OIMD9-001

Product Preview

Schottky Barrier Diodes

These Schottky barrier diodes are designed for high speed switching applications, circuit protection, and voltage clamping. Extremely low forward voltage reduces conduction loss. Miniature surface mount package is ideal for medical applications where space is limited.

Features

- Extremely Fast Switching Speed
- Low Forward Voltage 0.35 V (Typ) @ $I_F = 10 \text{ mAdc}$
- Device Marking: MAM
- AEC Qualified and Built In Medical Flow
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 125°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Reverse Voltage	V_{R}	30	V	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

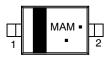
Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1)	P _D		
T _A = 25°C Derate above 25°C		200 1.57	mW mW/°C
Forward Current (DC)	lF	200 Max	mA
Non–Repetitive Peak Forward Current, $t_p < 10$ msec	I _{FSM}	600	mA
Repetitive Peak Forward Current Pulse Wave = 1 sec, Duty Cycle = 66%	I _{FRM}	300	mA
Thermal Resistance Junction-to-Ambient	$R_{\theta JA}$	635	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to150	°C

1. FR-4 Minimum Pad

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor®

www.onsemi.com


30 VOLT SILICON HOT-CARRIER DETECTOR AND SWITCHING DIODES

SOD-323 CASE 477 STYLE 1

MARKING DIAGRAM

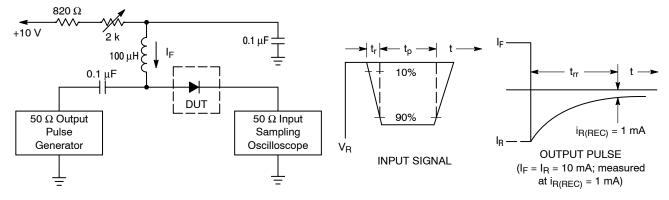
MA = Device Code

M = Date Code

■ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION


Device	Package	Shipping [†]		
0IMD9-001-XTP	SOD-323	3000 /		
	(Pb-Free)	Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 μA)	V _{(BR)R}	30	-	-	V
Total Capacitance (V _R = 1.0 V, f = 1.0 MHz)	C _T	_	7.6	10	pF
Reverse Leakage (V _R = 25 V)	I _R	_	0.5	2.0	μAdc
Forward Voltage (I _F = 0.1 mAdc)	V _F	-	0.22	0.24	Vdc
Forward Voltage (I _F = 30 mAdc)	V _F	-	0.41	0.5	Vdc
Forward Voltage (I _F = 100 mAdc)	V _F	_	0.52	0.8	Vdc
Reverse Recovery Time (I _F = I _R = 10 mAdc, I _{R(REC)} = 1.0 mAdc) Figure 1	t _{rr}	-	_	5.0	ns
Forward Voltage (I _F = 1.0 mAdc)	V _F	-	0.29	0.32	Vdc
Forward Voltage (I _F = 10 mAdc)	V _F	-	0.35	0.40	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Notes: 1. A 2.0 $k\Omega$ variable resistor adjusted for a Forward Current (IF) of 10 mA.

- 2. Input pulse is adjusted so $I_{R(peak)}$ is equal to 10 mA.
- 3. $t_p \gg t_{rr}$

Figure 1. Recovery Time Equivalent Test Circuit

0IMD9-001

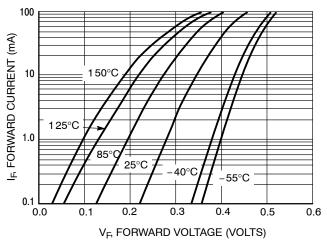


Figure 2. Forward Voltage

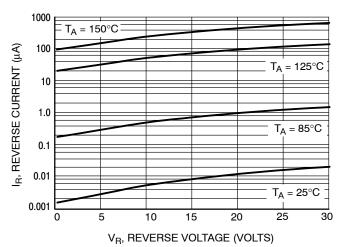
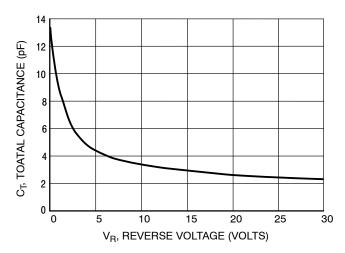
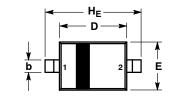
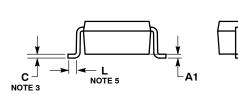


Figure 3. Leakage Current

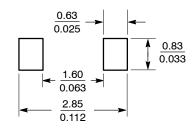

Figure 4. Total Capacitance

0IMD9-001

PACKAGE DIMENSIONS

SOD-323 CASE 477-02 **ISSUE H**

NOTES


- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS.
- LEAD THICKNESS SPECIFIED PER L/F DRAWING WITH SOLDER PLATING.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- DIMENSION L IS MEASURED FROM END OF RADIUS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.031	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
А3	0.15 REF			0.006 REF		
b	0.25	0.32	0.4	0.010	0.012	0.016
С	0.089	0.12	0.177	0.003	0.005	0.007
D	1.60	1.70	1.80	0.062	0.066	0.070
E	1.15	1.25	1.35	0.045	0.049	0.053
L	0.08			0.003		
HF	2.30	2.50	2.70	0.090	0.098	0.105

STYLE 1: PIN 1. CATHODE (POLARITY BAND)

2. ANODE

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC date seets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative