

Rev. 1.0.1

June 2016

GENERAL DESCRIPTION

This reference design is a complete five-output power system designed to power a Xilinx Zynq-7020 All Programmable (AP) SoC and associated DDR3 memory in Industrial Ethernet applications. This reference design is focused on Industrial Ethernet applications leveraging HMS's Anybus IP on Xilinx. Although the power requirements of the core system building blocks remain relatively constant, the flexibility of Exar's Universal PMICs provides a power solution that can power the wider system requirements, whether a motor control board or human interface module.

The power system provides V_{CCPINT}, V_{CCINT} and V_{CCBRAM} 1.00V, V_{CCO_DDR} programmable to 1.2/1.35/1.5V, V_{TT} 0.60/0.675/0.75V, V_{CCAUX} and V_{CCADC} 1.8V and V_{CCO} programmable from 1.8V to 3.3V. The entire power system fits in less than one square inch. The order and ramp rates for each supply are programmed to accommodate Zynq-7020 sequencing requirements. All power supply operations can be controlled over an I²C interface. Faults, output voltages and currents can also be monitored. 4 GPIO signals are available and can be programmed to provide the status of power good signals, enables, and faults. The board is supported by PowerArchitectTM 4.x and connects to the Exar Communications Module (XR77XXEVB-XCM-V80).

FEATURES

- Xilinx Zynq-7020 All Programmable SoC Power System
 - 4 Channel Power System using XRP7714 Programmable Digital PWM Switching Controller
 - VCCPINT, VCCINT and VCCBRAM 1.0V
 - V_{CCO_DDR} programmable to 1.2/1.35/1.5V
 - V_{TT} 0.60/0.675/0.75V
 - V_{CCO} programmable to from 1.8V to 3.3V
 - V_{CCAUX} and V_{CCADC} 1.8V

• I²C Interface

- Programming
- Monitoring
- Control

ZYNQ-7020 AP SOC POWER SOLUTION

The Zynq-7020 AP SoC power reference design provides 4 output voltages. The order and ramp rates for each output are programmed to accommodate Zynq-7020 AP SoC sequencing requirements.

The power system was designed to operate at 650kHz as a good trade-off between space and efficiency.

Vin			
Operating Max	10.0 UVLO Warn	7.5 UVLO Fault 7.0	*
ock		Faults	
	650kHz	Over Temp Shutdown (C)	155.0
Switching Freq			

Output 1/Channel 1 Configuration

Channel 1 is designed to provide 1V to V_{CCINT} , V_{CCBRAM} and V_{CCPINT} Zynq-7020 AP SoC rails at 2.0A. However, the hardware is capable of supporting output currents up to 3Amps.

Output 2/Channel 2 Configuration

Channel 2 provides 1.5V to the DDR3 SDRAM subsystem as well as the DDR3 block inside the Zynq-7020 AP SoC. In addition, it sources the XRP2997 DDR Bus Termination Regulator which provides termination voltage for the DDR3 SDRAM signals. The channel is configured for a 2.0A output, but the hardware is capable of supporting up to a 3Amp load.

Output 3/Channel 3 Configuration

Channel 3 provides 2.5V to Zynq-7020 AP SoC IO banks (V_{CCO}) and peripherals in the system. The channel is configured for a 1.5A output, but the hardware is capable of supporting up to a 2Amp load.

Channel 3		
Vin 12.00	Vout	2.50
Phase (deg) Default 🔻	Iout	1.50
Tstart (ms) 16.00	Tstop (ms)	1.00
Rise (ms) 13.00	Fall (ms)	8.00
PG delay (s) 0.400 🔻	PG %	20.00
Shdn Thresh 0.10	OVP Level	2.800 🔻

Output 4/Channel 4 Configuration

Channel 4 is designed to provide 1.8V to V_{CCAUX} and V_{CCADC} Zynq-7020 AP SoC rails at 0.5A. The channel is configured for a 0.5A output, but the hardware is capable of supporting up to a 1.5Amp load.

LDOOUT

LDOOUT is routed to XRP2997 control pin enabling the device.

CHANNEL SEQUENCING

The XRP7714 sequencing has been designed to meet the Zynq-7020 AP SoC power up sequencing requirements.

Power-On Sequencing

- 1. 1.0V supply with 0.077V/msec ramp rate
- **2. 1.8V** supply with 0.12V/msec ramp rate
- **3. 1.5V and 2.5V supplies** the 1.5V supply with 0.115V/msec ramp rate reaching the target level at the same time as the 2.5V supply with 0.192V/msec ramp rate.

Power-Down Sequencing

- 1. 1.5V and 2.5V supplies the 1.5V supply following 0.1875V/msec ramp down rate; the 2.5V supply following 0.3125V/msec ramp down rate. Both channels regulate down to the shutdown threshold of 100mV before switching stops.
- 2. 1.0V and 1.8V supplies the 1.0V supply following 0.125V/msec ramp down rate; the 1.8V supply following 0.225V/msec ramp down rate. Both channels regulate down to the shutdown threshold of 100mV before switching stops.

ZYNQ-7020 AP SOC POWER ON RESET

XRP7714 will generate a power on reset signal on GPIO3 to the Zynq-7020 AP SoC 400ms after the last rail is in regulation.

POWERING UP THE BOARD

The board hardware is provided capable of supporting an input voltage range of 5.5V to 15V with power connected directly to J5 (VIN) and J6 (GND).

I²C Interface

The Zynq-7020 AP SoC power reference design schematic shows an I²C interface connector (HDR2) to connect the Exar Communications Module (XR77XXEVB-XCM-V80 which has its own users guide available). This provides an interface with PowerArchitectTM 4.x allowing programming of the board.

Ensure the XCM is configured to use the on board pull-up resistors (check jumper settings).

If communication between Zynq-7020 AP SoC and XRP7714 is desired, ensure that the Zynq-7020 AP SoC system board has pull-up resistors installed.

For more information how to implement power subsystem control and monitoring via I^2C bus refer to ANP-31.

Configuring the Board

The board is typically delivered with a XRP7714 which has not yet had its OTP memory burned with a specific configuration. This allows the user to select a different VIO voltage or DDR memory voltage than the one used in the default configuration file available from Exar's web site.

https://www.exar.com/products/zynq-7020

TYPICAL PERFORMANCE CHARACTERISTICS

All data taken at V_{IN} = 12V, f_{SW} =650kHz, T_J = T_A = 25°C, unless otherwise specified

Fig. 1: Channel 1, 1.0V Efficiency

Fig. 3: Channel 3, 2.5V Efficiency

Fig. 5: Channel 1, 1.0V Load Regulation

Fig. 2: Channel 2, 1.5V Efficiency

Fig. 4: Channel 4, 1.8V Efficiency

Fig. 6: Channel 2, 1.5V Load Regulation

Five Output Power System for Zynq-7020 All Programmable SoC

Fig. 7: Channel 3, 2.5V Load Regulation

Fig. 9: Channel 1, 1.0V Load Transient 25% - 75% 5A/us

Fig. 8: Channel 4, 1.8V Load Regulation

Fig. 10: Channel 2, 1.5V Load Transient 25% - 75% 5A/us

25% - 75% 5A/us

© 2016 Exar Corporation

Fig. 13: Channel 1, 1.0V Full Load Output Ripple

Fig. 15: Channel 3, 2.5V Full Load Output Ripple

Fig. 14: Channel 2, 1.5VV Full Load Output Ripple

Fig. 16: Channel 4, 1.8V Full Load Output Ripple

Downloaded from Arrow.com.

BILL OF MATERIAL

Ref.	Qty	Manufacturer	Part Number	Size	Component
РСВ	1	Exar	146-6730-01		XRP77114EVB_IND_V09_VER2
U1	1	Exar	XR7714ILB-F		
U2	1	Exar	XRP2997IDBTR-F	SOICD B08	2A, DDR I/II/II Bus Term. Regulator
Q1,Q2,Q4	3	Diodes, Inc.	DMN2050LFDB	U-DFN2020-6	Dual N-Ch. MOSFET, 20V,4.5A, 45mOhm
Q3	1	Diodes, Inc.	DMN2300UFL4	X2-DFN1310-6	Dual N-Ch. MOSFET, 20V,2.11A, 195mOhm
D1,D2,D3,D4	4	Diodes, Inc.	SD101AWS	SOD-323	SMT Barrier Diode, 60V, 15mA
L1,L2	2	Wurth Elektronik	7440620015	6.8X6.8MM	SMD Inductor 1.5uH, 4.3A, 14.0 mOhm
L3,L4	2	Wurth Elektronik	74408943047	4.8X4.8MM	SMD Inductor 4.7uH, 2.2A, 45.0 mOhm
C2,C9,C22	3	MURATA	GRM31CR60J107ME39L	1206	CERAMIC CAP. 100uF, 6.3V, X5R, 20%
C10, C12, C15, C19	4	MURATA	GRM31CR61A476KE15L	1206	CERAMIC CER, 47uF, 10V, X5R, 10%
C1,C7,C18,C21	4	MURATA	GRM31CR71H475KA12L	1206	CERAMIC CAP., 4.7uF, 50V, X7R, 10%
C4,C5,C8,C17	4	MURATA	GRM21BR71E475KA73L	0805	CERAMIC CAP., 4.7uF, 25V, X7R, 10%
C3,C13,C14	3	MURATA	GRM21BR71C225KA12L	0805	CERAMIC CAP., 2.2uF, 16V, X7R, 10%
C6,C11,C16,C20	4	MURATA	GRM155R71E104KE14D	0402	CERAMIC CAP., 0.1uF, 25V, X7R, 10%
R1,R2	2	PANASONIC	ERA-3AEB104V	0603	Resistor 100.0K Ohm, 0.1% 1/10W, SMD
R3	1	PANASONIC	ERJ-3EKF6802V	0603	Resistor 68.0K Ohm, 1/10W,1%,SMD
R4	1	PANASONIC	ERJ-3RQF1R0V	0603	Resistor 1.0 Ohm, 1/10W,1%,SMD
J7,J1,J8,J2,J4,J9,J10,J 3,J16,J5,J6,J15	12	Vector Electronics	Vector Electronics	.042" Hole	PCB Pin
TP1,TP0,TP3,TP4,TP2	5	Wurth Electronics	61300111121	Test Point	Test Point
1-SCL,GND,SDA	1	Wurth Electronics	61300311121	Test Point	3 PIN HEADER

EVALUATION BOARD LAYOUT (FOR REFERENCE)

Figure 3: Component Placement Top Side

Figure 4: Top Layer

Figure 5: Ground Plane

Figure 6: Mid-Layer

Five Output Power System for Zynq-7020 All Programmable SoC

Figure 7: Mid-Layer 2

Figure 8: Mid-Layer 3

Figure 9: Bottom Layer

DOCUMENT REVISION HISTORY

Revision	Date	Description
1.0.0	06/22/2016	Initial release of document
1.0.1	07/19/2016	Added electrical characteristic curves

FOR FURTHER ASSISTANCE

Email:

Exar Technical Documentation:

powertechsupport@exar.com customersupport@exar.com http://www.exar.com/TechDoc/default.aspx?

EXAR CORPORATION

HEADQUARTERS AND SALES OFFICES

48720 Kato Road Fremont, CA 94538 – USA Tel.: +1 (510) 668-7020 Fax: +1 (510) 668-7030 www.exar.com

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.