PWM Fan Speed Controller with FanSense™

FEATURES

- Temperature Proportional Fan Speed for Acoustic Control and Longer Fan Life
- Efficient PWM Fan Drive
- 3.0V to 5.5V Supply Range; Fan Voltage Independent of TC642 Supply Voltage - Supports Any Fan Voltage!
- FanSense™ Fault Detection Circuits Protect Against Fan Failure and Aid System Testing
- Shutdown Mode for “Green” Systems
- Supports Low Cost NTC/PTC Thermistors
- Space-Saving 8-Pin PDIP and SOIC Packages

APPLICATIONS

- Power Supplies
- Personal Computers
- File Servers
- Microchip Technology Equipment
- UPS’s, Power Amps, etc.
- General Purpose Fan Speed Control

GENERAL DESCRIPTION

The TC642 is a switch mode fan speed controller for use with brushless DC motors. Temperature proportional speed control is accomplished using pulse width modulation. A thermistor (or other voltage output temperature sensor) connected to the VIN input furnishes the required control voltage of 1.25V to 2.65V (typical) for 0% to 100% PWM duty cycle. Minimum fan speed is set by a simple resistor divider on the V_MIN input. An integrated Start-Up Timer ensures reliable motor start-up at turn-on, coming out of Shutdown Mode, or following a transient fault.

A logic low applied to V_MIN, pin 3, causes fan shutdown. The TC642 also features Microchip Technology’s proprietary FanSense™ technology for increasing system reliability. In normal fan operation, a pulse train is present at SENSE, pin 5, indicating normal operation. A missing-pulse detector monitors this pin during normal fan operation. A stalled, open, or unconnected fan causes the TC642 to trigger its start-up timer once. If the fault persists, the FAULT output goes low, and the device is latched in its Shutdown Mode. FAULT is also asserted if the PWM reaches 100%

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Package</th>
<th>Temp. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC642COA</td>
<td>8-Pin SOIC</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>TC642CPA</td>
<td>8-Pin Plastic DIP</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>TC642VOA</td>
<td>8-Pin SOIC</td>
<td>0°C to +85°C</td>
</tr>
<tr>
<td>TC642VPA</td>
<td>8-Pin Plastic DIP</td>
<td>0°C to +85°C</td>
</tr>
</tbody>
</table>

TC642EV Evaluation Kit for TC642

PIN CONFIGURATIONS

PDIP

<table>
<thead>
<tr>
<th>V_IN</th>
<th>1</th>
<th>V_DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_F</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>V_MIN</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

SOIC

<table>
<thead>
<tr>
<th>V_IN</th>
<th>1</th>
<th>V_DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_F</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>V_MIN</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
PWM Fan Speed Controller with FanSense™

TC642

Duty cycle, indicating a possible thermal runaway situation, although the fan continues to run. See the Applications section for more information and system design guidelines.

The TC642 is available in a standard 8-pin plastic DIP, and SOIC packages. Commercial and industrial temperature ranges are available in both package options.

ABSOLUTE MAXIMUM RATINGS

Package Power Dissipation (T_A ≤ 70°C)
- Plastic DIP: 730mW
- Small Outline (SOIC): 470mW

Derating Factors: 8mW/°C

Supply Voltage: 6V

Input Voltage, Any Pin: (GND – 0.3V) to (V_DD + 0.3V)

Operating Temperature Range: -0°C to +125°C

Maximum Chip Temperature: +150°C

Storage Temperature Range: -65°C to +150°C

Lead Temperature (Soldering, 10 sec): +300°C

*Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: T_MIN < T_A < T_MAX, V_DD = 3.0V to 5.5V, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DD</td>
<td>Supply Voltage</td>
<td>Tests 3.0 – 5.5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_DD</td>
<td>Supply Current, Operating</td>
<td>Pins 3, 5, 7 Open, C_F = 1µF, V_IN = V(C_MAX)</td>
<td>—</td>
<td>0.5</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>I_DD(SHDN)</td>
<td>Supply Current, Shutdown Mode</td>
<td>Pins 1, 5, 7 Open, C_F = 1µF, V_MIN = 0.35V, Note 1</td>
<td>—</td>
<td>25</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_IN</td>
<td>V_IN, V_MIN Input Leakage</td>
<td>Note 1</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>+1</td>
</tr>
<tr>
<td>V_OUT</td>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_R</td>
<td>V_OUT Rise Time</td>
<td>I_OFF = 5mA, Note 1</td>
<td>—</td>
<td>50</td>
<td></td>
<td>µsec</td>
</tr>
<tr>
<td>t_F</td>
<td>V_OUT Fall Time</td>
<td>I_OFF = 1mA, Note 1</td>
<td>—</td>
<td>50</td>
<td></td>
<td>µsec</td>
</tr>
<tr>
<td>I_SHDN</td>
<td>Pulse Width (On V_MIN) to Clear Fault Mode</td>
<td>V_SHDN, V_HYST Specifications</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>µsec</td>
</tr>
<tr>
<td>I_OH</td>
<td>Sink Current at V_OUT Output</td>
<td>V_OH = 10% of V_DD</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>I_OH</td>
<td>Source Current at V_OUT Output</td>
<td>V_OH = 80% of V_DD</td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>V_IN, V_MIN Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(C_MAX), V_OTF</td>
<td>Input Voltage at V_IN or V_MIN for 100% PWM Duty Cycle</td>
<td>2.5</td>
<td>2.65</td>
<td>2.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(C(SPAN))</td>
<td>V(C_MAX) – V(C_MIN)</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_SHDN</td>
<td>Voltage Applied to V_MIN to Shutdown Mode</td>
<td>—</td>
<td>—</td>
<td>V_DD x 0.13</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_REL</td>
<td>Voltage Applied to V_MIN to Release Shutdown Mode</td>
<td>V_DD = 5V</td>
<td>V_DD x 0.19</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
</tbody>
</table>

Pulse-Width Modulator

| F | PWM Frequency | C_F = 1.0µF | 26 | 30 | 34 | Hz |

Sense Input

| V_TH(SENS) | SENSE Input Threshold Voltage with Respect to GND | 50 | 70 | 90 | mV |
PWM Fan Speed Controller with FanSense™

ELECTRICAL CHARACTERISTICS (Cont.): $T_{\text{MIN}} < T_A < T_{\text{MAX}}$, $V_{\text{DD}} = 3.0\, \text{V}$ to $5.5\, \text{V}$, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage</td>
<td>$I_{\text{OH}} = 2.5, \text{mA}$</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>t_{MP}</td>
<td>Missing Pulse Detector Timeout</td>
<td>—</td>
<td>—</td>
<td>32/F</td>
<td>—</td>
<td>Sec</td>
</tr>
<tr>
<td>t_{STARTUP}</td>
<td>Startup Time</td>
<td>—</td>
<td>—</td>
<td>32/F</td>
<td>—</td>
<td>Sec</td>
</tr>
<tr>
<td>T_{DIAG}</td>
<td>Diagnostic Timer Period</td>
<td>—</td>
<td>—</td>
<td>3/F</td>
<td>—</td>
<td>Sec</td>
</tr>
</tbody>
</table>

Note: 1. Guaranteed by design, not tested.

PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin No. (PDIP/SOIC)</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{IN}</td>
<td>Analog input. The thermistor network (or other temperature sensor) connects to this input. A voltage range of 1.25V to 2.65V (typical) on this pin drives an active duty cycle of 0% to 100% on the V_{OUT} pin.</td>
</tr>
<tr>
<td>2</td>
<td>C_{F}</td>
<td>Analog output. Positive terminal for the PWM ramp generator timing capacitor. The recommended C_{F} is $1, \mu\text{F}$ for 30Hz PWM operation.</td>
</tr>
<tr>
<td>3</td>
<td>V_{MIN}</td>
<td>Analog input. An external resistor divider connected to this input sets the minimum fan speed by fixing the minimum PWM duty cycle (1.25V to 2.65V = 0% to 100%, typical). The TC642 enters Shutdown mode when $0 \leq V_{\text{MIN}} \leq V_{\text{SHDN}}$. During Shutdown, the FAULT output is inactive, and supply current falls to $25, \mu\text{A}$ (typical). The TC642 exits Shutdown mode when $V_{\text{MIN}} \geq V_{\text{REL}}$. See Applications section for more details.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground Terminal.</td>
</tr>
<tr>
<td>5</td>
<td>SENSE</td>
<td>Analog input. Pulses are detected at this pin as fan rotation chops the current through a sense resistor. The absence of pulses indicates a fault (FanSense™).</td>
</tr>
<tr>
<td>6</td>
<td>FAULT</td>
<td>Digital (open collector) output. This line goes low to indicate a fault condition. When FAULT goes low due to a fan fault, the device is latched in Shutdown Mode until deliberately cleared or until power is cycled. FAULT may be connected to V_{MIN} if a hard shutdown is desired. FAULT will also be asserted when the PWM reaches 100% duty cycle, however the device will not latch itself off unless FAULT is tied to V_{MIN} externally.</td>
</tr>
<tr>
<td>7</td>
<td>V_{OUT}</td>
<td>Digital output. This active high complimentary output connects to the base of an external NPN motor drive transistor. This output has asymmetrical drive. - See Electrical Characteristics section.</td>
</tr>
<tr>
<td>8</td>
<td>V_{DD}</td>
<td>Power Supply Input. May be independent of fan power supply. See Electrical Characteristics section.</td>
</tr>
</tbody>
</table>

DETAILED DESCRIPTION

PWM

The PWM circuit consists of a ramp generator and threshold detector. The frequency of the PWM is determined by the value of the capacitor connected to the C_{F} input. A frequency of 30Hz is recommended ($C_{\text{F}} = 1\, \mu\text{F}$). The PWM is also the timebase for the startup and fault timer (see below). The PWM voltage control range is 1.25V to 2.65V (typical) for 0% to 100% output duty cycle.

V_{OUT} Output

The V_{OUT} pin is designed to drive a low-cost transistor or MOSFET as the low side power switching element in the system. Various examples of driver circuits will be shown below. This output has asymmetric complementary drive and is optimized for driving NPN transistors or N-channel MOSFETs. Since the system relies on PWM rather than linear power control, the dissipation in the power switch is kept to a minimum. Generally, very small devices (TO-92 or SOT package) will suffice.
PWM Fan Speed Controller with FanSense™

TC642

Start-Up Timer

To ensure reliable fan start-up, the Start-Up Timer turns the VOUT output on for 32 cycles of the PWM whenever the fan is started from the off state. This occurs at power-up and when coming out of Shutdown mode. If the PWM frequency is 30Hz (CF = 1µF), the resulting start-up time will be about one second. If a fault is detected (see below), the Diagnostic Timer is triggered once, followed by the Start-Up Timer. If the fault persists, the device is shut down. See FAULT Output below.

Shutdown Control (Optional)

If VMIN, pin 3, is pulled below VSHDN, the TC642 will go into Shutdown mode. This can be accomplished by driving VMIN with an open drain logic signal or using an external transistor as shown in Figure 1. All functions are suspended until the voltage on VMIN becomes higher than VREL (0.85V @ VDD = 5.0V). Pulling VMIN below VSHDN will always result in complete device shutdown and reset. The FAULT output is unconditionally inactive in Shutdown mode.

A small amount of hysteresis, typically one percent of VDD, (50mV at VDD = 5.0V) is designed into the VSHDN/VREL threshold. The levels specified for VSHDN and VREL in the Electrical Characteristics section include this hysteresis plus adequate margin to account for normal variations in the absolute value of the threshold and hysteresis.

CAUTION: Shutdown mode is unconditional. That is, the fan will not be activated regardless of the voltage on VIN. The fan should not be shut down until all heat-producing activity in the system is at a negligible level.

SENSE Input (FanSense™)

The SENSE input, pin 5, is connected to a low-value current sensing resistor in the ground return leg of the fan circuit. During normal fan operation, commutation occurs as each pole of the fan is energized. This causes brief interruptions in the fan current, seen as pulses across the sense resistor. If the device is not in Shutdown Mode and pulses are not appearing at the SENSE input, a fault exists.

The short, rapid change in fan current (high dI/dt) causes a corresponding dV/ dt across the sense resistor, RSENSE. The waveform on RSENSE is differentiated and converted to a logic-level pulse-train by CSense and the internal signal processing circuitry. The presence and frequency of this pulse-train is a direct indication of fan operation. See the Applications section for more details.

FAULT Output

The TC642 detects faults in two ways: (1) Pulses appearing at SENSE due to the PWM turning on are blanked and the remaining pulses are filtered by a missing pulse detector. If consecutive pulses are not detected for 32 PWM cycles (=1 Sec if CF = 1µF), the Diagnostic Timer is activated, and VOUT is driven continuously for three PWM cycles (=100msec if CF = 1µF). If a pulse is not detected within this window, the Start-Up Timer is triggered (see above). This should clear a transient fault condition. If the Missing Pulse Detector times out again, the PWM is stopped, and FAULT goes low. When FAULT is activated due to this condition, the device is latched in Shutdown mode and will remain off indefinitely. (Diodes D1, D2 and resistor R5 are provided to ensure that startup are the result of a fault, and not an over-temperature fault. A CMOS logic OR gate may be substituted for these components if available).

When FAULT is activated due to this condition, the device is latched in Shutdown mode and will remain off indefinitely. Important: At this point, action must be taken to restart the fan by momentarily pulling VMIN below VSHDN; or cycling system power. In either case, the fan cannot remain disabled due to a fault condition as severe system damage could result. If the fan cannot be restarted, the system should be shut down. The TC642 may be configured to continuously attempt fan restarts if so desired.

Continuous restart mode is enabled by connecting the FAULT output to VMIN through a 0.1µF capacitor as shown in Figure 1. When so connected, the TC642 automatically attempts to restart the fan whenever a fault condition occurs. When the fault output is driven low, the VMIN input is momentarily pulled below VSHDN, initiating a reset and clearing the fault condition, and normal fan startup is then attempted as previously described. The FAULT output may be connected to external logic (or the interrupt input of a microcontroller) to shut the TC642 down if multiple fault pulses are detected at approximately one second intervals.

Figure 1.
(2) FAULT is also asserted when the PWM control voltage applied to VIN becomes greater than that needed to drive 100% duty cycle (see Electrical Characteristics). This indicates that the fan is at maximum drive, and the potential exists for system overheating. Either heat dissipation in the system has gone beyond the cooling system's design limits, or some subtle fault exists such as fan bearing failure or an airflow obstruction. This output may be treated as a System Overheat warning and used to trigger system shutdown. However, in this case, the fan will continue to run even when FAULT is asserted. If a shutdown is desired, FAULT may be connected to VMIN outside the device. This will latch the TC642 in Shutdown Mode when any fault occurs.

SYSTEM BEHAVIOR

The flowcharts describing the TC642’s behavioral algorithm are shown in Figure 3. They can be summarized as follows:

Power-Up

(1) Assuming the device is not being held in Shutdown mode (VMIN > VREL)...
(2) Turn VOUT output on for 32 cycles of the PWM clock. This ensures that the fan will start from a dead stop.
(3) During this Start-up Timer, if a fan pulse is detected, branch to Normal Operation; if none are received...
(4) Activate the 32-cycle Start-up Timer one more time and look for fan pulse; if a fan pulse is detected, proceed to Normal Operation; if none are received...
(5) Proceed to Fan Fault
(6) End

After this period elapses, the TC642 begins normal operation.

Normal Operation

Normal Operation is an endless loop which may only be exited by entering Shutdown mode or Fan Fault. The loop can be thought of as executing at the frequency of the oscillator and PWM.

(1) Reset the Missing Pulse Detector
(2) Is TC642 in Shutdown? If so...
 a. VOUT duty-cycle goes to zero.
 b. FAULT is disabled.
 c. Exit the loop and wait for VMIN > VREL to resume operation (indistinguishable from Power-Up).
(3) If an over-temperature fault occurs (VIN > VOTF) then activate FAULT; release FAULT when VIN < VOTF.
(4) Drive VOUT to a duty-cycle proportional to greater of VIN and VMIN on a cycle by cycle basis.
(5) If a fan pulse is detected, branch back to the start of the loop (1).
(6) If the missing pulse detector times out ...
(7) Activate the 3-cycle Diagnostic Timer and look for pulses; if a fan pulse is detected, branch back to the start of the loop (1); if none are received...
(8) Activate the 32-cycle Startup Timer and look for pulses; if a fan pulse is detected, branch back to the start of the loop (1); if none are received...
(9) Quit Normal Operation and go to Fan Fault.
(10) End

Fan Fault

Fan Fault is essentially an infinite loop wherein the TC642 is latched in Shutdown Mode. This mode can only be released by a Reset, i.e., VMIN being brought below VSDHN, then above VREL, or by power-cycling.

(1) While in this state, FAULT is latched on (low), and the VOUT output is disabled.
(2) A Reset sequence applied to the VMIN pin will exit the loop to Power Up.
(3) End
PWM Fan Speed Controller with FanSense™

TC642

Figure 3. TC642 Behavioral Algorithm Flowchart
APPLICATIONS INFORMATION

Designing with the TC642 involves the following:

1. The temp sensor network must be configured to deliver 1.25V to 2.65V on V IN for 0% to 100% of the temperature range to be regulated.

2. The minimum fan speed (V MIN) must be set.

3. The output drive transistor and associated circuitry must be selected.

4. The Sense Network, R SENSE and C SENSE, must be designed for maximum efficiency while delivering adequate signal amplitude.

5. If Shutdown capability is desired, the drive requirements of the external signal or circuit must be considered.

The TC642DEMO demonstration and prototyping board and the TC642EV Evaluation Kit provide working examples of TC642 circuits and prototyping aids. The TC642DEMO is a printed circuit board optimized for small size and ease of inclusion into system prototypes. The TC642EV is a larger board intended for benchtop development and analysis. At the very least, anyone contemplating a design using the TC642 should consult the documentation for both TC642EV and TC642DEMO.

Temperature Sensor Design

The temperature signal connected to V IN must output a voltage in the range of 1.25V to 2.65V (typical) for 0% to 100% of the temperature range of interest. The circuit of Figure 4 is a convenient way to provide this signal.

Figure 4 illustrates a simple temperature dependent voltage divider circuit. T1 is a conventional NTC thermistor, and R1 and R2 are standard resistors. The supply voltage, V DD, is divided between R2 and the parallel combination of T1 and R1. (For convenience, the parallel combination of T1 and R1 will be referred to as R TEMP.) The resistance of the thermistor at various temperatures is obtained from the manufacturer’s specifications. Thermistors are often referred to in terms of their resistance at 25°C. A thermistor with a 25°C resistance on the order of 100kΩ will result in reasonable values for R1, R2, and I DIV. In order to determine R1 and R2, we must specify the fan duty-cycle, i.e. V IN, at any two temperatures. Equipped with these two points on the system’s operating curve and the thermistor data, we can write the defining equations:

\[
\frac{V_{DD} \times R2}{R_{TEMP} (t1) + R2} = V(t1)
\]

\[
\frac{V_{DD} \times R2}{R_{TEMP} (t2) + R2} = V(t2)
\]

Equation 1.

Where t1 and t2 are the chosen temperatures and R TEMP is the parallel combination of the thermistor and R1. These two equations permit solving for the two unknown variables, R1 and R2. Note that resistor R1 is not absolutely necessary, but it helps to linearize the response of the network.

Minimum Fan Speed

A voltage divider on V MIN sets the minimum PWM duty cycle and, thus, the minimum fan speed. As with the V IN input, 1.25V to 2.65V corresponds to 0% to 100% duty cycle. Assuming that fan speed is linearly related to duty-cycle, the minimum speed voltage is given by the equation:

\[
V_{MIN} = \frac{\text{Minimum Speed}}{\text{Full Speed}} \times (1.4V) + 1.25V
\]

Equation 2.

For example, if 2500 RPM equates to 100% fan speed, and a minimum speed of 1000 RPM is desired, then the V MIN voltage is:

\[
V_{MIN} = \frac{1000}{2500} \times (1.4V) + 1.25V = 1.81V
\]

Equation 3.

The V MIN voltage may be set using a simple resistor divider as shown in Figure 5. Per the Electrical Characteristics, the leakage current at the V MIN pin is no more than 1µA. If V DD = 5.0V then...

\[
I_{DIV} = 1e^{-4} A = \frac{5.0V}{R1 + R2}
\]

\[
R1 + R2 = \frac{5.0V}{1e^{-4} A} = 50,000\Omega = 50k\Omega
\]

Equation 4.

We can further specify R1 and R2 by the condition that the divider voltage is equal to our desired V MIN. This yields the following equation:
PWM Fan Speed Controller with FanSense™

TC642

Figure 4. Temperature Sensing Circuit

Figure 5. V_MIN Circuit

Figure 6. Circuit for Determining R_BASE

Figure 7. SENSE Network
V\text{MIN} = V_{DD} \times \frac{R2}{R1 + R2} \quad \text{Equation 5.}

Solving for the relationship between R1 and R2 results in the following equation:

R1 = R2 \times \frac{V_{DD} - V\text{MIN}}{V\text{MIN}} \quad \text{Equation 6.}

In the case of this example, R1 = (1.762) R2. Substituting this relationship back into Equation 4 yields the resistor values:

R2 = 18.1k\Omega, and
R1 = 31.9k\Omega

In this case, the standard values of 32k\Omega and 18k\Omega are very close to the calculated values and would be more than adequate.

One boundary condition which may impact the selection of the minimum fan speed is the irregular activation of the Diagnostic Timer due to the TC642 “missing” fan commutation pulses at low speeds. Typically, this only occurs at very low duty-cycles (25% or less). It is a natural consequence of low PWM duty-cycles. Recall that the SENSE function detects commutation of the fan as disturbances in the current through RSENSE. These can only occur when the fan is energized, i.e., V\text{OUT} is “on”. At very low duty-cycles, the V\text{OUT} output is “off” most of the time. The fan may be rotating normally, but the commutation events are occurring during the PWM’s off-time.

The phase relationship between the fan’s commutation and the PWM edges tends to “walk around” as the system operates. At certain points, the TC642 may fail to capture a pulse within the 32-cycle Missing Pulse Detector window. When this happens, the 3-cycle Diagnostic Timer will be activated, the V\text{OUT} output will be active continuously for three cycles and, if the fan is operating normally, a pulse will be detected. If all is well, the system will return to normal operation. There is no harm in this behavior, but it may be audible to the user as the fan will accelerate briefly when the Diagnostic Timer fires. For this reason, it is recommended that V\text{MIN} be set no lower than 1.8V.

(FanSense™) Network (RSENSE and CSENSE)

The network comprised of RSENSE and CSENSE allow the TC642 to detect commutation of the fan motor (FanSense™). This network can be thought of as a differentiator and threshold detector. The function of RSENSE is to convert the fan current into a voltage. CSENSE serves to AC-couple this voltage signal and provide a ground-referenced input to the SENSE pin. Designing a proper SENSE Network is simply a matter of scaling RSENSE to provide the necessary amount of gain, i.e., the current-to-voltage conversion ratio. A 0.1\mu\text{F} ceramic capacitor is recommended for CSENSE. Smaller values require larger sense resistors, and higher value capacitors are bulkier and more expensive. Using a 0.1\mu\text{F} results in reasonable values for RSENSE. Figure 7 illustrates a typical SENSE Network. Figure 8 shows the waveforms observed using a typical SENSE Network.

Table 1 lists the recommended values of RSENSE according to the nominal operating current of the fan. Note that the current draw specified by the fan manufacturer may not be the fan’s nominal operating current, but may be a worst-case rating for near-stall conditions. The values in the table refer to actual average operating current. If the fan current falls between two of the values listed, use the higher resistor value. The end result of employing Table 1 is that the signal developed across the sense resistor is approximately 450mV in amplitude.

<table>
<thead>
<tr>
<th>Nominal Fan Current (mA)</th>
<th>RSENSE (\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>9.1</td>
</tr>
<tr>
<td>100</td>
<td>4.7</td>
</tr>
<tr>
<td>150</td>
<td>3.0</td>
</tr>
<tr>
<td>200</td>
<td>2.4</td>
</tr>
<tr>
<td>250</td>
<td>2.0</td>
</tr>
<tr>
<td>300</td>
<td>1.8</td>
</tr>
<tr>
<td>350</td>
<td>1.5</td>
</tr>
<tr>
<td>400</td>
<td>1.3</td>
</tr>
<tr>
<td>450</td>
<td>1.2</td>
</tr>
<tr>
<td>500</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Figure 8. SENSE Waveforms

Ch1 100mV Ch2 100mV M5.00ms Ch1 142mV GND

Figure 7. Typical SENSE Network
Output Drive Transistor Selection

The TC642 is designed to drive an external transistor for modulating power to the fan. This is shown as “Q1” in Figures 2, 6, 7, 9, 10, and 11. The VOUT pin has a minimum source current of 5mA and a minimum sink current of 1mA at VDD = 5.0V. Bipolar transistors or MOSFET’s may be used as the power switching element as shown below. When high current gain is needed to drive larger fans, two transistors may be used in a Darlington configuration. These circuit topologies are shown in Figure 9: (a) shows a single NPN transistor used as the switching element; (b) Illustrates the Darlington pair; and (c) shows an N-channel MOSFET.

One major advantage of the TC642’s PWM control scheme versus linear speed control is that the dissipation in the pass element is kept very low. Generally, low-cost devices in very small packages such as TO-92 or SOT, can be used effectively. For fans with nominal operating currents of no more than 200mA, a single transistor usually suffices. Above 200mA, the Darlington or MOSFET solution is recommended. For the fan sensing function to work correctly, it is imperative that the pass transistor be fully saturated when “on”. The minimum gain (hFE) of the transistor in question must be adequate to fully saturate the transistor when passing the full fan current and being driven within the 5mA IOH of the VOUT output.

Table 2 gives examples of some commonly available transistors. This table is a guide only. There are many transistor types which might work as well as those listed. The only critical issues when choosing a device to use as Q1 are: (1) the breakdown voltage, V(CER), must be large enough to stand off the highest voltage applied to the fan (NOTE: this may be when the fan is off!); (2) the gain (hFE) must be high enough for the device to remain fully saturated while conducting the maximum expected fan current and being driven with no more than 5mA of base/gate drive at maximum temperature; (3) rated fan current draw must be within the transistor’s current handling capability; and (4) power dissipation must be kept within the limits of the chosen device.

Table 2. Transistors for Q1

<table>
<thead>
<tr>
<th>Device</th>
<th>VBE(SAT)</th>
<th>MIN</th>
<th>VBR(CEO)</th>
<th>IC</th>
<th>RBASE (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPS2222</td>
<td>1.3</td>
<td>100</td>
<td>30</td>
<td>150</td>
<td>800</td>
</tr>
<tr>
<td>MPS2222A</td>
<td>1.2</td>
<td>100</td>
<td>40</td>
<td>150</td>
<td>800</td>
</tr>
<tr>
<td>2N4400</td>
<td>0.95</td>
<td>50</td>
<td>40</td>
<td>150</td>
<td>820</td>
</tr>
<tr>
<td>2N4401</td>
<td>0.95</td>
<td>100</td>
<td>40</td>
<td>150</td>
<td>820</td>
</tr>
<tr>
<td>MPS6601</td>
<td>1.2</td>
<td>50</td>
<td>25</td>
<td>500</td>
<td>780</td>
</tr>
<tr>
<td>MPS6602</td>
<td>1.2</td>
<td>50</td>
<td>40</td>
<td>500</td>
<td>780</td>
</tr>
</tbody>
</table>

A base-current limiting resistor is required with bipolar transistors. This is shown in Figure 6. The correct value for this resistor can be determined as follows: (see Figure 6).
PWM Fan Speed Controller with FanSense™

\[
\begin{align*}
V_{OH} &= V_{SENSE} + V_{BE(SAT)} + V_{RBASE} \\
V_{RSENSE} &= I_{FAN} \times R_{SENSE} \\
V_{RBASE} &= R_{BASE} \times I_{BASE} \\
I_{BASE} &= I_{FAN} / h_{FE}
\end{align*}
\]

Equation 7.

\[V_{OH}\] is specified as 80% of \(V_{DD}\) in the Electrical Characteristics table; \(V_{BE(SAT)}\) is given in the transistor datasheet. It is now possible to solve for \(R_{BASE}\).

\[
R_{BASE} = \frac{V_{OH} - V_{BE(SAT)} - V_{RSENSE}}{I_{RBASE}}
\]

Equation 8.

Some applications require the fan to be powered from the negative 12V supply to keep motor noise out of the positive voltage power supplies. As shown in Figure 10, Zener diode D2 offsets the –12V power supply voltage holding transistor Q1 OFF when \(V_{OUT}\) is LOW. When \(V_{OUT}\) is HIGH, the voltage at the anode of D2 increases by \(V_{OH}\), causing Q1 to turn ON. Operation is otherwise the same as the case of fan operation +12V.

Latch-up Considerations

As with any CMOS IC, the potential exists for latch-up if signals are applied to the device which are outside the power supply range. This is of particular concern during power-up if the external circuitry, such as the sensor network, \(V_{MIN}\) divider, shutdown circuit, or fan, are powered by a supply different from that of the TC642. Care should be taken to ensure that the TC642’s \(V_{DD}\) supply powers-up first. If possible, the networks attached to \(V_{IN}\) and \(V_{MIN}\) should connect to the \(V_{DD}\) supply at the same physical location as the IC itself. Even if the IC and any external networks are powered by the same supply, physical separation of the connecting points can result in enough parasitic capacitance and/or inductance in the power supply connections to delay one power supply “routing” versus another.

Power Supply Routing and Bypassing

Noise present on the \(V_{IN}\) and \(V_{MIN}\) inputs may cause erroneous operation of the FAULT output. As a result, these inputs should be bypassed with a 0.01\(\mu\)F capacitor mounted as close to the package as possible. This is particularly true of \(V_{IN}\), which usually is driven from a high impedance source (such as a thermistor). In addition, the \(V_{DD}\) input should be bypassed with a 1\(\mu\)F capacitor. Grounds should be kept as short as possible. To keep fan noise off the TC642 ground pin, individual ground returns for the TC642 and the low side of the fan current sense resistor should be used.
Design Example (Figure 11)

Step 1. Circulate R1 and R2 based on using an NTC having a resistance of 4.6kΩ at T_MIN and 1.1kΩ at T_MAX.

R1 = 75kΩ
R2 = 1kΩ

Step 2. Set minimum fan speed

V_MIN = 1.8V
Limit the divider current to 100µA from which
R5 = 33k and R6 = 18kΩ

Step 3. Design the output circuit

Maximum fan motor current = 250mA. Q1 beta is chosen at 100 from which R7 = 1.5kΩ

TC642 as a Microcontroller Peripheral (Figure 12)

In a system containing a microcontroller or other host intelligence, the TC642 can be effectively managed as a CPU peripheral. Routine fan control functions can be performed by the TC642 without processor intervention. The micro-controller receives temperature data from one or more points throughout the system. It calculates a fan operating speed based on an algorithm specifically designed for the application at hand. The processor controls fan speed using complementary port bits I/O1 through I/O3. Resistors R1 through R6 (5% tolerance) form a crude 3-bit DAC that translates the 3-bit code from the processor’s outputs into a 1.6V DC control signal. (A monolithic DAC or digital pot may be used instead of the circuit shown.)

With V_MIN set to 1.8V, the TC642 has a minimum operating speed of approximately 40% of full rated speed when the processor’s output code is 000[B]. Output codes 001[B] to 111[B] operate the fan from roughly 40% to 100% of full speed. An open drain output from the processor can be used to reset the TC642 following detection of a fault condition. The FAULT output can be connected to the processor’s interrupt input, or to an I/O pin for polled operation.
PWM Fan Speed Controller with FanSense™

Figure 12
PWM Fan Speed Controller with FanSense™

TC642

PACKAGE DIMENSIONS

8-Pin Plastic DIP

8-Pin SOIC

Dimensions: inches (mm)

Trademarks: The Microchip name, logo, PIC, PICmicro, PICMASTER, PICSTART, PROMATE, KEELQOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. Total Endurance, ICSP, In-Circuit Serial Programming, FilterLab, MXDEV, microID, fuzzyLAB, MPASM, MPLINK, MPLIB, PICDEM, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR and SelectMode are trademarks and SQTP is a service mark of Microchip in the U.S.A.

All other trademarks mentioned herein are the property of their respective companies.