Clip Mount Power Resistor Thick Film Technology

LTO150 are the extension of LTO series. The component is used in direct contact with heatsink. Fixation done by clip.

FEATURES

- 150 W at 45 °C case temperature heatsink mounted
- Direct mounting ceramic on heatsink
- Broad resistance range: 0.03 Ω to 1.3 MΩ
- Non inductive
- TO-247 package: compact and easy to mount
- Designed for clip mounting
- UL 94 V-0 material used - Compliant with EN45545-2
- AEC-Q200 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DIMENSIONS

STANDARD ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SIZE</th>
<th>RESISTANCE RANGE Ω</th>
<th>RATED POWER P25 °C W</th>
<th>LIMITING ELEMENT VOLTAGE UL V</th>
<th>TOLERANCE ± %</th>
<th>TEMPERATURE COEFFICIENT ± ppm/°C</th>
<th>CRITICAL RESISTANCE Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTO 150</td>
<td>TO-247</td>
<td>0.03 to 1.3M</td>
<td>150</td>
<td>500</td>
<td>1, 2, 5, 10</td>
<td>200, 350, 900</td>
<td>1.66K</td>
</tr>
</tbody>
</table>

MECHANICAL SPECIFICATIONS

- Mechanical Protection: Molded
- Resistive Element: Thick film
- Substrate: Alumina
- Connections: Tinned copper
- Weight: 4 g max.
- Clip Assembly Force: 60 N to 110 N

TECHNICAL SPECIFICATIONS

- Dissipation and Associated: Onto a heatsink + clip
- Power Rating and Thermal Resistance of the Component: 150 W at +45 °C (case temp.)
 \[R_{TH(j-c)}: 0.87 °C/W \]
 Free air: 4.5 W at +25 °C
- Temperature Coefficient: See Performance table ± 200 ppm/°C
- Dielectric Strength: IEC 60115-1
 3000 Vrms - 1 min
 10 mA max.
- Insulation Resistance: ≥ 10^4 MΩ
- Inductance: ≤ 0.1 μH

ENVIRONMENTAL SPECIFICATIONS

- Temperature Range: -55 °C to +175 °C
- Climatic Category: 55 / 175 / 56
- Flammability: IEC 60695-11-5
 2 applications 30 s separated by 60 s
CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed 175 °C. The dissipated power is simply calculated by the following ratio:

\[
P = \frac{\Delta T}{[R_{TH(j-c)}] + [R_{TH(c-h)}] + [R_{TH(h-a)}]}
\]

\[P: \text{Expressed in W}\]
\[\Delta T: \text{Difference between maximum working temperature and room temperature}\]
\[R_{TH(j-c)}: \text{Thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component.}\]
\[R_{TH(c-h)}: \text{Thermal resistance value measured between outer side of the resistor and upper side of the heatsink. This is the thermal resistance of the interface (grease, thermal pad), and the quality of the fastening device.}\]
\[R_{TH(h-a)}: \text{Thermal resistance of the heatsink}\]

Example:

\[R_{TH(c-h)} + R_{TH(h-a)}\] for LTO 150 power rating 10 W at ambient temperature +25 °C

Thermal resistance \(R_{TH(c-h)}\): 0.87 °C/W

Considering equation (1), we have:

\[\Delta T = 175 °C - 25 °C = 150 °C\]
\[R_{TH(j-c)} + R_{TH(c-h)} + R_{TH(h-a)} = \frac{\Delta T}{P} = \frac{150}{10} = 15 °C/W\]
\[R_{TH(c-h)} + R_{TH(h-a)} = 15 °C/W - 0.87 °C/W = 14.13 °C/W\]

Example with a thermal grease \(R_{TH(c-h)} = 0.5 °C/W\), we need a heatsink with \(R_{TH(h-a)} = 13.63 °C/W\)
CONFIGURATION 1: Water cooling heatsink CP15 from Lytron (304 mm x 95.3 mm x 8 mm) with water flow rate 4 LPM and thermal grease Bluesil Past 340 from BlueStar silicones. MAX08NG from AAVID screwed clip mounting.

CONFIGURATION 2: Air cooling heatsink 0S552 from AAVID (48 mm x 80 mm x 70 mm) and thermal grease Bluesil Past 340 from BlueStar silicones. MAX03HNG from AAVID clipped mounting.

CONFIGURATION 3: Air cooling heatsink 0S550 from AAVID (31.75 mm x 58.7 mm x 70 mm) and thermal grease Bluesil Past 340 from BlueStar silicones. MAX03HNG from AAVID clipped mounting.

MOMENTARY OVERLOAD
In any case the applied voltage must be lower than the maximum overload voltage of 750 V during 5 s.

ENERGY CURVE (SINGLE PULSE)
The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.

![Energy Curve Graph]

POWER CURVE
![Power Curve Graph]

POWER RATING
The temperature of the case should be maintained within the limits specified.

PACKAGING
Tube of 30 units

MARKING
Model, style, resistance value (in Ω), tolerance (in %), manufacturing date, Vishay Sfernice trademark according IEC 60062.
CLIP MOUNTING RECOMMENDATION
To improve the thermal conductivity, all surface of ceramic has to be coated with a thermal silicon grease. If you not use our clipped or screwed clip, it is recommended that a mounting force of 60 N to 110 N be applied to the center of the molding case of the component. Tightening torque 2 Nm when mounting screwed clip MAX08NG on heatsink.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>MODEL</th>
<th>STYLE</th>
<th>CONNECTIONS</th>
<th>RESISTANCE VALUE</th>
<th>TOLERANCE</th>
<th>CUSTOM DESIGN</th>
<th>PACKAGING</th>
<th>LEAD (Pb)-FREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTO 150 F</td>
<td></td>
<td></td>
<td>2.7 kΩ</td>
<td>± 1 %</td>
<td>xxx</td>
<td>TU30 e3</td>
<td></td>
</tr>
</tbody>
</table>

Optional
± 2 % on request:
± 5 % special TCR,
± 10 % shape etc.

GLOBAL PART NUMBER INFORMATION

GLOBAL MODEL: LTO 150 F 2.7 kΩ ± 1 % xxx TU30 e3

The first four digits are significant figures and the last digit specifies the number of zeros to follow. R designates decimal point.
48R70 = 48.7 Ω
48701 = 48 700 Ω
10002 = 100 000 Ω
R0100 = 0.01 Ω
R4700 = 0.47 Ω
27000 = 27 000 Ω = 2.7 kΩ

CLIP PART NUMBER INFORMATION

REFERENCE	PART NUMBER FOR ORDERING
Screwed clip MAX08NG | ACCRFLO150VS
Clipped clip MAX03HNG | ACCRFLO150CL