BALF-NRG-02D3

50 ohm nominal input / conjugate match to BlueNRG tranceiver, with integrated harmonic filter

Datasheet - production data

Description

This device is an ultra-miniature balun which integrates matching network and harmonics filter. Matching impedance has been customized for the BlueNRG ST transceiver. The BALF-NRG-02D3 uses STMicroelectronics IPD technology on non-conductive glass substrate which optimizes RF performance.

![Chip Scale package on glass 4 bumps - 1.4 x 0.85 mm²](image)

Features
- 50 Ω nominal input / conjugate match to BlueNRG device
- Low insertion loss
- Low amplitude imbalance
- Low phase imbalance

Benefits
- Small footprint
- RF BOM reduction
- High RF performance

Applications
- Bluetooth low energy impedance matched balun filter
- Optimized for ST BlueNRG RFIC

![Figure 1: Pin configuration (bump view)](image)
1 Application schematic

Figure 2: Application diagram example (refer to BlueNRG reference design)
Characteristics

Table 1: Absolute maximum ratings (limiting values)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{IN}</td>
<td>Input power RFIN</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>V_{ESD}</td>
<td>ESD ratings human body model, all I/O one at a time while others connected to GND</td>
<td>2000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ESD ratings machine model (MM: $C = 200$ pF, $R = 25$ Ω, $L = 500$ nH)</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>T_{OP}</td>
<td>Operating temperature</td>
<td>-40</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Electrical characteristics ($T_{amb} = 25$ °C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{diff}</td>
<td>Nominal differential impedance</td>
<td>Match to BlueNRG</td>
<td>Ω</td>
</tr>
<tr>
<td>Z_{ANT}</td>
<td>Nominal antenna impedance</td>
<td>50</td>
<td>Ω</td>
</tr>
<tr>
<td>f</td>
<td>Frequency range (bandwidth)</td>
<td>2400</td>
<td>2500</td>
</tr>
<tr>
<td>I_{L}</td>
<td>Insertion loss in bandwidth</td>
<td>1.33</td>
<td>1.85</td>
</tr>
<tr>
<td>RL_{SE}</td>
<td>Single ended return loss in bandwidth</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>RL_{DIFF}</td>
<td>Differential return loss in bandwidth</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>$H2$</td>
<td>Second harmonic attenuation (differential mode)</td>
<td>40</td>
<td>49</td>
</tr>
<tr>
<td>$H3$</td>
<td>Third harmonic attenuation (differential mode)</td>
<td>46</td>
<td>55</td>
</tr>
<tr>
<td>$H4$</td>
<td>Fourth harmonic attenuation (differential mode)</td>
<td>42</td>
<td>50</td>
</tr>
<tr>
<td>$H5$</td>
<td>Fifth harmonic attenuation (differential mode)</td>
<td>31</td>
<td>56</td>
</tr>
<tr>
<td>$H6$</td>
<td>Fifth harmonic attenuation (differential mode)</td>
<td>29</td>
<td>45</td>
</tr>
<tr>
<td>$H7$</td>
<td>Fifth harmonic attenuation (differential mode)</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>Φ_{imb}</td>
<td>Output phase imbalance</td>
<td>-3.5</td>
<td>0</td>
</tr>
<tr>
<td>A_{imb}</td>
<td>Output amplitude imbalance</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
2.1 RF measurement

Figure 3: Differential transmission (dB)

Figure 4: Insertion loss (dB)

Figure 5: Return loss single ended (dB)

Figure 6: Return loss differential (dB)

Figure 7: H2 harmonic attenuation (dB)

Figure 8: H3 harmonic attenuation (dB)
Figure 9: H4 harmonic attenuation (dB)

Figure 10: H5 harmonic attenuation (dB)

Figure 11: H6 harmonic attenuation (dB)

Figure 12: H7 harmonic attenuation (dB)

Figure 13: Amplitude imbalance in dB

Figure 14: Phase imbalance in deg
3 Application information

Figure 15: Recommended balun land pattern
4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 CSPG 0.4 package information

Figure 16: CSPG package outline (bump view)
Figure 17: Footprint - 3 mils stencil - non solder mask defined

Copper pad diameter:
- 220 µm recommended
- 180 µm minimum
- 260 µm maximum

Solder mask opening:
- 320 µm recommended
- 300 µm minimum
- 340 µm maximum

Solder stencil opening:
- 220 µm recommended

*depending on paste, it can go down to 270 µm

Figure 18: Footprint - 3 mils stencil - solder mask defined

Copper pad diameter:
- 220 µm recommended
- 180 µm minimum
- 260 µm maximum

Solder mask opening:
- 220 µm recommended

Figure 19: Footprint - 5 mils stencil - non solder mask defined

Copper pad diameter:
- 220 µm recommended
- 180 µm minimum
- 260 µm maximum

Solder mask opening:
- 320 µm recommended
- 300 µm minimum
- 340 µm maximum

Solder stencil opening:
- 330 µm recommended*

*depending on paste, it can go down to 270 µm

Figure 20: Footprint - 5 mils stencil - solder mask defined

Copper pad diameter:
- 220 µm recommended
- 180 µm minimum
- 260 µm maximum

Solder mask opening:
- 320 µm recommended
- 300 µm minimum

Solder stencil opening:
- 330 µm recommended*

*depending on paste, it can go down to 270 µm
4.2 CSPG 0.4 packing information

Figure 21: Marking

- Dot, ST logo
- ECOPACK® Grade
- xx = marking
- ZZ = manufacturing location
- XY = datecode
- y = year
- w = week

Figure 22: Flip Chip tape and reel specifications

All dimensions are typical values in mm

More packing information is available in the application note:
- AN2348 Flip-Chip: “Package description and recommendations for use”
5 Ordering information

Figure 23: Ordering information scheme

<table>
<thead>
<tr>
<th>Order code</th>
<th>Marking</th>
<th>Package</th>
<th>Weight</th>
<th>Base qty.</th>
<th>Delivery mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALF-NRG-02D3</td>
<td>TK</td>
<td>CSPG</td>
<td>1.37 mg</td>
<td>5000</td>
<td>Tape and reel</td>
</tr>
</tbody>
</table>

6 Revision history

Table 5: Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved