MPI25-V2
High current, low profile, miniature power inductors

Product features
• High current carrying capacity in a compact standard 1008 (2520 metric) footprint
• Magnetically shielded, Low EMI
• Rugged construction
• Self resonant frequency (SRF) greater than 25 MHz
• Inductance range from 0.33 μH to 4.7 μH
• Current range from 1.2 A to 7.5 A
• 2.7 mm x 2.2 mm footprint surface mount package in 1.05 mm, 1.25 mm heights
• Moisture Sensitivity Level (MSL): 1

Applications
• Mobile/smart phones
• Handheld/mobile equipment
• Tablets/e-readers
• Digital cameras
• Wearable devices
• Notebook/netbook/laptop regulators
• Portable media players

Environmental data
• Storage temperature range (Component): -40 °C to +125 °C
• Operating temperature range: -40 °C to +125 °C (ambient plus self-temperature rise)
• Solder reflow temperature: J-STD-020 (latest revision) compliant
• Halogen free, lead free, RoHS compliant
Product specifications

<table>
<thead>
<tr>
<th>Part Number</th>
<th>OCL (μH) ±20%</th>
<th></th>
<th></th>
<th>DCR (mΩ)</th>
<th>DCR (mΩ)</th>
<th>SRF (MHz)</th>
<th>K-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>typical @ +20 °C</td>
<td>maximum @ +20 °C</td>
<td>typical</td>
<td></td>
</tr>
<tr>
<td>1.0 mm height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI2510V2-R33-R</td>
<td>0.33</td>
<td>4.8</td>
<td>6.6</td>
<td>15</td>
<td>20</td>
<td>120</td>
<td>6336</td>
</tr>
<tr>
<td>MPI2510V2-R47-R</td>
<td>0.47</td>
<td>4.4</td>
<td>6.0</td>
<td>19</td>
<td>25</td>
<td>100</td>
<td>5039</td>
</tr>
<tr>
<td>MPI2510V2-R68-R</td>
<td>0.68</td>
<td>3.1</td>
<td>4.3</td>
<td>37</td>
<td>44</td>
<td>80</td>
<td>5733</td>
</tr>
<tr>
<td>MPI2510V2-1RD-R</td>
<td>1.00</td>
<td>3.1</td>
<td>4.3</td>
<td>41</td>
<td>52</td>
<td>55</td>
<td>3372</td>
</tr>
<tr>
<td>MPI2510V2-1R5-R</td>
<td>1.50</td>
<td>2.5</td>
<td>2.5</td>
<td>65</td>
<td>85</td>
<td>45</td>
<td>4695</td>
</tr>
<tr>
<td>MPI2510V2-2R2-R</td>
<td>2.20</td>
<td>2.1</td>
<td>2.8</td>
<td>88</td>
<td>110</td>
<td>45</td>
<td>2873</td>
</tr>
<tr>
<td>MPI2510V2-3R3-R</td>
<td>3.30</td>
<td>1.6</td>
<td>2.1</td>
<td>140</td>
<td>170</td>
<td>35</td>
<td>1893</td>
</tr>
<tr>
<td>MPI2510V2-4R7-R</td>
<td>4.70</td>
<td>1.22</td>
<td>1.8</td>
<td>220</td>
<td>262</td>
<td>25</td>
<td>1616</td>
</tr>
<tr>
<td>1.2 mm height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI2512V2-R33-R</td>
<td>0.33</td>
<td>5.1</td>
<td>7.5</td>
<td>14</td>
<td>19</td>
<td>130</td>
<td>6560</td>
</tr>
<tr>
<td>MPI2512V2-R47-R</td>
<td>0.47</td>
<td>4.9</td>
<td>6.7</td>
<td>17</td>
<td>23</td>
<td>100</td>
<td>3628</td>
</tr>
<tr>
<td>MPI2512V2-R68-R</td>
<td>0.68</td>
<td>3.4</td>
<td>6.0</td>
<td>29</td>
<td>35</td>
<td>70</td>
<td>3633</td>
</tr>
<tr>
<td>MPI2512V2-1RD-R</td>
<td>1.00</td>
<td>3.3</td>
<td>4.4</td>
<td>36</td>
<td>44</td>
<td>70</td>
<td>3083</td>
</tr>
<tr>
<td>MPI2512V2-1R5-R</td>
<td>1.50</td>
<td>2.3</td>
<td>3.2</td>
<td>64</td>
<td>77</td>
<td>45</td>
<td>4850</td>
</tr>
<tr>
<td>MPI2512V2-2R2-R</td>
<td>2.20</td>
<td>2.2</td>
<td>3.5</td>
<td>73</td>
<td>87</td>
<td>30</td>
<td>2924</td>
</tr>
<tr>
<td>MPI2512V2-3R3-R</td>
<td>3.30</td>
<td>1.8</td>
<td>2.8</td>
<td>110</td>
<td>135</td>
<td>35</td>
<td>1965</td>
</tr>
<tr>
<td>MPI2512V2-4R7-R</td>
<td>4.70</td>
<td>1.4</td>
<td>1.9</td>
<td>196</td>
<td>235</td>
<td>25</td>
<td>1580</td>
</tr>
</tbody>
</table>

1. Open Circuit Inductance (OCL) Test Parameters: 1.0 MHz, 0.1 Vrms, 0.0 Adc, +25 °C.
2. I_{rms}: DC current for an approximate temperature rise of 40 °C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed +125 °C under worst case operating conditions verified in the end application.
3. I_{sat}: Peak current for approximately 30% rolloff @ +25 °C.
4. K-factor: Used to determine Bp-p for core loss (see graph). Bp-p = K * L * ΔI. Bp-p (Gauss), K: (K-factor from table), L: (Inductance in μH), ΔI (Peak to peak ripple current in Amps).
5. Part Number Definition: MPI25xxV2-xxx-R
 - MPI25 = Product code
 - xx= Height indicator
 - V2=Version indicator
 - xxx= inductance value in μH, R= decimal point, If no R is present then last character equals number of zeros
 - R suffix = RoHS compliant

Dimensions (mm)

<table>
<thead>
<tr>
<th>Dimension A</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI2510V2</td>
</tr>
<tr>
<td>MPI2512V2</td>
</tr>
</tbody>
</table>

No marking
All soldering surfaces to be coplanar within 0.10 millimeters
Tolerances are ±0.2 millimeters unless stated otherwise
Pad layout tolerances are ±0.1 millimeters unless stated otherwise
Do not route traces or vias underneath the inductor
MPI25-V2
High current, low profile, miniature power inductors

Packaging information (mm)
Supplied in tape and reel packaging, 3000 parts per 7” diameter reel

Core loss vs. Bp-p (+25 °C)
Core loss vs. Bp-p (+25 °C)

MPI2510V2-R68-R

MPI2510V2-1R0-R

MPI2510V2-1R5-R

MPI2510V2-2R2-R

MPI2510V2-3R3-R

MPI2510V2-4R7-R
Core loss vs. Bp-p (+25 °C)

MPI2512V2-R33-R

MPI2512V2-R47-R

MPI2512V2-R68-R

MPI2512V2-1R0-R

MPI2512V2-1R5-R

MPI2512V2-2R2-R

Core loss vs. Bp-p (+25 °C)
Core loss vs. Bp-p (+25 °C)

Inductance and Q vs. Frequency
Inductance and Q vs. Frequency

MPI2510V2-1R5-R

- **Frequency (MHz):** 0.1 to 1000.0
- **Inductance (uH):** 0 to 3.0
- **Q value:** 0 to 35

MPI2510V2-2R2-R

- **Frequency (MHz):** 0.1 to 1000.0
- **Inductance (uH):** 0 to 5.0
- **Q value:** 0 to 35

MPI2510V2-3R3-R

- **Frequency (MHz):** 0.1 to 1000.0
- **Inductance (uH):** 0 to 9.0
- **Q value:** 0 to 45

MPI2510V2-4R7-R

- **Frequency (MHz):** 0.1 to 1000.0
- **Inductance (uH):** 0 to 3.0
- **Q value:** 0 to 35

MPI2512V2-R33-R

- **Frequency (MHz):** 0.1 to 1000.0
- **Inductance (uH):** 0 to 0.15
- **Q value:** 0 to 0.8

MPI2512V2-R47-R

- **Frequency (MHz):** 0.1 to 1000.0
- **Inductance (uH):** 0 to 0.15
- **Q value:** 0 to 0.8
Inductance and Q vs. Frequency

MPI2512V2-R68-R

MPI2512V2-R0-R

MPI2512V2-1R0-R

MPI2512V2-2R2-R

MPI2512V2-3R3-R

MPI2512V2-4R7-R
Inductance and temperature rise vs. Current

MPI2510V2-R33-R

MPI2510V2-R47-R

MPI2510V2-R68-R

MPI2510V2-1R0-R

MPI2510V2-1R5-R

MPI2510V2-2R2-R
Inductance and temperature rise vs. Current

MPI2510V2-3R3-R

MPI2510V2-4R7-R

MPI2512V2-R33-R

MPI2512V2-R47-R

MPI2512V2-R68-R

MPI2512V2-1R0-R
Inductance and temperature rise vs. Current

MPI2512V2-1R5-R

Inductance (μH) vs. Idc (A)

Temperature rise (°C)

MPI2512V2-2R2-R

Inductance (μH) vs. Idc (A)

Temperature rise (°C)

MPI2512V2-3R3-R

Inductance (μH) vs. Idc (A)

Temperature rise (°C)

MPI2512V2-4R7-R

Inductance (μH) vs. Idc (A)

Temperature rise (°C)
Solder reflow profile

![Solder reflow profile diagram]

Reference JDEC J-STD-020

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Standard SnPb Solder</th>
<th>Lead (Pb) Free Solder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preheat and Soak</td>
<td>• Temperature min. (T_{\text{min}}) 100 °C</td>
<td>150 °C</td>
</tr>
<tr>
<td></td>
<td>• Temperature max. (T_{\text{max}}) 150 °C</td>
<td>200 °C</td>
</tr>
<tr>
<td></td>
<td>• Time (T_{\text{min}}) to (T_{\text{max}}) (t) 60-120 Seconds</td>
<td>60-120 Seconds</td>
</tr>
<tr>
<td>Average ramp up rate (T_{\text{max}}) to (T_{\text{p}})</td>
<td>3°C/ Second Max.</td>
<td>3 °C/ Second Max.</td>
</tr>
<tr>
<td>Liquidous temperature (T_{l})</td>
<td>183 °C</td>
<td>217 °C</td>
</tr>
<tr>
<td>Time at liquidous (T_{l})</td>
<td>60-150 Seconds</td>
<td>60-150 Seconds</td>
</tr>
<tr>
<td>Peak package body temperature (T_{p})*</td>
<td>Table 1</td>
<td>Table 2</td>
</tr>
<tr>
<td>Time (T_{p})* within 5 °C of the specified classification temperature (T_{c})</td>
<td>20 Seconds**</td>
<td>30 Seconds**</td>
</tr>
<tr>
<td>Average ramp-down rate (T_{p}) to (T_{\text{max}})</td>
<td>6 °C/ Second Max.</td>
<td>6 °C/ Second Max.</td>
</tr>
<tr>
<td>Time 25 °C to Peak Temperature</td>
<td>6 Minutes Max.</td>
<td>8 Minutes Max.</td>
</tr>
</tbody>
</table>

* Tolerance for peak profile temperature \(T_{p}\) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature \(T_{p}\) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.