</td>
<td>8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Radial Bent Lead Type

SOLDERING RECOMMENDATIONS

When soldering supercapacitors to a PCB, the temperature & time that the body of the supercapacitor sees during soldering can have a negative effect on performance. We advise following these guidelines:

• Do not immerse the supercapacitors in solder. Only the leads should come in contact with the solder.
• Ensure that the body of the supercapacitor is never in contact with the molten solder, the PCB or other components during soldering.
• Excessive temperatures or excessive temperature cycling during soldering may cause the safety vent to burst or the case to shrink or crack, potentially damaging the PCB or other components, and significantly reduce the life of the capacitor.

HAND SOLDERING

Keep distance between the supercapacitor body and the tip of the soldering iron and the tip should never touch the body of the capacitor. Contact between supercapacitor body and soldering iron will cause extensive damage to the supercapacitor, and change its electrical properties. It is recommended that the soldering iron temperature should be less than 350°C, and contact time should be limited to less than 4 seconds. Too much exposure to terminal heat during soldering can cause heat to transfer to the body of the supercapacitor, potentially damaging the electrical properties of the supercapacitor.

WAVE SOLDERING

Only use wave soldering on Radial type supercapacitors. The PCB should be preheated only from the bottom and for less than 60 seconds, with temperature at, or below, 100°C on the top side of the board for PCBs equal to or greater than 0.8 mm thick.

REFLOW SOLDERING

Infrared or conveyor over reflow techniques can be used on these supercapacitors. Do not use a traditional reflow oven without clear rated reflow temperature for supercapacitors.
TEST METHODS

IEC Capacitance Test Method
• Capacitance is measured using a Keithley 2400 or 2602 Meter
• Procedure
 • Charge Capacitor to Rated Voltage at room temperature
 • Disconnect parts from voltage to remove charging effects
 • Discharge cells with a constant current I determined by
 \[4 \times C \times V_R \]
 • Noting \(V_1, t_1, V_2, t_2 \) and performing the calculation for C

\[
C = \frac{I \times (t_2 - t_1)}{(V_1 - V_2)}
\]

DCL Measurement @ 25°C
• DCL is measured using a Multimeter with high internal impedance across a resistor
 • Charge Capacitor to Rated Voltage at room temperature for 72 Hours
 • Disconnect parts from Voltage by opening switch 1 (Stabilize for 10 Min)
 • Measure Voltage across a known Valued Resistor (1K Ohm)
 • Calculate DCL = V/R

Initial ESR Measurement @ 25°C
• Using an Agilent 4263B LCR Meter and a Kelvin connection
 • Measure at frequency of 1000 Hz
 • Measurement Voltage of 10mV

DC ESR Measurement
• Six steps capacity and ESRDC Test Method is used as illustrated in the figure right.
• Tests are carried out by charging and discharging the capacitor for two cycles at rated voltage and half rated voltage
 • \(C = \frac{(C_{DC1}+C_{DC2})}{2} \)
 • \(ESR_{DC} = \frac{(ESR_{DC1} + ESR_{DC2})}{2} \)
 • Noting \(V_5, V_4, V_3, V_2, t_6, t_5, t_4, t_3 \) and performing the calculation for C

\[
C_{DC1} = \frac{I_2 \times (t_5 - t_4)}{(V_3 - V_4)}
\]

\[
C_{DC2} = \frac{I_2 \times (t_11 - t_10)}{V_9 - V_{10}}
\]

\[
ESR_{DC1} = \frac{(V_5 - V_4)}{I_2}
\]

\[
ESR_{DC2} = \frac{(V_{11} - V_{10})}{I_2} \quad \text{I}_1 = \text{I}_2 = 75mA/F
\]

Maximum Operating Current
• This is the maximum current when capacitor temperature rise of the capacitor during its operation is less than 15°C

Maximum Peak Current
• This is the maximum current in less than 1 sec

Watt Density
• \(\text{Watt Density} = (0.12 \times V^2) / R_{DC} / \text{mass} \)

Energy Density
• \(\text{Energy density} = (\frac{1}{2} CV^2) / (3600 \times \text{mass}) \)
POLARITY / REVERSE VOLTAGE

In principal the positive and negative electrodes of the supercapacitors are symmetrical and in theory they should not have a polarity but for product consistency and for optimum performance the negative polarity is marked because the capacitors do not discharge completely when in use. It is recommended that the polarity should be used as marked. If the polarity is reversed the circuit will not have a catastrophic failure but the circuit will see a much higher leakage current for a short duration of time and the life time of the super-capacitors will be reduced.

LIFE TIME AND TEMPERATURE PERFORMANCE

The life of a supercapacitor is impacted by a combination of operating voltage and the operating temperature according to the following equation:

\[t = V^n \times \exp\left(\frac{-Q}{k\times T}\right) \]

where \(V \) is the voltage of operation, \(Q \) is the activation energy in electron volts (eV), \(k \) is the Boltzmann’s constant in eV and \(T \) is the operating temperature in °K (where K is in degrees Kelvin). Typical values for the voltage exponent, \(n \), is between 2.5 - 3.5, and \(Q \) is between 1.0 - 1.2 eV in the normal operating temperature range of 40° to 65°C.

The industry standard for super-capacitor end of life is when the equivalent series resistance, ESR, increases to 200% of the original value and the capacitance drops by 30%. Typically a super-capacitance shows an initial change in the ESR value and then levels off. If the capacitors are exposed to excessive temperatures the ESR will show a continuous degradation. In the extreme case, if the temperatures or voltages are substantially higher, than the rated voltage, this will lead to cell leakage or gas leakage and the product will show a faster change in the ESR which may increase to many times the original value.
SAFETY RECOMMENDATIONS

Warnings
• To Avoid Short Circuit, after usage or test, Super Capacitor voltage needs to discharge to ≤ 0.1V
• Do not Apply Overvoltage, Reverse Charge, Burn or Heat Higher than 150°C, explosion-proof valve may break open
• Do not Press, Damage or disassemble the Super Capacitor, housing could heat to high temperature causing Burns
• If you observe Overheating or Burning Smell from the capacitor disconnect Power immediately, and do not touch

Emergency Applications
• If Housing is Leaking:
 • Skin Contact: Use soap and water thoroughly to wash the area of the skin
 • Eye Contact: Flush with flowing water or saline, and immediately seek medical treatment
 • Ingestion: Immediately wash with water and seek medical treatment

Transportation
Not subjected to US DOT or IATA regulations
UN3499, <10Wh, Non-Hazardous Goods
International shipping description – “Electronic Products – Capacitor”

Licenced by CAP-XX

Regulatory
• UL810a
• RoHS Compliant
• Reach Compliant / Halogen Free

Storage
• Capacitors may be stored within the operating temperature range of the capacitor
• Lower storage temperature is preferred as it extends the shelf life of the capacitor
• Do Not Store the Super Capacitors in the following Environments
 • High Temperature / High Humidity environments >70°C / 40% RH
 • Direct Sunlight
 • In direct contact with water, salt oil or other chemicals
 • In direct contact with corrosive materials, acids, alkalis, or toxic gases
 • Dusty environment
 • In environment with shock and vibration conditions

New 3.0V SCC Series Supercapacitors
High Capacitance Cylindrical Supercapacitors