Typical Applications
The HMC929LP4E is ideal for:
- EW Receivers
- Military Radar
- Test Equipment
- Satellite Communications
- Beam Forming Modules

Functional Diagram

Features
- Octave Bandwidth: 4 - 8 GHz
- 430° Phase Shift
- Low Insertion Loss: 4 dB
- Low Phase Error: ±5 Typ.
- Single Positive Voltage Control
- 24 Lead 4x4 mm QFN Package: 16 mm²

General Description
The HMC929LP4E is an Analog Phase Shifter which is controlled via an analog control voltage from 0 to +13V. The HMC929LP4E provides a continuously variable phase shift of 0 to 430 degrees from 4 to 8 GHz, with extremely consistent low insertion loss versus phase shift and frequency. The high accuracy HMC929LP4E is monotonic with respect to control voltage and features a typical low phase error of ±5 degrees over an octave bandwidth. The HMC929LP4E is housed in an RoHS compliant 4x4 mm QFN leadless package.

Electrical Specifications, \(T_A = +25^\circ \text{C}, \) 50 Ohm System

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency (GHz)</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Shift Range</td>
<td>4 - 8 GHz</td>
<td>430</td>
<td></td>
<td></td>
<td>degrees</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>4 - 8 GHz</td>
<td>4</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Return Loss (input and output)</td>
<td>4 - 8 GHz</td>
<td>15</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Control Voltage Range</td>
<td>4 - 8 GHz</td>
<td>0</td>
<td>13</td>
<td></td>
<td>Volt</td>
</tr>
<tr>
<td>Control Current Range</td>
<td>4 - 8 GHz</td>
<td>±1</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Maximum Input Power for Linear Operation</td>
<td>4 - 8 GHz</td>
<td>10</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Phase Voltage Sensitivity</td>
<td>4 - 8 GHz</td>
<td>35</td>
<td></td>
<td></td>
<td>deg/volt</td>
</tr>
<tr>
<td>Phase Error</td>
<td>4 - 8 GHz</td>
<td>±5</td>
<td></td>
<td></td>
<td>deg</td>
</tr>
<tr>
<td>Phase Error (average)</td>
<td>4 - 8 GHz</td>
<td>2</td>
<td></td>
<td></td>
<td>deg</td>
</tr>
<tr>
<td>Modulation Bandwidth</td>
<td>4 - 8 GHz</td>
<td>20</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Insertion Phase Temperature Sensitivity</td>
<td>4 - 8 GHz</td>
<td>0.11</td>
<td></td>
<td></td>
<td>deg/°C</td>
</tr>
</tbody>
</table>

* Up to a phase shift range of 380 degrees.
HMC929* PRODUCT PAGE QUICK LINKS

Last Content Update: 12/18/2017

COMPARABLE PARTS
View a parametric search of comparable parts.

EVALUATION KITS
• HMC929LP4E Evaluation Board

DOCUMENTATION
Data Sheet
• HMC929 Data Sheet

REFERENCE MATERIALS
Quality Documentation
• Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
• Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)

DESIGN RESOURCES
• HMC929 Material Declaration
• PCN-PDN Information
• Quality And Reliability
• Symbols and Footprints

DISCUSSIONS
View all HMC929 EngineerZone Discussions.

SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
HMC929LP4E

430° ANALOG PHASE SHIFTER,

4 - 8 GHz

Insertion Loss vs. Frequency

![Insertion Loss vs. Frequency Graph]

Insertion Loss vs. Vctl, F = 6 GHz

![Insertion Loss vs. Vctl Graph]

Phase Shift vs. Vctl

![Phase Shift vs. Vctl Graph]

Phase Shift vs. Frequency @ Vctl = 6V (Relative to Vctl = 0V)

![Phase Shift vs. Frequency Graph]

Phase Shift vs. Frequency (Relative to Vctl = 0V) Vctl = 0.5 to 13V

![Phase Shift vs. Frequency Graph]

Phase Error vs. Frequency, Fmean = 6 GHz [1]

![Phase Error vs. Frequency Graph]

[1] 0 to 10V provides 0 - 380 degrees phase shift range

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Downloaded from Arrow.com.
HMC929LP4E

430° ANALOG PHASE SHIFTER, 4 - 8 GHz

Second Harmonics vs. Vctl, F = 6 GHz

Third Harmonics vs. Vctl, F = 6 GHz

Input IP3 vs. Vctl, F = 6 GHz

Insertion Loss vs. Pin @ 4 GHz

Insertion Loss vs. Pin @ 6 GHz

Insertion Loss vs. Pin @ 8 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106

Phone: 781-329-4700 • Order online at www.analog.com

Application Support: Phone: 1-800-ANALOG-D
HMC929LP4E

430° ANALOG PHASE SHIFTER, 4 - 8 GHz

Phase Shift vs. Pin @ 4 GHz

Phase Shift vs. Pin @ 6 GHz

Phase Shift vs. Pin @ 8 GHz

Input Return Loss vs. Frequency, Vctl = 0 to +13V

Output Return Loss vs. Frequency, Vctl = 0 to +13V

Reliability Information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction Temperature (TJ)</td>
<td>150 °C</td>
</tr>
<tr>
<td>Nominal Junction Temperature</td>
<td>87 °C</td>
</tr>
<tr>
<td>(T = 85 °C, Pin = 10 dBm)</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>45 °C/W</td>
</tr>
<tr>
<td>(Junction to GND Paddle)</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 to +85 °C</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power (RFIN)</td>
<td>+27 dBm</td>
</tr>
<tr>
<td>Control Voltage (Vctl)</td>
<td>-0.5V to +15V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 to +150 °C</td>
</tr>
<tr>
<td>ESD Sensitivity (HBM)</td>
<td>Class 1B</td>
</tr>
</tbody>
</table>

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Outline Drawing

![Outline Drawing](image-url)

Package Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package Body Material</th>
<th>Lead Finish</th>
<th>MSL Rating</th>
<th>Package Marking *</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC929LP4E</td>
<td>RoHS-compliant Low Stress Injection Molded Plastic</td>
<td>100% matte Sn</td>
<td>MSL1 *</td>
<td>H929 XXXX</td>
</tr>
</tbody>
</table>

[*] 4-Digit lot number XXXX

[*] Max peak reflow temperature of 260 °C

Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 5 - 14, 16 - 20, 22 - 24</td>
<td>N/C</td>
<td>No connection required. These pins may be connected to RF/DC ground without affecting performance.</td>
<td></td>
</tr>
<tr>
<td>2, 4, 15, 17</td>
<td>GND</td>
<td>Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RFIN</td>
<td>Port is DC blocked.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RFOUT</td>
<td>Port is DC blocked.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Vctl</td>
<td>Phase shift control pin. Application of a voltage between 0 and 13 volts causes the transmission phase to change. The DC equivalent circuit is a series connected diode and resistor.</td>
<td></td>
</tr>
</tbody>
</table>

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D
Evaluation PCB

List of Materials for Evaluation PCB 108812 [1]

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1, J2</td>
<td>PCB Mount SMA Connector, SRI</td>
</tr>
<tr>
<td>J3</td>
<td>PCB Mount SMA Connector</td>
</tr>
<tr>
<td>U1</td>
<td>HMC929LP4E Analog Phase Shifter</td>
</tr>
<tr>
<td>PCB [2]</td>
<td>111296 Evaluation PCB</td>
</tr>
</tbody>
</table>

[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.