V23990-P544-A20/ C20-PM
preliminary datasheet

flowPIM 0

Features
- Vincotech clip-in housing
- Trench Fieldstop IGBT’s for low saturation losses
- Optional w/o BRC

Target Applications
- Industrial Drives
- Embedded Generation

Types
- V23990-P544-A20-PM
- V23990-P544-C20-PM without BRC

Maximum Ratings

T_J = 25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC forward current</td>
<td>I_{F(AV)}</td>
<td>T_J=T_{max}</td>
<td>27</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{F(SM)}</td>
<td>I_F=10ms</td>
<td>220</td>
<td>A</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>T_J=T_{max}</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{C(PD)}</td>
<td>I_F limited by T_{max}</td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>V_CE ≤ 1200V, T_J ≤ T_{TOP max}</td>
<td></td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>T_J=T_{max}</td>
<td>45</td>
<td>W</td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_CE</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_NC</td>
<td>V_CE=15V</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V_{GC}</td>
<td>V_CE=15V</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Downloaded from Arrow.com.
Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>(T_j=25^\circ C)</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>(T_j=T_{\text{max}}), (T_c=80^\circ C)</td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{F_{\text{THRM}}}</td>
<td>(I_L) limited by (T_{\text{max}})</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{\text{Diode}}</td>
<td>(T_j=T_{\text{max}}), (T_c=80^\circ C)</td>
<td>35</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{\text{max}}</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Brake Transistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>(T_j=T_{\text{max}})</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>(T_j=T_{\text{max}}), (T_c=80^\circ C)</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{C_{\text{THRM}}}</td>
<td>(I_L) limited by (T_{\text{max}})</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>P_{\text{off}}</td>
<td>(V_{CE} \leq 1200V), (T_j \leq T_{\text{op max}})</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{\text{IGBT}}</td>
<td>(T_j=T_{\text{max}}), (T_c=80^\circ C)</td>
<td>36</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>(T_j \leq 150^\circ C), (V_{GE}=15V)</td>
<td>10</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>(V_{CC})</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{\text{max}}</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Brake Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>(T_j=25^\circ C)</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>(T_j=T_{\text{max}}), (T_c=80^\circ C)</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{F_{\text{THRM}}}</td>
<td>(I_L) limited by (T_{\text{max}})</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{\text{Diode}}</td>
<td>(T_j=T_{\text{max}}), (T_c=80^\circ C)</td>
<td>27</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{\text{max}}</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{\text{stg}}</td>
<td></td>
<td>-40...+125</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{\text{op}}</td>
<td></td>
<td>-40...+(T_{\text{max}} - 25)</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_{ins}</td>
<td>(t=2s), DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Rectifier Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>25</td>
<td>0.8</td>
<td>1.20</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>V_{th}</td>
<td>25°C</td>
<td>0.93</td>
<td>V</td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>r_s</td>
<td>11</td>
<td>15</td>
<td>mΩ</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_R</td>
<td>1600</td>
<td></td>
<td>2.13</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal grease thickness≤50um</td>
<td>λ</td>
<td>1 W/mK</td>
<td>2.10</td>
<td>K/W</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{Coss}</td>
<td>20</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>≤15</td>
<td>300</td>
<td>15</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{iss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gate}</td>
<td>±15</td>
<td>480</td>
<td>15</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverter Transistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE}=V_{GE}$</td>
<td>0.00021</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td></td>
<td>5</td>
<td>5.8</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{CES}</td>
<td>0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{CES}</td>
<td>20</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>≤15</td>
<td>300</td>
<td>15</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{iss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gate}</td>
<td>±15</td>
<td>480</td>
<td>15</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverter Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{RR}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{RR}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dI_{Cerr}/dt_{max}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Brake Transistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_{GE}</td>
<td>V_{CE}</td>
<td>V_{GS}</td>
<td>V_{GE} \text{ or } V_{GS}</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td>V_{GS}</td>
<td>I_{D}</td>
<td>I_{C}</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{SS}</td>
<td>V_{CE}</td>
<td>V_{GS}</td>
<td>I_{D}</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{SS}</td>
<td>V_{CE}</td>
<td>V_{GS}</td>
<td>I_{D}</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{int}</td>
<td>none</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>T_j</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{rise}</td>
<td>$R_{goff}=16 , \Omega$</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{gon}=32 , \Omega$</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>T_j</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>none</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>none</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>$f=1 \text{MHz}$</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>none</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{tr}</td>
<td>none</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gate}</td>
<td>T_j</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness 550um $k = 1 \text{W/mK}$</td>
<td>T_j</td>
<td>Min</td>
</tr>
</tbody>
</table>

Brake Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_D</td>
<td>T_j</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_r</td>
<td>$R_{gon}=32 , \Omega$</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{Rmax}</td>
<td>$R_{gon}=32 , \Omega$</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>$R_{gon}=32 , \Omega$</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td>$R_{gon}=32 , \Omega$</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$E_{rec} = \frac{Q_{r}}{f}$</td>
<td>$R_{gon}=32 , \Omega$</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td>none</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness 550um $k = 1 \text{W/mK}$</td>
<td>T_j</td>
<td>Min</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>T_j</td>
<td>T_j</td>
<td>Min</td>
</tr>
<tr>
<td>Deviation of R_{100}</td>
<td>$\Delta R/R$</td>
<td>$R_{100}=1486 , \Omega$</td>
<td>\text{or} $T_c=100^\circ\text{C}$</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>$T_c=100^\circ\text{C}$</td>
<td>$T_c=100^\circ\text{C}$</td>
<td>210</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>$T_j=25^\circ\text{C}$</td>
<td>$T_j=25^\circ\text{C}$</td>
<td>3.5</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25/50}$</td>
<td>$T_j=25^\circ\text{C}$</td>
<td>$T_j=25^\circ\text{C}$</td>
<td>4000</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td>$B_{25/50}$</td>
<td>$T_j=25^\circ\text{C}$</td>
<td>$T_j=25^\circ\text{C}$</td>
<td>K</td>
</tr>
</tbody>
</table>

Copyright by Vincotech
Output Inverter

Figure 1 Output inverter IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

\[t_p = 250 \ \mu s \]

\[T_j = 25 \ ^\circ C \]

\[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

Figure 2 Output inverter IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

\[t_p = 250 \ \mu s \]

\[T_j = 25 \ ^\circ C \]

\[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

Figure 3 Output inverter IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At

\[t_p = 250 \ \mu s \]

\[T_j = 25 \ ^\circ C \]

\[V_{CE} = 10 \text{ V} \]

Figure 4 Output inverter FWD

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

\[t_p = 250 \ \mu s \]

\[T_j = 25 \ ^\circ C \]

\[T_j = T_{j\text{max}} - 25 \ ^\circ C \]
Figure 5: Output inverter IGBT
Typical switching energy losses as a function of collector current
\[E = f(I_c) \]

With an inductive load at
\[T_j = 25/125 \, ^\circ C \]
\[V_C = 300 \, V \]
\[V_{GE} = 15 \, V \]
\[R_{g(on)} = 16 \, \Omega \]
\[R_{g(off)} = 8 \, \Omega \]

Figure 6: Output inverter IGBT
Typical switching energy losses as a function of gate resistor
\[E = f(R_g) \]

With an inductive load at
\[T_j = 25/125 \, ^\circ C \]
\[V_C = 300 \, V \]
\[V_{GE} = 15 \, V \]
\[I_c = 15 \, A \]

Figure 7: Output inverter FWD
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_c) \]

With an inductive load at
\[T_j = 25/125 \, ^\circ C \]
\[V_C = 300 \, V \]
\[V_{GE} = 15 \, V \]
\[R_{g(on)} = 16 \, \Omega \]

Figure 8: Output inverter FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_g) \]

With an inductive load at
\[T_j = 25/125 \, ^\circ C \]
\[V_C = 300 \, V \]
\[V_{GE} = 15 \, V \]
\[I_c = 15 \, A \]
Figure 9: Output inverter IGBT
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 300 \, V \)
- \(V_{GE} = 15 \, V \)
- \(R_{gon} = 16 \, \Omega \)
- \(R_{goff} = 8 \, \Omega \)

Figure 10: Output inverter IGBT
Typical switching times as a function of gate resistor
\[t = f(R_g) \]

With an inductive load at
- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 300 \, V \)
- \(V_{GE} = 15 \, V \)
- \(I_C = 15 \, A \)

Figure 11: Output inverter FWD
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 300 \, V \)
- \(V_{GE} = 15 \, V \)
- \(R_{gon} = 16 \, \Omega \)

Figure 12: Output inverter FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 300 \, V \)
- \(I_C = 15 \, A \)
- \(V_{GE} = 15 \, V \)
Output Inverter

Figure 13: Output inverter FWD
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

\[Q_{rr} \]

\[T_j = T_{j_{max}} - 25^\circ C \]

\[T_j = 25^\circ C \]

\[0 \]

\[0.3 \]

\[0.6 \]

\[0.9 \]

\[1.2 \]

\[1.5 \]

\[0 \]

\[5 \]

\[10 \]

\[15 \]

\[20 \]

\[25 \]

\[30 \]

\[I_C (A) \]

\[T_{j_{max}} \]

\[25 \]

\[125 \]

\[°C \]

\[V_C E = 300 V \]

\[V_{GE} = 15 V \]

\[R_{gon} = 16 \Omega \]

Figure 14: Output inverter FWD
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

\[Q_{rr} \]

\[T_j = T_{j_{max}} - 25^\circ C \]

\[T_j = 25^\circ C \]

\[0 \]

\[0.2 \]

\[0.4 \]

\[0.6 \]

\[0.8 \]

\[1 \]

\[0 \]

\[30 \]

\[60 \]

\[90 \]

\[120 \]

\[150 \]

\[R_{gon} (\Omega) \]

\[Q_{rr} \]

\[T_j = T_{j_{max}} - 25^\circ C \]

\[T_j = 25^\circ C \]

\[0 \]

\[0.3 \]

\[0.6 \]

\[0.9 \]

\[1.2 \]

\[1.5 \]

\[0 \]

\[30 \]

\[60 \]

\[90 \]

\[120 \]

\[150 \]

\[I_C (A) \]

\[T_{j_{max}} \]

\[25 \]

\[125 \]

\[°C \]

\[V_C E = 300 V \]

\[V_{GE} = 15 V \]

\[I_F = 15 A \]

\[V_{GE} = 15 V \]

Figure 15: Output inverter FWD
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

\[I_{RRM} \]

\[T_j = T_{j_{max}} - 25^\circ C \]

\[T_j = 25^\circ C \]

\[0 \]

\[5 \]

\[10 \]

\[15 \]

\[20 \]

\[25 \]

\[30 \]

\[I_C (A) \]

\[T_{j_{max}} \]

\[25 \]

\[125 \]

\[°C \]

\[V_C E = 300 V \]

\[V_{GE} = 15 V \]

\[I_F = 15 A \]

\[V_{GE} = 15 V \]

Figure 16: Output inverter FWD
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

\[I_{RRM} \]

\[T_j = T_{j_{max}} - 25^\circ C \]

\[T_j = 25^\circ C \]

\[0 \]

\[2 \]

\[4 \]

\[6 \]

\[8 \]

\[10 \]

\[12 \]

\[14 \]

\[16 \]

\[18 \]

\[0 \]

\[5 \]

\[10 \]

\[15 \]

\[20 \]

\[25 \]

\[R_{gon} (\Omega) \]

\[I_{RRM} \]

\[T_j = T_{j_{max}} - 25^\circ C \]

\[T_j = 25^\circ C \]

\[0 \]

\[2 \]

\[4 \]

\[6 \]

\[8 \]

\[10 \]

\[12 \]

\[14 \]

\[16 \]

\[18 \]

\[20 \]

\[22 \]

\[24 \]

\[26 \]

\[28 \]

\[30 \]

\[0 \]

\[30 \]

\[60 \]

\[90 \]

\[120 \]

\[150 \]

\[I_C (A) \]

\[T_{j_{max}} \]

\[25 \]

\[125 \]

\[°C \]

\[V_C E = 300 V \]

\[V_{GE} = 15 V \]

\[I_F = 15 A \]

\[V_{GE} = 15 V \]
Output Inverter

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_C)
\]

At
- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 300 \text{ V} \)
- \(V_{GE} = 15 \text{ V} \)
- \(I_F = 15 \text{ A} \)
- \(R_{gon} = 16 \text{ }\Omega\)

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})
\]

At
- \(T_j = 25/125 \degree C \)
- \(V_{GE} = 15 \text{ V} \)
- \(I_F = 15 \text{ A} \)
- \(V_{GE} = 15 \text{ V} \)

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{th,JH} = f(t_p)\]

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{th,JH} = f(t_p)\]

IGBT thermal model values

<table>
<thead>
<tr>
<th>Thermal grease</th>
<th>Phase change interface</th>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>3.4E+00</td>
<td>0.06</td>
<td>2.8E+00</td>
</tr>
<tr>
<td>0.25</td>
<td>3.7E-01</td>
<td>0.20</td>
<td>3.0E-01</td>
</tr>
<tr>
<td>0.98</td>
<td>7.6E-02</td>
<td>0.79</td>
<td>6.2E-02</td>
</tr>
<tr>
<td>0.42</td>
<td>1.4E-02</td>
<td>0.34</td>
<td>1.1E-02</td>
</tr>
<tr>
<td>0.19</td>
<td>2.5E-03</td>
<td>0.16</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>0.19</td>
<td>3.0E-04</td>
<td>0.15</td>
<td>2.4E-04</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>Thermal grease</th>
<th>Phase change interface</th>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>8.2E+00</td>
<td>0.04</td>
<td>6.6E+00</td>
</tr>
<tr>
<td>0.17</td>
<td>7.4E-01</td>
<td>0.14</td>
<td>6.0E-01</td>
</tr>
<tr>
<td>0.78</td>
<td>1.1E-01</td>
<td>0.64</td>
<td>8.7E-02</td>
</tr>
<tr>
<td>0.74</td>
<td>3.1E-02</td>
<td>0.60</td>
<td>2.5E-02</td>
</tr>
<tr>
<td>0.48</td>
<td>5.4E-03</td>
<td>0.39</td>
<td>4.4E-03</td>
</tr>
<tr>
<td>0.24</td>
<td>8.5E-04</td>
<td>0.19</td>
<td>6.9E-04</td>
</tr>
</tbody>
</table>
Output Inverter

Figure 21 Output inverter IGBT
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_j) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 22 Output inverter IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_j) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{GE} = 15 \, \text{V} \]

Figure 23 Output inverter FWD
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_j) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 24 Output inverter FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_j) \]

At
\[T_j = 175 \, ^\circ C \]
Output Inverter

Figure 25
Safe operating area as a function of collector-emitter voltage
\[I_C = f(V_{CE}) \]

At
- Single pulse
- \(T_J = 80 \, ^\circ C \)
- \(V_{GE} = 15 \, V \)
- \(T_j = T_{j_{max}} \, ^\circ C \)

Figure 26
Gate voltage vs Gate charge
\[V_{GE} = f(Q_{GE}) \]

At
- \(I_C = 15 \, A \)

Figure 27
Short circuit withstand time as a function of gate-emitter voltage
\[t_{sc} = f(V_{GE}) \]

At
- \(V_{CE} \leq 600 \, V \)
- \(T_j \leq 175 \, ^\circ C \)

Figure 28
Typical short circuit collector current as a function of gate-emitter voltage
\[I_{c_{(sc)}} = f(V_{GE}) \]

At
- \(V_{CE} \leq 600 \, V \)
- \(T_j = 175 \, ^\circ C \)
Figure 29
IGBT
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
\[T_j = T_{j_{max}} - 25 ^\circ C \]
\[U_{cc_{minus}} = U_{cc_{plus}} \]
Switching mode : 3 level switching
Brake

Figure 1 Brake IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

\[t_p = 250 \mu s \]
\[T_j = 25^\circ C \]
\[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

Figure 2 Brake IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

\[t_p = 250 \mu s \]
\[T_j = 125^\circ C \]
\[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

Figure 3 Brake IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At

\[t_p = 250 \mu s \]
\[V_{CE} \text{ from } 10 \text{ V} \]

Figure 4 Brake FWD

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

\[t_p = 250 \mu s \]
\[T_j = T_{j\text{max}} - 25^\circ C \]
Brake

Typical switching energy losses

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 300 \, V \)
- \(V_{GE} = 15 \, V \)
- \(R_{gon} = 32 \, \Omega \)
- \(R_{goff} = 16 \, \Omega \)

Typical reverse recovery energy loss

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 300 \, V \)
- \(V_{GE} = 15 \, V \)
- \(I_c = 10 \, A \)
Brake

Figure 9 Brake IGBT

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 300 \) V
- \(V_{GE} = 15 \) V
- \(R_{GON} = 32 \) Ω
- \(R_{GOFF} = 16 \) Ω

Figure 10 Brake IGBT

Typical switching times as a function of gate resistor

\[t = f(R_G) \]

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 300 \) V
- \(V_{GE} = 15 \) V
- \(I_C = 10 \) A

Figure 11 Brake IGBT

IGBT transient thermal impedance as a function of pulse width

\[Z_{THJH} = f(t_p) \]

Figure 12 Brake FWD

FWD transient thermal impedance as a function of pulse width

\[Z_{THJH} = f(t_p) \]
Brake

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At

\[T_j = 175 \, ^\circ C \]

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 175 \, ^\circ C \]

\[V_{GE} = 15 \, V \]
Input Rectifier Bridge

Figure 1
Typical diode forward current as a function of forward voltage $I_F = f(V_F)$

![Graph showing forward current as a function of forward voltage.]

At $T_j = 250 \, \mu s$

Figure 2
Diode transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

![Graph showing thermal impedance as a function of pulse width.]

At $D = 0.5$

Figure 3
Power dissipation as a function of heatsink temperature $P_{tot} = f(T_h)$

![Graph showing power dissipation as a function of heatsink temperature.]

At $T_j = 150 \, ^\circ C$

Figure 4
Forward current as a function of heatsink temperature $I_F = f(T_h)$

![Graph showing forward current as a function of heatsink temperature.]

At $T_j = 150 \, ^\circ C$
Thermistor

Figure 1

Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]

Figure 2

Typical NTC resistance values

\[
R(T) = R_{25} \cdot e^{\left(\frac{R_{25}}{100} \cdot \left(\frac{1}{T - 25} \right) \right)} [\Omega]
\]

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>R_{25} [Ω]</th>
<th>R_{min} [Ω]</th>
<th>R_{max} [Ω]</th>
<th>ΔR/R [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25</td>
<td>208930.5</td>
<td>1506496.4</td>
<td>2672373.8</td>
<td>27.9</td>
</tr>
<tr>
<td>0</td>
<td>71804.2</td>
<td>59724.4</td>
<td>83804</td>
<td>16.8</td>
</tr>
<tr>
<td>10</td>
<td>43762.4</td>
<td>37094.4</td>
<td>50468.5</td>
<td>15.7</td>
</tr>
<tr>
<td>20</td>
<td>27464.6</td>
<td>23094.6</td>
<td>31284.7</td>
<td>13.8</td>
</tr>
<tr>
<td>25</td>
<td>22000</td>
<td>19109.5</td>
<td>24890.7</td>
<td>13.1</td>
</tr>
<tr>
<td>30</td>
<td>17233.3</td>
<td>15512.2</td>
<td>19934.4</td>
<td>12.9</td>
</tr>
<tr>
<td>50</td>
<td>5467.9</td>
<td>4980.6</td>
<td>6955.1</td>
<td>8.9</td>
</tr>
<tr>
<td>70</td>
<td>3648.6</td>
<td>3546</td>
<td>4151.1</td>
<td>7.5</td>
</tr>
<tr>
<td>80</td>
<td>2757.7</td>
<td>2568.2</td>
<td>2947.1</td>
<td>6.9</td>
</tr>
<tr>
<td>90</td>
<td>2008.9</td>
<td>1858.7</td>
<td>2125.2</td>
<td>5.9</td>
</tr>
<tr>
<td>100</td>
<td>1486.1</td>
<td>1411.8</td>
<td>1860.4</td>
<td>5</td>
</tr>
<tr>
<td>150</td>
<td>400.2</td>
<td>304.8</td>
<td>430.7</td>
<td>9.9</td>
</tr>
</tbody>
</table>
Switching Definitions Output Inverter

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{son}</td>
<td>32 Ω</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>16 Ω</td>
</tr>
</tbody>
</table>

Figure 1: Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

t_{doff} = integrating time for E_{off}

t_{Eoff} = integrating time for E_{off}

- V_{CE} (0%) = 0 V
- V_{CE} (100%) = 15 V
- V_C (100%) = 300 V
- I_C (100%) = 15 A
- t_{doff} = 0.21 μs
- t_{Eoff} = 0.44 μs

Figure 2: Output inverter IGBT

Turn-on Switching Waveforms & definition of $tdon$, $tEon$

$tdon$ = integrating time for E_{on}

$tEon$ = integrating time for E_{on}

- V_{CE} (0%) = 0 V
- V_{CE} (100%) = 15 V
- V_C (100%) = 300 V
- I_C (100%) = 15 A
- $tdon$ = 0.02 μs
- $tEon$ = 0.20 μs

Figure 3: Output inverter IGBT

Turn-off Switching Waveforms & definition of t_f

- V_C (100%) = 300 V
- I_C (100%) = 15 A
- t_f = 0.09 μs

Figure 4: Output inverter IGBT

Turn-on Switching Waveforms & definition of tr

- V_C (100%) = 300 V
- I_C (100%) = 15 A
- t_r = 0.02 μs
Switching Definitions Output Inverter

Figure 5

Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{\text{off}}(100\%) = 4.47 \text{ kW}$
- $E_{\text{off}}(100\%) = 0.40 \text{ mJ}$
- $t_{\text{Eoff}} = 0.44 \mu\text{s}$

Figure 6

Output inverter IGBT

Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{\text{on}}(100\%) = 4.47 \text{ kW}$
- $E_{\text{on}}(100\%) = 0.34 \text{ mJ}$
- $t_{\text{Eon}} = 0.20 \mu\text{s}$

Figure 7

Output inverter FWD

Gate voltage vs Gate charge (measured)

- $V_{\text{GEoff}} = 0 \text{ V}$
- $V_{\text{GEon}} = 15 \text{ V}$
- $V_{\text{C}}(100\%) = 300 \text{ V}$
- $I_{\text{off}}(100\%) = 15 \text{ A}$
- $Q_{\text{g}} = 105.74 \text{ nC}$

Figure 8

Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{rr}

- $I_{\text{d}}(100\%) = 300 \text{ V}$
- $I_{\text{ff}}(100\%) = 15 \text{ A}$
- $t_{\text{rr}} = 0.21 \mu\text{s}$
Switching Definitions Output Inverter

Figure 9
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} = \text{integrating time for } Q_r$)

<table>
<thead>
<tr>
<th>Time (μs)</th>
<th>2.9</th>
<th>3.1</th>
<th>3.3</th>
<th>3.5</th>
<th>3.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id (100%)</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qr (100%)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tQrr</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$Id (100%) = 15 \text{ A}$
$Qr (100%) = 1.01 \text{ μC}$
$t_{Qrr} = 0.49 \text{ μs}$

Figure 10
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} = \text{integrating time for } \text{Erec}$)

<table>
<thead>
<tr>
<th>Time (μs)</th>
<th>2.9</th>
<th>3.1</th>
<th>3.3</th>
<th>3.5</th>
<th>3.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erec (100%)</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prec (100%)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tErec</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$P_{rec} (100%) = 4.47 \text{ kW}$
$E_{rec} (100%) = 0.20 \text{ mJ}$
$t_{Erec} = 0.49 \text{ μs}$
Ordering Code and Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>V23990-P544-A20-PM</td>
<td>P544-A20</td>
<td>P544-A20</td>
</tr>
</tbody>
</table>

Outline

Pinout

This drawing contains the maximum configuration. Depending upon types, some components may be left. See in part list.
PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Status</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Final</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.