The NCP4308 is a synchronous rectifier controller for switch mode power supplies. The controller enables high efficiency designs for flyback, quasi resonant flyback and LLC topologies.

Externally adjustable minimum off-time and on-time blanking periods provides flexibility to drive various MOSFET package types and PCB layout. A reliable and noise less operation of the SR system is insured due to the Self Synchronization feature. The NCP4308 also utilizes Kelvin connection of the driver to the MOSFET to achieve high efficiency operation at full load.

The precise turn–off threshold, extremely low turn–off delay time and high sink current capability of the driver allow the maximum synchronous rectification MOSFET conduction time. The high accuracy driver and 5 V gate clamp make it ideally suited for directly driving GaN devices.

Features
- Self–Contained Control of Synchronous Rectifier in CCM, DCM and QR for Flyback or LLC Applications
- Precise True Secondary Zero Current Detection
- Rugged Current Sense Pin (up to 150 V)
- Adjustable Minimum ON–Time
- Adjustable Minimum OFF–Time with Ringing Detection
- Adjustable Maximum ON–Time for CCM Controlling of Primary QR Controller
- Improved Robust Self Synchronization Capability
- 8 A / 4 A Peak Current Sink / Source Drive Capability
- Operating Voltage Range up to VCC = 35 V
- GaN Transistor Driving Capability (options A and C)
- Low Startup Current Consumption
- Maximum Operation Frequency up to 1 MHz
- SOIC–8, DFN–8 (4x4) and WDFN8 (2x2) Packages
- These are Pb–Free Devices

Typical Applications
- Notebook Adapters
- High Power Density AC/DC Power Supplies (Cell Phone Chargers)
- LCD TVs
- All SMPS with High Efficiency Requirements

MARKING DIAGRAMS

ORDERING INFORMATION
See detailed ordering and shipping information on page 26 of this data sheet.

Downloaded from Arrow.com.
Figure 1. Typical Application Example – LLC Converter

Figure 2. Typical Application Example – DCM, CCM or QR Flyback Converter
Figure 3. Typical Application Example − Primary Side Flyback Converter

Figure 4. Typical Application Example − QR Converter − Capability to Force Primary into CCM Under Heavy Loads utilizing MAX–TON
PIN FUNCTION DESCRIPTION

<table>
<thead>
<tr>
<th>ver. A, B, C, D</th>
<th>ver. Q</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>VCC</td>
<td>Supply voltage pin</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>MIN_TOFF</td>
<td>Adjust the minimum off time period by connecting resistor to ground.</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>MIN_TON</td>
<td>Adjust the minimum on time period by connecting resistor to ground.</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>NC</td>
<td>Leave this pin opened or tie it to ground.</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>NC</td>
<td>Leave this pin opened or tie it to ground.</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>CS</td>
<td>Current sense pin detects if the current flows through the SR MOSFET and/or its body diode. Basic turn-off detection threshold is 0 mV. A resistor in series with this pin can decrease the turn off threshold if needed.</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>GND</td>
<td>Ground connection for the SR MOSFET driver, (V_{CC}) decoupling capacitor and for minimum on and off time adjust resistors. GND pin should be wired directly to the SR MOSFET source terminal/soldering point using Kelvin connection. DFN8 exposed flag should be connected to GND.</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>DRV</td>
<td>Driver output for the SR MOSFET</td>
</tr>
<tr>
<td>–</td>
<td>5</td>
<td>MAX_TON</td>
<td>Adjust the maximum on time period by connecting resistor to ground.</td>
</tr>
</tbody>
</table>

Figure 5. Internal Circuit Architecture − NCP4308A, B, C, D
Figure 6. Internal Circuit Architecture – NCP4308Q (CCM QR) with MAX_TON
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td>-0.3 to 37.0</td>
<td>V</td>
</tr>
<tr>
<td>MIN_TON, MIN_TOFF, MAX_TON Input Voltage</td>
<td>$V_{\text{MIN}{\text{TON}}}$, $V{\text{MIN}{\text{TOFF}}}$, $V{\text{MAX}_{\text{TON}}}$</td>
<td>-0.3 to V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>Driver Output Voltage</td>
<td>V_{DRV}</td>
<td>-0.3 to 17.0</td>
<td>V</td>
</tr>
<tr>
<td>Current Sense Input Voltage</td>
<td>V_{DS}</td>
<td>-4 to 150</td>
<td>V</td>
</tr>
<tr>
<td>Current Sense Dynamic Input Voltage ($t_{PW} = 200$ ns)</td>
<td>$V_{\text{CS}_{\text{DYN}}}$</td>
<td>-10 to 150</td>
<td>V</td>
</tr>
<tr>
<td>MIN_TON, MIN_TOFF, MAX_TON, Input Current</td>
<td>$I_{\text{MIN}{\text{TON}}}$, $I{\text{MIN}{\text{TOFF}}}$, $I{\text{MAX}_{\text{TON}}}$</td>
<td>-10 to 10</td>
<td>mA</td>
</tr>
<tr>
<td>Junction to Air Thermal Resistance, 1 oz 1 in² Copper Area, SOIC8</td>
<td>$R_{\text{th}{\text{JA}}{\text{SOIC8}}}$</td>
<td>160</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction to Air Thermal Resistance, 1 oz 1 in² Copper Area, DFN8</td>
<td>$R_{\text{th}{\text{JA}}{\text{DFN8}}}$</td>
<td>80</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction to Air Thermal Resistance, 1 oz 1 in² Copper Area, WDFN8</td>
<td>$R_{\text{th}{\text{JA}}{\text{WDFN8}}}$</td>
<td>160</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{JMAX}</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{STG}</td>
<td>-60 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>ESD Capability, Human Body Model, Except Pin 6, per JESD22–A114E</td>
<td>ESDHBM</td>
<td>2000</td>
<td>V</td>
</tr>
<tr>
<td>ESD Capability, Human Body Model, Pin 6, per JESD22–A114E</td>
<td>ESDHBM</td>
<td>1000</td>
<td>V</td>
</tr>
<tr>
<td>ESD Capability, Machine Model, per JESD22–A115–A</td>
<td>ESDMM</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>ESD Capability, Charged Device Model, Except Pin 6, per JESD22–C101F</td>
<td>ESDCDM</td>
<td>750</td>
<td>V</td>
</tr>
<tr>
<td>ESD Capability, Charged Device Model, Pin 6, per JESD22–C101F</td>
<td>ESDCDM</td>
<td>250</td>
<td>V</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device meets latch-up tests defined by JEDEC Standard JESD78D Class I.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Operating Input Voltage</td>
<td>V_{CC}</td>
<td>35</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>T_{J}</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
ELECTRICAL CHARACTERISTICS

$-40°C \leq TJ \leq 125°C$; $V_{CC} = 12\, V$; $C_{DRV} = 0\, nF$; $R_{MIN_TON} = R_{MIN_TOFF} = 10\, k\Omega$; $V_{CS} = -1$ to $+4\, V$; $f_{CS} = 100\, kHz$, $DC_{CS} = 50\%$, unless otherwise noted. Typical values are at $T_j = +25°C$.

SUPPLY SECTION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC UVLO (ver. B & C)</td>
<td>V_{CC} rising, $V_{CS} = 0, V$</td>
<td>V_{CCON}</td>
<td>8.3</td>
<td>8.8</td>
<td>9.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{CC} falling, $V_{CS} = 0, V$</td>
<td>V_{CCOFF}</td>
<td>7.3</td>
<td>7.8</td>
<td>8.3</td>
<td>V</td>
</tr>
<tr>
<td>VCC UVLO Hysteresis (ver. B & C)</td>
<td></td>
<td>V_{CCCHYS}</td>
<td>1.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCC UVLO (ver. A, D & Q)</td>
<td>V_{CC} rising, $V_{CS} = 0, V$</td>
<td>V_{CCON}</td>
<td>4.20</td>
<td>4.45</td>
<td>4.80</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{CC} falling, $V_{CS} = 0, V$</td>
<td>V_{CCOFF}</td>
<td>3.70</td>
<td>3.95</td>
<td>4.20</td>
<td>V</td>
</tr>
<tr>
<td>VCC UVLO Hysteresis (ver. A, D & Q)</td>
<td></td>
<td>V_{CCCHYS}</td>
<td>0.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Start-up Delay</td>
<td>V_{CC} rising from 0 to $V_{CCON} + 1, V$ @ $t_{Tr} = 10, \mu s$, $V_{CS} = 0, V$</td>
<td>I_{START_DEL}</td>
<td>75</td>
<td></td>
<td>125</td>
<td>μs</td>
</tr>
</tbody>
</table>

Current Consumption, $R_{MIN_TON} = R_{MIN_TOFF} = 0\, k\Omega$

<table>
<thead>
<tr>
<th>C_{DRV}</th>
<th>I_{CC}</th>
<th>A, C</th>
<th>B, D, Q</th>
<th>A, C</th>
<th>B, D, Q</th>
<th>A, C</th>
<th>B, D, Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0, nF$, $f_{CS} = 500, kHz$</td>
<td>3.0</td>
<td>4.0</td>
<td>5.6</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1, nF$, $f_{CS} = 500, kHz$</td>
<td>3.5</td>
<td>4.5</td>
<td>6.0</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$10, nF$, $f_{CS} = 500, kHz$</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Driver Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage Rise–Time</td>
<td>$C_{DRV} = 10, nF$, 10% to 90% V_{DRVMAX}</td>
<td>t_{r}</td>
<td>40</td>
<td>55</td>
<td>ns</td>
</tr>
<tr>
<td>Output Voltage Fall–Time</td>
<td>$C_{DRV} = 10, nF$, 90% to 10% V_{DRVMAX}</td>
<td>t_{f}</td>
<td>20</td>
<td>35</td>
<td>ns</td>
</tr>
<tr>
<td>Source Resistance</td>
<td>R_{DRV_SOURCE}</td>
<td>4.3</td>
<td>4.7</td>
<td>5.5</td>
<td>\Omega</td>
</tr>
<tr>
<td>Sink Resistance</td>
<td>R_{DRV_SINK}</td>
<td>1.2</td>
<td></td>
<td></td>
<td>\Omega</td>
</tr>
<tr>
<td>Output Peak Source Current</td>
<td>I_{DRV_SOURCE}</td>
<td>8</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Output Peak Sink Current</td>
<td>I_{DRV_SINK}</td>
<td>9.0</td>
<td>9.5</td>
<td>10.5</td>
<td>V</td>
</tr>
</tbody>
</table>

Minimum Driver Output Voltage

<table>
<thead>
<tr>
<th>V_{CC}</th>
<th>V_{DRVMIN}</th>
<th>V_{CCOFF} + 200 mV (ver. B)</th>
<th>4.3</th>
<th>4.7</th>
<th>5.5</th>
<th>\Omega</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 V, $C_{DRV} > 1, nF$ (ver. B, D and Q)</td>
<td>7.2</td>
<td>7.8</td>
<td>8.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 V, $C_{DRV} > 1, nF$ (ver. A, C)</td>
<td>4.2</td>
<td>4.7</td>
<td>5.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CS INPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Propagation Delay From CS to DRV Output On</td>
<td>V_{CS} goes down from 4 to −1 V, $t_{Cl_CS} = 5, ns$</td>
<td>I_{PD_ON}</td>
<td>35</td>
<td>60</td>
<td>ns</td>
</tr>
<tr>
<td>Total Propagation Delay From CS to DRV Output Off</td>
<td>V_{CS} goes up from −1 to 4 V, $t_{Cf_CS} = 5, ns$</td>
<td>I_{PD_OFF}</td>
<td>12</td>
<td>23</td>
<td>ns</td>
</tr>
<tr>
<td>CS Bias Current</td>
<td>$V_{CS} = -20, mV$</td>
<td>I_{CS}</td>
<td>−105</td>
<td>−100</td>
<td>−95</td>
</tr>
<tr>
<td>Turn On CS Threshold Voltage</td>
<td>$V_{TH_CS_ON}$</td>
<td>−120</td>
<td>−75</td>
<td>−40</td>
<td>mV</td>
</tr>
<tr>
<td>Turn Off CS Threshold Voltage</td>
<td>$V_{TH_CS_OFF}$</td>
<td></td>
<td>−1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Turn Off Timer Reset Threshold Voltage</td>
<td>$V_{TH_CS_RESET}$</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>CS Leakage Current</td>
<td>$V_{CS} = 150, V$</td>
<td>$I_{CS_LEAKAGE}$</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.onsemi.com

7

Downloaded from Arrow.com
ELECTRICAL CHARACTERISTICS

−40°C ≤ TJ ≤ 125°C; VCC = 12 V; CDRV = 0 nF; RMIN_TON = RMIN_TOFF = 10 kΩ; VCS = −1 to +4 V; fCS = 100 kHz, DCCS = 50%, unless otherwise noted. Typical values are at TJ = +25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINIMUM tON and tOFF ADJUST</td>
<td></td>
<td>tON_MIN</td>
<td>35</td>
<td>55</td>
<td>75</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tOFF_MIN</td>
<td>190</td>
<td>245</td>
<td>290</td>
<td>ns</td>
</tr>
<tr>
<td>Minimum tON time</td>
<td>RMIN_TON = 0 Ω</td>
<td>tON_MIN</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>ns</td>
</tr>
<tr>
<td>Minimum tOFF time</td>
<td>RMIN_TOFF = 0 Ω</td>
<td>tOFF_MIN</td>
<td>160</td>
<td>245</td>
<td>290</td>
<td>ns</td>
</tr>
<tr>
<td>Minimum tON time</td>
<td>RMIN_TON = 10 kΩ</td>
<td>tON_MIN</td>
<td>0.92</td>
<td>1.00</td>
<td>1.08</td>
<td>μs</td>
</tr>
<tr>
<td>Minimum tOFF time</td>
<td>RMIN_TOFF = 10 kΩ</td>
<td>tOFF_MIN</td>
<td>0.92</td>
<td>1.00</td>
<td>1.08</td>
<td>μs</td>
</tr>
<tr>
<td>Minimum tON time</td>
<td>RMIN_TON = 50 kΩ</td>
<td>tON_MIN</td>
<td>4.62</td>
<td>5.00</td>
<td>5.38</td>
<td>μs</td>
</tr>
<tr>
<td>Minimum tOFF time</td>
<td>RMIN_TOFF = 50 kΩ</td>
<td>tOFF_MIN</td>
<td>4.62</td>
<td>5.00</td>
<td>5.38</td>
<td>μs</td>
</tr>
</tbody>
</table>

MAXIMUM tON ADJUST

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum tON Time</td>
<td>VMAX_TON = 3 V</td>
<td>tON_MAX</td>
<td>4.3</td>
<td>4.8</td>
<td>5.3</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum tON Time</td>
<td>VMAX_TON = 0.3 V</td>
<td>tON_MAX</td>
<td>41</td>
<td>48</td>
<td>55</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum tON Output Current</td>
<td>VMAX_TON = 0.3 V</td>
<td>IMAX_TON</td>
<td>−105</td>
<td>−100</td>
<td>−95</td>
<td>μA</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
TYPICAL CHARACTERISTICS

Figure 7. V_{CCON} and V_{CCOFF} Levels, $V_{\text{CS}} = 0$ V, ver. A, D, Q

Figure 8. V_{CCON} and V_{CCOFF} Levels, $V_{\text{CS}} = 0$ V, ver. B, C

Figure 9. Current Consumption, $C_{\text{DRV}} = 0$ nF, $f_{\text{CS}} = 500$ kHz, ver. D

Figure 10. Current Consumption, $V_{\text{CC}} = V_{\text{CCOFF}} - 0.1$ V, $V_{\text{CS}} = 0$ V, ver. D

Figure 11. Current Consumption, $V_{\text{CC}} = 12$ V, $V_{\text{CS}} = -1$ to 4 V, $f_{\text{CS}} = 500$ kHz, ver. A

Figure 12. Current Consumption, $V_{\text{CC}} = 12$ V, $V_{\text{CS}} = -1$ to 4 V, $f_{\text{CS}} = 500$ kHz, ver. D
NCP4308

TYPICAL CHARACTERISTICS

Figure 13. CS Current, $V_{CS} = -20 \text{ mV}$

Figure 14. CS Current, $V_{CC} = 12 \text{ V}$

Figure 15. Supply Current vs. CS Voltage, $V_{CC} = 12 \text{ V}$

Figure 16. CS Turn–on Threshold

Figure 17. CS Turn–off Threshold

Figure 18. CS Reset Threshold
TYPICAL CHARACTERISTICS

Figure 19. CS Reset Threshold

Figure 20. CS Leakage, \(V_{CS} = 150 \text{ V} \)

Figure 21. Propagation Delay from CS to DRV
- **Output On**

Figure 22. Propagation Delay from CS to DRV
- **Output Off**

Figure 23. Minimum On–time \(R_{MIN_TON} = 0 \ \Omega \)

Figure 24. Minimum On–time \(R_{MIN_TON} = 10 \ \text{k\Omega} \)
Figure 25. Minimum On–time $R_{MIN_TON} = 50 \ k\Omega$

Figure 26. Minimum Off–time $R_{MIN_TOFF} = 0 \ \Omega$

Figure 27. Minimum Off–time $R_{MIN_TOFF} = 10 \ k\Omega$

Figure 28. Minimum Off–time $R_{MIN_TOFF} = 50 \ k\Omega$

Figure 29. Minimum On–time $R_{MIN_TON} = 10 \ k\Omega$

Figure 30. Minimum Off–time $R_{MIN_TOFF} = 10 \ k\Omega$
TYPICAL CHARACTERISTICS

Figure 31. Driver and Output Voltage, ver. B, D and Q

Figure 32. Driver Output Voltage, ver. A and C

Figure 33. Maximum On-time, ver. Q

Figure 34. Maximum On-time, $V_{\text{MAX_TON}} = 3 \text{ V}$, ver. Q

Figure 35. Maximum On-time, $V_{\text{MAX_TON}} = 0.3 \text{ V}$, ver. Q

$V_{\text{CC}} = 12 \text{ V}$, $C_{\text{DRV}} = 0 \text{ nF}$

$V_{\text{CC}} = 12 \text{ V}$, $C_{\text{DRV}} = 1 \text{ nF}$

$V_{\text{CC}} = 12 \text{ V}$, $C_{\text{DRV}} = 10 \text{ nF}$

$V_{\text{CC}} = 35 \text{ V}$, $C_{\text{DRV}} = 0 \text{ nF}$

$V_{\text{CC}} = 35 \text{ V}$, $C_{\text{DRV}} = 1 \text{ nF}$

$V_{\text{CC}} = 35 \text{ V}$, $C_{\text{DRV}} = 10 \text{ nF}$

$V_{\text{CC}} = 12 \text{ V}$, $C_{\text{DRV}} = 0 \text{ nF}$

$V_{\text{CC}} = 12 \text{ V}$, $C_{\text{DRV}} = 1 \text{ nF}$

$V_{\text{CC}} = 12 \text{ V}$, $C_{\text{DRV}} = 10 \text{ nF}$

$V_{\text{CC}} = 35 \text{ V}$, $C_{\text{DRV}} = 0 \text{ nF}$

$V_{\text{CC}} = 35 \text{ V}$, $C_{\text{DRV}} = 1 \text{ nF}$

$V_{\text{CC}} = 35 \text{ V}$, $C_{\text{DRV}} = 10 \text{ nF}$
General description

The NCP4308 is designed to operate either as a standalone IC or as a companion IC to a primary side controller to help achieve efficient synchronous rectification in switch mode power supplies. This controller features a high current gate driver along with high-speed logic circuitry to provide appropriately timed drive signals to a synchronous rectification MOSFET. With its novel architecture, the NCP4308 has enough versatility to keep the synchronous rectification system efficient under any operating mode.

The NCP4308 works from an available voltage with range from 4 V (A, D & Q options) or 8 V (B & C options) to 35 V (typical). The wide V_CC range allows direct connection to the SMPS output voltage of most adapters such as notebooks, cell phone chargers and LCD TV adapters.

Precise turn-off threshold of the current sense comparator together with an accurate offset current source allows the user to adjust for any required turn-off current threshold of the SR MOSFET switch using a single resistor. Compared to other SR controllers that provide turn-off thresholds in the range of −10 mV to −5 mV, the NCP4308 offers a turn-off threshold of 0 mV. When using a low R_DS(ON) SR (1 mΩ) MOSFET our competition, with a −10 mV turn off, will turn off with 10 A still flowing through the SR FET, while our 0 mV turn off turns off the FET at 0 A; significantly reducing the turn-off current threshold and improving efficiency. Many of the competitor parts maintain a drain source voltage across the MOSFET causing the SR MOSFET to operate in the linear region to reduce turn−off time. Thanks to the 8 A sink current of the NCP4308 significantly reduces turn off time allowing for a minimal drain source voltage to be utilized and efficiency maximized.

To overcome false triggering issues after turn-on and turn−off events, the NCP4308 provides adjustable minimum on-time and off-time blanking periods. Blanking times can be adjusted independently of IC VCC using external resistors connected to GND. If needed, blanking periods can be modulated using additional components.

An extremely fast turn−off comparator, implemented on the current sense pin, allows for NCP4308 implementation in CCM applications without any additional components or external triggering.

An output driver features capability to keep SR transistor closed even when there is no supply voltage for NCP4308. SR transistor drain voltage goes up and down during SMPS operation and this is transferred through drain gate capacitance to gate and may turn on transistor. NCP4308 uses this pulsing voltage at SR transistor gate (DRV pin) and uses it internally to provide enough supply to activate internal driver sink transistor. DRV voltage is pulled low (not to zero) thanks to this feature and eliminate the risk of turned on SR transistor before enough V_CC is applied to NCP4308.

Some IC versions include a MAX_TON circuit that helps a quasi resonant (QR) controller to work in CCM mode when a heavy load is present like in the example of a printer’s motor starting up.

Current Sense Input

Figure 36 shows the internal connection of the CS circuitry on the current sense input. When the voltage on the secondary winding of the SMPS reverses, the body diode of M1 starts to conduct current and the voltage of M1’s drain drops approximately to −1 V. The CS pin sources current of 100 μA that creates a voltage drop on the R_SHIFT_CS resistor (resistor is optional, we recommend shorting this resistor). Once the voltage on the CS pin is lower than V_TH_CS_ON threshold, M1 is turned−on. Because of parasitic impedances, significant ringing can occur in the application. To overcome false sudden turn−off due to mentioned ringing, the minimum conduction time of the SR MOSFET is activated. Minimum conduction time can be adjusted using the R_MIN_TON resistor.
The SR MOSFET is turned-off as soon as the voltage on the CS pin is higher than $V_{\text{TH,CS_OFF}}$ (typically -0.5 mV minus any voltage dropped on the optional $R_{\text{SHIFT,CS}}$). For the same ringing reason, a minimum off-time timer is asserted once the V_{CS} goes above $V_{\text{TH,CS_RESET}}$. The minimum off-time can be externally adjusted using $R_{\text{MIN_TOFF}}$ resistor. The minimum off-time generator can be re-triggered by MIN_TOFF reset comparator if some spurious ringing occurs on the CS input after SR MOSFET turn-off event. This feature significantly simplifies SR system implementation in flyback converters.

In an LLC converter the SR MOSFET M1 channel conducts while secondary side current is decreasing (refer to Figure 37). Therefore the turn-off current depends on MOSFET $R_{\text{DS_ON}}$. The -0.5 mV threshold provides an optimum switching period usage while keeping enough time margin for the gate turn-off. The $R_{\text{SHIFT,CS}}$ resistor provides the designer with the possibility to modify (increase) the actual turn-on and turn-off secondary current thresholds. To ensure proper switching, the min_OFF timer is reset, when the V_{DS} of the MOSFET rings and falls down past the $V_{\text{TH,CS_RESET}}$. The minimum off-time needs to expire before another drive pulse can be initiated. Minimum off-time timer is started again when V_{DS} rises above $V_{\text{TH,CS_RESET}}$.

Figure 36. Current Sensing Circuitry Functionality

The SR MOSFET is turned-off as soon as the voltage on the CS pin is higher than $V_{\text{TH,CS_OFF}}$ (typically -0.5 mV minus any voltage dropped on the optional $R_{\text{SHIFT,CS}}$). For the same ringing reason, a minimum off-time timer is asserted once the V_{CS} goes above $V_{\text{TH,CS_RESET}}$. The minimum off-time can be externally adjusted using $R_{\text{MIN_TOFF}}$ resistor. The minimum off-time generator can be re-triggered by MIN_TOFF reset comparator if some spurious ringing occurs on the CS input after SR MOSFET turn-off event. This feature significantly simplifies SR system implementation in flyback converters.

In an LLC converter the SR MOSFET M1 channel conducts while secondary side current is decreasing (refer to Figure 37). Therefore the turn-off current depends on MOSFET $R_{\text{DS_ON}}$. The -0.5 mV threshold provides an optimum switching period usage while keeping enough time margin for the gate turn-off. The $R_{\text{SHIFT,CS}}$ resistor provides the designer with the possibility to modify (increase) the actual turn-on and turn-off secondary current thresholds. To ensure proper switching, the min_OFF timer is reset, when the V_{DS} of the MOSFET rings and falls down past the $V_{\text{TH,CS_RESET}}$. The minimum off-time needs to expire before another drive pulse can be initiated. Minimum off-time timer is started again when V_{DS} rises above $V_{\text{TH,CS_RESET}}$.

Figure 36. Current Sensing Circuitry Functionality
V\(_{DS} = V_{CS}\)

\[I_{SEC} \]

\[V_{TH, CS, RESET} = (R_{SHIFT, CS} \cdot I_{CS}) \]

\[V_{TH, CS, OFF} = (R_{SHIFT, CS} \cdot I_{CS}) \]

\[V_{TH, CS, ON} = (R_{SHIFT, CS} \cdot I_{CS}) \]

\[V_{DRV} \]

Min ON-time

Min OFF-time

The \(t_{MIN, TON} \) and \(t_{MIN, TOFF} \) are adjustable by \(R_{MIN, TON} \) and \(R_{MIN, TOFF} \) resistors

Turn-on delay

Turn-off delay

Min \(t_{OFF} \) timer was stopped here because of \(V_{CS} < V_{TH, CS, RESET} \)

Figure 37. CS Input Comparators Thresholds and Blanking Periods Timing in LLC

V\(_{DS} = V_{CS}\)

\[I_{SEC} \]

\[V_{TH, CS, RESET} = (R_{SHIFT, CS} \cdot I_{CS}) \]

\[V_{TH, CS, OFF} = (R_{SHIFT, CS} \cdot I_{CS}) \]

\[V_{TH, CS, ON} = (R_{SHIFT, CS} \cdot I_{CS}) \]

\[V_{DRV} \]

Min ON-time

Min OFF-time

The \(t_{MIN, TON} \) and \(t_{MIN, TOFF} \) are adjustable by \(R_{MIN, TON} \) and \(R_{MIN, TOFF} \) resistors

Min \(t_{OFF} \) timer was stopped here because of \(V_{CS} < V_{TH, CS, RESET} \)

Figure 38. CS Input Comparators Thresholds and Blanking Periods Timing in Flyback
If no \(R_{\text{SHIFT_CS}} \) resistor is used, the turn-on, turn-off and \(V_{\text{TH_CS_RESET}} \) thresholds are fully given by the CS input specification (please refer to electrical characteristics table). The CS pin offset current causes a voltage drop that is equal to:

\[
V_{\text{SHIFT_CS}} = R_{\text{SHIFT_CS}} \cdot I_{\text{CS}}
\]

(eq. 1)

Final turn-on and turn-off thresholds can be then calculated as:

\[
V_{\text{CS_TURN_ON}} = V_{\text{TH_CS_ON}} - \left(R_{\text{SHIFT_CS}} \cdot I_{\text{CS}} \right)
\]

(eq. 2)

\[
V_{\text{CS_TURN_OFF}} = V_{\text{TH_CS_OFF}} - \left(R_{\text{SHIFT_CS}} \cdot I_{\text{CS}} \right)
\]

(eq. 3)

\[
V_{\text{CS_RESET}} = V_{\text{TH_CS_RESET}} - \left(R_{\text{SHIFT_CS}} \cdot I_{\text{CS}} \right)
\]

(eq. 4)

Note that \(R_{\text{SHIFT_CS}} \) impact on turn-on and \(V_{\text{TH_CS_RESET}} \) thresholds is less critical than its effect on the turn-off threshold.

It should be noted that when using a SR MOSFET in a through hole package the parasitic inductance of the MOSFET package leads (refer to Figure 39) causes a turn-off current threshold increase. The current that flows through the SR MOSFET experiences a high \(\Delta i(t)/\Delta t \) that induces an error voltage on the SR MOSFET leads due to their parasitic inductance. This error voltage is proportional to the derivative of the SR MOSFET current; and shifts the CS input voltage to zero when significant current still flows through the MOSFET channel. As a result, the SR MOSFET is turned-off prematurely and the efficiency of the SMPS is not optimized – refer to Figure 40 for a better understanding.

Figure 39. SR System Connection Including MOSFET and Layout Parasitic Inductances in LLC Application
Note that the efficiency impact caused by the error voltage due to the parasitic inductance increases with lower MOSFETs $R_{DS(on)}$ and/or higher operating frequency.

It is thus beneficial to minimize SR MOSFET package leads length in order to maximize application efficiency. The optimum solution for applications with high secondary current $\Delta i/\Delta t$ and high operating frequency is to use lead−less SR MOSFET i.e. SR MOSFET in SMT package. The parasitic inductance of a SMT package is negligible causing insignificant CS turn−off threshold shift and thus minimum impact to efficiency (refer to Figure 41).
It can be deduced from the above paragraphs on the induced error voltage and parameter tables that turn-off threshold precision is quite critical. If we consider a SR MOSFET with $R_{DS(on)}$ of 1 mΩ, the 1 mV error voltage on the CS pin results in a 1 A turn-off current threshold difference; thus the PCB layout is very critical when implementing the SR system. Note that the CS turn-off comparator is referred to the GND pin. Any parasitic impedance (resistive or inductive – even on the magnitude of mΩ and nH values) can cause a high error voltage that is then evaluated by the CS comparator. Ideally the CS turn-off comparator should detect voltage that is caused by secondary current directly on the SR MOSFET channel resistance. In reality there will be small parasitic impedance on the CS path due to the bonding wires, leads and soldering.

To assure the best efficiency results, a Kelvin connection of the SR controller to the power circuitry should be implemented. The GND pin should be connected to the SR MOSFET source soldering point and current sense pin should be connected to the SR MOSFET drain soldering point – refer to Figure 39. Using a Kelvin connection will avoid any impact of PCB layout parasitic elements on the SR controller functionality; SR MOSFET parasitic elements will still play a role in attaining an error voltage. Figure 42 and Figure 43 show examples of SR system layouts using MOSFETs in TO220 and SMT packages. It is evident that the MOSFET leads should be as short as possible to minimize parasitic inducances when using packages with leads (like TO220). Figure 43 shows how to layout design with two SR MOSFETs in parallel. It has to be noted that it is not easy task and designer has to paid lot of attention to do symmetric Kelvin connection.
Self Synchronization

Self synchronization feature during start-up can be seen at Figure 44. Figure 44 shows how the minimum off-time timer is reset when CS voltage is oscillating through $V_{TH_CS_RESET}$ level. The NCP4308 starts operation at time t_1. Internal logic waits for one complete minimum off-time period to expire before the NCP4308 can activate the driver after a start-up event. The minimum off-time timer starts to run at time t_1, because V_{CS} is higher than $V_{TH_CS_RESET}$. The timer is then reset, before its set minimum off-time period expires, at time t_2 thanks to CS voltage lower than $V_{TH_CS_RESET}$ threshold. The aforementioned reset situation can be seen again at time t_3, t_4, t_5 and t_6. A complete minimum off-time period elapses between times t_7 and t_8 allowing the IC to activate a driver output after time t_8.

Minimum t_{ON} and t_{OFF} Adjustment

The NCP4308 offers an adjustable minimum on-time and off-time blanking periods that ease the implementation of a synchronous rectification system in any SMPS topology. These timers avoid false triggering on the CS input after the MOSFET is turned on or off.

The adjustment of minimum t_{ON} and t_{OFF} periods are done based on an internal timing capacitance and external resistors connected to the GND pin – refer to Figure 45 for a better understanding.
Current through the MIN_TON adjust resistor can be calculated as:

$$I_{R_{MIN_TON}} = \frac{V_{\text{ref}}}{R_{MIN_TON}}$$ \hspace{1cm} (eq. 5)

If the internal current mirror creates the same current through R_{MIN_TON} as used the internal timing capacitor (C_t) charging, then the minimum on-time duration can be calculated using this equation.

$$t_{MIN_TON} = C_t \cdot \frac{V_{\text{ref}}}{R_{MIN_TON}} = C_t \cdot \frac{V_{\text{ref}}}{V_{\text{ref}}} = C_t \cdot \frac{R_{MIN_TON}}{R_{MIN_TON}}$$ \hspace{1cm} (eq. 6)

The internal capacitor size would be too large if $I_{R_{MIN_TON}}$ was used. The internal current mirror uses a proportional current, given by the internal current mirror ratio. One can then calculate the MIN_TON and MIN_TOFF blanking periods using below equations:

$$t_{MIN_TON} = 1.00 \times 10^{-4} \times R_{MIN_TON} \text{ [µs]}$$ \hspace{1cm} (eq. 7)

$$t_{MIN_TOFF} = 1.00 \times 10^{-4} \times R_{MIN_TOFF} \text{ [µs]}$$ \hspace{1cm} (eq. 8)

Note that the internal timing comparator delay affects the accuracy of Equations 7 and 8 when MIN_TON/ MIN_TOFF times are selected near to their minimum possible values. Please refer to Figures 46 and 47 for measured minimum on and off time charts.
The absolute minimum t_{ON} duration is internally clamped to 55 ns and minimum t_{OFF} duration to 245 ns in order to prevent any potential issues with the MIN_TON and/or MIN_TOFF pins being shorted to GND.

The NCP4308 features dedicated anti−ringing protection system that is implemented with a MIN_TOFF blank generator. The minimum off−time one−shot generator is restarted in the case when the CS pin voltage crosses $V_{\text{TH_CS_RESET}}$ threshold and MIN_TOFF period is active.

The total off-time blanking period is prolonged due to the ringing in the application (refer to Figure 37).

Some applications may require adaptive minimum on and off time blanking periods. With NCP4308 it is possible to modulate blanking periods by using an external NPN transistor – refer to Figure 48. The modulation signal can be derived based on the load current, feedback regulator voltage or other application parameter.

![Figure 48. Possible Connection for MIN_TON and MIN_TOFF Modulation](image)

Maximum t_{ON} adjustment

The NCP4308Q offers an adjustable maximum on−time (like the min_tON and min_tOFF settings shown above) that can be very useful for QR controllers at high loads. Under high load conditions the QR controller can operate in CCM thanks to this feature. The NCP4308Q version has the ability to turn−off the DRV signal to the SR MOSFET before the secondary side current reaches zero. The DRV signal from the NCP4308Q can be fed to the primary side through a pulse transformer (see Figure 4 for detail) to a transistor on the primary side to emulate a ZCD event before an actual ZCD event occurs. This feature helps to keep the minimum switching frequency up so that there is better energy transfer through the transformer (a smaller transformer core can be used). Also another advantage is that the IC controls the SR MOSFET and turns off from secondary side before the primary side is turned on in CCM to ensure no cross conduction. By controlling the SR MOSFET’s turn off before the primary side turn off, producing a zero cross conduction operation, this will improve efficiency.

The Internal connection of the MAX_TON feature is shown in Figure 49. Figure 49 shows a method that allows for a modification of the maximum on−time according to output voltage. At a lower V_{OUT}, caused by hard overload or at startup, the maximum on−time should be longer than at nominal voltage. Resistor R_A can be used to modulate maximum on−time according to V_{OUT} or any other parameter.

The operational waveforms at heavy load in QR type SMPS are shown in Figure 50. After $t_{\text{MAX_TON}}$ time is exceeded, the synchronous switch is turned off and the secondary current is conducted by the diode. Information about turned off SR MOSFET is transferred by the DRV pin through a small pulse transformer to the primary side where it acts on the ZCD detection circuit to allow the primary switch to be turned on. Secondary side current disappears before the primary switch is turned on without a possibility of cross current condition.
Figure 49. Internal Connection of the MAX_TON Generator, NCP4308Q

Figure 50. Function of MAX_TON Generator in Heavy Load Condition
Power Dissipation Calculation

It is important to consider the power dissipation in the MOSFET driver of a SR system. If no external gate resistor is used and the internal gate resistance of the MOSFET is very low, nearly all energy losses related to gate charge are dissipated in the driver. Thus it is necessary to check the SR driver power losses in the target application to avoid over temperature and to optimize efficiency.

In SR systems the body diode of the SR MOSFET starts conducting before SR MOSFET is turned-on, because there is some delay from \(V_{TH_CS_ON} \) detect to turn-on the driver. On the other hand, the SR MOSFET turn off process always starts before the drain to source voltage rises up significantly. Therefore, the MOSFET switch always operates under Zero Voltage Switching (ZVS) conditions when in a synchronous rectification system.

The following steps show how to approximately calculate the power dissipation and DIE temperature of the NCP4308 controller. Note that real results can vary due to the effects of the PCB layout on the thermal resistance.

Step 1 – MOSFET Gate-to-Source Capacitance:

During ZVS operation the gate to drain capacitance does not have a Miller effect like in hard switching systems because the drain to source voltage does not change (or its change is negligible).

![Figure 51. Typical MOSFET Capacitances Dependency on VDS and VGS Voltages](image)

\[
\begin{align*}
C_{iss} &= C_{gs} + C_{gd} \\
C_{rss} &= C_{gd} \\
C_{oss} &= C_{ds} + C_{gd}
\end{align*}
\]

Therefore, the input capacitance of a MOSFET operating in ZVS mode is given by the parallel combination of the gate to source and gate to drain capacitances (i.e. \(C_{iss} \) capacitance for given gate to source voltage). The total gate charge, \(Q_{g_total} \), of most MOSFETs on the market is defined for hard switching conditions. In order to accurately calculate the driving losses in a SR system, it is necessary to determine the gate charge of the MOSFET for operation specifically in a ZVS system. Some manufacturers define this parameter as \(Q_{g_ZVS} \). Unfortunately, most datasheets do not provide this data. If the \(C_{iss} \) (or \(Q_{g_ZVS} \)) parameter is not available then it will need to be measured. Please note that the input capacitance is not linear (as shown Figure 51) and it needs to be characterized for a given gate voltage clamp level.

Step 2 – Gate Drive Losses Calculation:

Gate drive losses are affected by the gate driver clamp voltage. Gate driver clamp voltage selection depends on the type of MOSFET used (threshold voltage versus channel resistance). The total power losses (driving losses and conduction losses) should be considered when selecting the gate driver clamp voltage. Most of today’s MOSFETs for SR systems feature low \(R_{DS(on)} \) for 5 V \(V_{GS} \) voltage. The NCP4308 offers both a 5 V gate clamp and a 10 V gate clamp for those MOSFET that require higher gate to source voltage.

The total driving loss can be calculated using the selected gate driver clamp voltage and the input capacitance of the MOSFET:

\[
P_{DRV_total} = V_{CC} \cdot V_{CLAMP} \cdot C_{g_ZVS} \cdot f_{SW} \quad (eq. \ 9)
\]

Where:

- \(V_{CC} \) is the NCP4308 supply voltage
- \(V_{CLAMP} \) is the driver clamp voltage
- \(C_{g_ZVS} \) is the gate to source capacitance of the MOSFET in ZVS mode
- \(f_{SW} \) is the switching frequency of the target application

The total driving power loss won’t only be dissipated in the IC, but also in external resistances like the external gate resistor (if used) and the MOSFET internal gate resistance (Figure 50). Because NCP4308 features a clamped driver, it’s high side portion can be modeled as a regular driver switch with equivalent resistance and a series voltage source. The low side driver switch resistance does not drop immediately at turn-off, thus it is necessary to use an equivalent value (\(R_{DRV_SIN_EQ} \)) for calculations. This method simplifies power losses calculations and still provides acceptable accuracy. Internal driver power dissipation can then be calculated using Equation 10:
Figure 52. Equivalent Schematic of Gate Drive Circuitry

\[
P_{\text{DRV,IC}} = \frac{1}{2} \cdot C_{g,ZVS} \cdot V_{\text{CLAMP}}^2 \cdot f_{SW} \cdot \left(\frac{R_{\text{DRV,SINK_EQ}}}{R_{\text{DRV,SINK_EQ}} + R_{G,\text{EXT}} + R_{g,\text{int}}} \right) + C_{g,ZVS} \cdot V_{\text{CLAMP}} \cdot f_{SW} \cdot (V_{\text{CC}} - V_{\text{CLAMP}})
\]
\[
+ \frac{1}{2} \cdot C_{g,ZVS} \cdot V_{\text{CLAMP}}^2 \cdot f_{SW} \cdot \left(\frac{R_{\text{DRV,SOURCE_EQ}}}{R_{\text{DRV,SOURCE_EQ}} + R_{G,\text{EXT}} + R_{g,\text{int}}} \right)
\]

(eq. 10)

Where:

- \(R_{\text{DRV,SINK_EQ}} \) is the NCP4308x driver low side switch equivalent resistance (0.5 \(\Omega \))
- \(R_{\text{DRV,SOURCE_EQ}} \) is the NCP4308x driver high side switch equivalent resistance (1.2 \(\Omega \))
- \(R_{G,\text{EXT}} \) is the external gate resistor (if used)
- \(R_{g,\text{int}} \) is the internal gate resistance of the MOSFET

Step 3 – IC Consumption Calculation:

In this step, power dissipation related to the internal IC consumption is calculated. This power loss is given by the \(I_{\text{CC}} \) current and the IC supply voltage. The \(I_{\text{CC}} \) current depends on switching frequency and also on the selected \(t_{\text{ON}} \) and \(t_{\text{OFF}} \) periods because there is current flowing out from the \(t_{\text{ON}} \) and \(t_{\text{OFF}} \) pins. The most accurate method for calculating these losses is to measure the \(I_{\text{CC}} \) current when \(C_{\text{DRV}} = 0 \) nF and the IC is switching at the target frequency with given MIN_TON and MIN_TOFF adjust resistors. IC consumption losses can be calculated as:

\[
P_{\text{CC}} = V_{\text{CC}} \cdot I_{\text{CC}}
\]

(eq. 11)

Step 4 – IC Die Temperature Arise Calculation:

The die temperature can be calculated now that the total internal power losses have been determined (driver losses plus internal IC consumption losses). The package thermal resistance is specified in the maximum ratings table for a 35 \(\mu \)m thin copper layer with no extra copper plates on any pin (i.e. just 0.5 mm trace to each pin with standard soldering points are used).

The DIE temperature is calculated as:

\[
T_{\text{DIE}} = \left(P_{\text{DRV,IC}} + P_{\text{CC}} \right) \cdot R_{\text{J-U}} + T_{A}
\]

(eq. 12)

Where:

- \(P_{\text{DRV,IC}} \) is the IC driver internal power dissipation
- \(P_{\text{CC}} \) is the IC control internal power dissipation
- \(R_{\text{J-U}} \) is the thermal resistance from junction to ambient
- \(T_{A} \) is the ambient temperature
PRODUCT OPTIONS

<table>
<thead>
<tr>
<th>OPN</th>
<th>Package</th>
<th>UVLO [V]</th>
<th>DRV clamp [V]</th>
<th>Pin 5 function</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCP4308ADR2G</td>
<td>SOIC8</td>
<td>4.5</td>
<td>4.7</td>
<td>NC</td>
<td>LLC, CCM flyback, DCM flyback, QR, QR with primary side CCM control</td>
</tr>
<tr>
<td>NCP4308AMTTWG</td>
<td>WDFN8</td>
<td>4.5</td>
<td>4.7</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>NCP4308DDR2G</td>
<td>SOIC8</td>
<td>4.5</td>
<td>9.5</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>NCP4308DMNTWG</td>
<td>DFN8</td>
<td>4.5</td>
<td>9.5</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>NCP4308DMTTWG</td>
<td>WDFN8</td>
<td>4.5</td>
<td>9.5</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>NCP4308QDR2G</td>
<td>SOIC8</td>
<td>4.5</td>
<td>9.5</td>
<td>MAX_TON</td>
<td>QR with forced CCM from secondary side</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Package marking</th>
<th>Packing</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCP4308ADR2G</td>
<td>SOIC8</td>
<td>NCP4308A</td>
<td>SOIC−8 (Pb−Free)</td>
<td>2500 /Tape & Reel</td>
</tr>
<tr>
<td>NCP4308DDR2G</td>
<td>DFN8</td>
<td>4308D</td>
<td>DFN−8 (Pb−Free)</td>
<td>4000 /Tape & Reel</td>
</tr>
<tr>
<td>NCP4308AMTTWG</td>
<td>WDFN8</td>
<td>EA</td>
<td>WDFN−8 (Pb−Free)</td>
<td>3000 /Tape & Reel</td>
</tr>
<tr>
<td>NCP4308DMTTWG</td>
<td>ED</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
PACKAGE DIMENSIONS

SOIC–8 NB
CASE 751–07
ISSUE AK

NOTES:
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

SOLDERING FOOTPRINT

For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
5. DETAILS A AND B SHOW OPTIONAL CONSTRUCTIONS FOR TERMINALS.

<table>
<thead>
<tr>
<th>DIMENSIONS: MILLIMETERS</th>
<th>PACKAGE DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.80</td>
</tr>
<tr>
<td>A1</td>
<td>0.05</td>
</tr>
<tr>
<td>A3</td>
<td>0.20</td>
</tr>
<tr>
<td>b</td>
<td>0.25</td>
</tr>
<tr>
<td>D</td>
<td>4.00</td>
</tr>
<tr>
<td>E</td>
<td>4.00</td>
</tr>
<tr>
<td>E2</td>
<td>2.09</td>
</tr>
<tr>
<td>e</td>
<td>0.80</td>
</tr>
<tr>
<td>K</td>
<td>0.20</td>
</tr>
<tr>
<td>L</td>
<td>0.30</td>
</tr>
<tr>
<td>L1</td>
<td>0.15</td>
</tr>
</tbody>
</table>

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
PACKAGE DIMENSIONS

WDFN8 2x2, 0.5P
CASE 511AT−01
ISSUE O

NOTES:
1. DIMENSIONING AND TOLERANCING PER
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.30 MM FROM TERMINAL TIP.

<table>
<thead>
<tr>
<th>DIM</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.70</td>
<td>0.80</td>
</tr>
<tr>
<td>A1</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>A3</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>b</td>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>D</td>
<td>2.00</td>
<td>BSC</td>
</tr>
<tr>
<td>E</td>
<td>2.00</td>
<td>BSC</td>
</tr>
<tr>
<td>e</td>
<td>0.50</td>
<td>BSC</td>
</tr>
<tr>
<td>L</td>
<td>0.40</td>
<td>0.60</td>
</tr>
<tr>
<td>L1</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td>L2</td>
<td>0.50</td>
<td>0.70</td>
</tr>
</tbody>
</table>

RECOMMENDED
SOLDERING FOOTPRINT*

*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s products/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.