

www.ti.com SLLS923-JUNE 2009

5-V PECL-to-TTL Translator

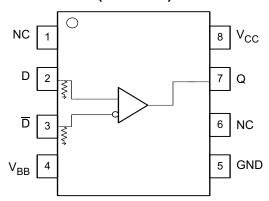
FEATURES

- 3ns (TYP) Propagation Delay
- Operating Range: V_{CC} = 4.2 V to 5.7 V with GND = 0 V
- 24-mA TTL Output
- Deterministic Output Value for Open Input Conditions or When Inputs < 1.3 V
- Built-In Temperature Compensation
- Drop-In Compatible to the MC10ELT21, MC100ELT21

APPLICATIONS

- Data and Clock Transmission Over Backplane
- Signaling Level Conversion for Clock or Data

DESCRIPTION


The SN65ELT21 is a differential PECL-to-TTL translator. It operates on +5-V supply and ground only. The device includes circuitry to maintain Q to a low logic level when inputs are in an open condition or < 1.3 V.

The V_{BB} pin is a reference voltage output for the device. When the device is used in single-ended mode, the unused input should be tied to V_{BB} . This reference voltage can also be used to bias the input when it is ac coupled. When it is used, place a 0.01 μ F decoupling capacitor between V_{CC} and V_{BB} . Also limit the sink/source current to < 0.5 mA to V_{BB} . Leave V_{BB} open when it is not used.

The SN65ELT21 is housed in an industry standard SOIC-8 package and is also available in an optional TSSOP-8 package.

PIN ASSIGNMENT

D or DGK PACKAGE (TOP VIEW)

Table 1. Pin Descriptions

PIN	FUNCTION						
D, \overline{D}	PECL data inputs						
Q	TTL output						
V _{CC}	Positive supply						
V _{EE}	Negative supply						
V_{BB}	Reference voltage output						

ORDERING INFORMATION(1)(2)

PART NUMBER	PART MARKING	PACKAGE	LEAD FINISH
SN65ELT21D	ELT21	SOIC	NiPdAu
SN65ELT21DGK	SIII	SOIC-TSSOP	NiPdAu

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

⁽²⁾ Leaded device options are not initially available; contact a sales representative for further details.

SLLS923-JUNE 2009 www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS(1)

PARAMETER	CONDITIONS	VALUE	UNIT			
Absolute PECL mode supply voltage	solute PECL mode supply voltage V_{CC} (GND = 0 V)					
Sink/source current, V _{BB}		±0.5	mA			
PECL input voltage	$GND = 0 V, V_1 \le V_{CC}$	6	V			
Operating temperature range		-40 to 85	°C			
Storage temperature range		-65 to 150	°C			

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	CIRCUIT BOARD MODEL	POWER RATING T _A < 25°C (mW)	THERMAL RESISTANCE, JUNCTION-TO-AMBIENT NO AIRFLOW	DERATING FACTOR T _A > 25°C (mW/°C)	POWER RATING T _A = 85°C (mW)
SOIC	Low-K	719	139	7	288
	High-K	840	119	8	336
SOIC-TSSOP	Low-K	469	213	5	188
	High-K	527	189	5	211

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAME	TER	MIN	TYP	MAX	UNIT
θ_{JB}	Junction-to-board thermal resistance	SOIC		79		°C/W
		SOIC-TSSOP		120		
θ_{JC}	Junction-to-case thermal resistance	SOIC		98		°C/W
		SOIC-TSSOP		74		

KEY ATTRIBUTES

CHARACTERISTICS		VALUE							
Internal input pull-down resistor		50 kΩ							
Moisture sensitivity level	,								
Flame ability rating (oxygen index: 28	to 34)	UL 94 V-0 at 0.125 in							
Electrostatic discharge	Human body model	2 kV							
	Charged-device model	1.5 kV							
Meets or exceeds JEDEC Spec EIA/JESD78 latchup test									

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

Downloaded from Arrow.com.

www.ti.com SLLS923-JUNE 2009

PECL DC CHARACTERISTICS

At $V_{CC} = 5.0 \text{ V}$, GND = 0.0 V (unless otherwise noted)⁽¹⁾⁽²⁾

	PARAMETER	TEST CONDITIONS	TA	$T_A = -40$ °C			T _A = 25°C			T _A = 85°C		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{IH}	High-level input voltage, single-ended		3835		4120	3835		4120	3835		4120	mV
V _{IL}	Low-level input voltage, single-ended		3190		3525	3190		3525	3190		3525	mV
V_{BB}	Output reference voltage		3.62	3.69	3.74	3.62	3.69	3.74	3.62	3.69	3.74	V
V _{IHCMR}	High-level input voltage, common-mode range, differential	See (3)	2.2		5.0	2.2		5.0	2.2		5.0	V
I _{IH}	High-level input current				150			150			150	μΑ
I _{IL}	Low-level input current		0.5			0.5			0.5			μΑ

⁽¹⁾ The device will meet the specifications after thermal balance has been established when mounted in a socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- (2) Input parameters vary 1:1 with V_{CC} . V_{CC} can vary +0.7 V / -0.8 V.
- (3) V_{IHCMR(min)} varies 1:1 with GND, V_{IHCMR(max)} varies 1:1 with V_{CC}.

TTL DC CHARACTERISTICS

At $V_{CC} = 4.2 \text{ V}$ to 5.7 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CCH}	Power supply current				20	mA
I _{CCL}	Power supply current				20	mA
V_{OH}	High-level output voltage	$I_{OH} = -3.0 \text{ mA}$	2.4		See (2)	V
V_{OL}	Low-level output voltage	I _{OL} = 24 mA			0.5	V
Ios	Output short circuit current		-150		-60	mA

⁽¹⁾ The device will meet the specifications after thermal balance has been established when mounted in a socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

AC CHARACTERISTICS

At V_{CC} = 4.2 V to 5.7 V, GND = 0.0 V (unless otherwise noted)⁽¹⁾⁽²⁾

	DADAMETED	TEST	T _A = -40°C			T _A = 25°C			T _A = 85°C			UNIT
PARAMETER		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
f _{MAX}	Maximum switching frequency	At Vol < 0.5V (See Figure 4)		200			200			200		MHz
t_{PLH}/t_{PHL}	Propagation delay times	At 1.5 V	2		4.5	2		4.5	2		4.5	ns
t _{JITTER}	Random clock jitter (RMS)			5	20		5	20		5	20	ps
V_{PP}	Input swing	See (3)	200		1000	200		1000	200		1000	mV
t _r /t _f	Output rise/fall times	Q (10%–90%)		750			780			910		ps

⁽¹⁾ The device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- (2) $R_L = 500 \Omega$ to GND and $C_L = 20 pF$ to GND. See Figure 1.
- (3) V_{PP(min)} is minimum input swing for which ac parameters are assured.

Copyright © 2009, Texas Instruments Incorporated

Submit Documentation Feedback

⁽²⁾ $V_{OH(max) level}$ is $V_{CC} - 0.7$.

SLLS923-JUNE 2009 www.ti.com

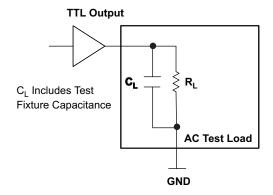


Figure 1. TTL Output AC Test Loading Condition

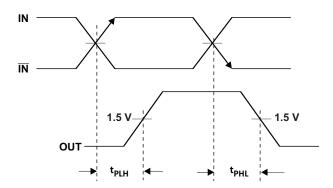


Figure 2. Output Propagation Delay

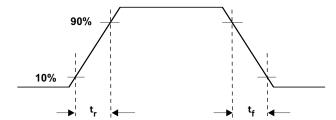
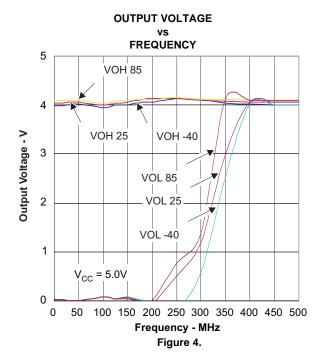



Figure 3. Output Rise and Fall Times

www.ti.com SLLS923-JUNE 2009

Product Folder Link(s): SN65ELT21

www.ti.com 7-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
SN65ELT21D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ELT21
SN65ELT21DGK	Active	Production	VSSOP (DGK) 8	80 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	SIII
SN65ELT21DGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	SIII
SN65ELT21DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ELT21

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

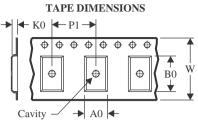
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

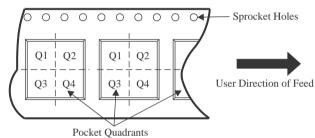
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

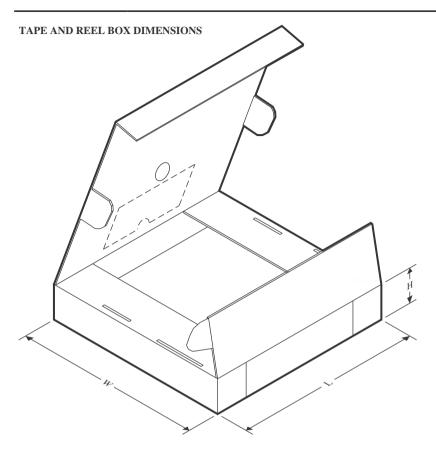
www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

REEL DIMENSIONS Reel Diameter Reel Width (W1)

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

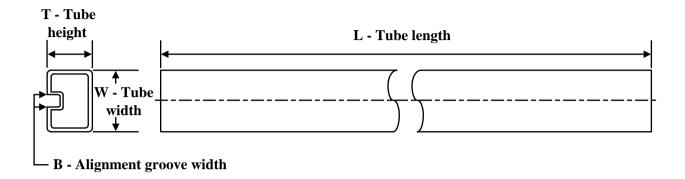

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65ELT21DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
SN65ELT21DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

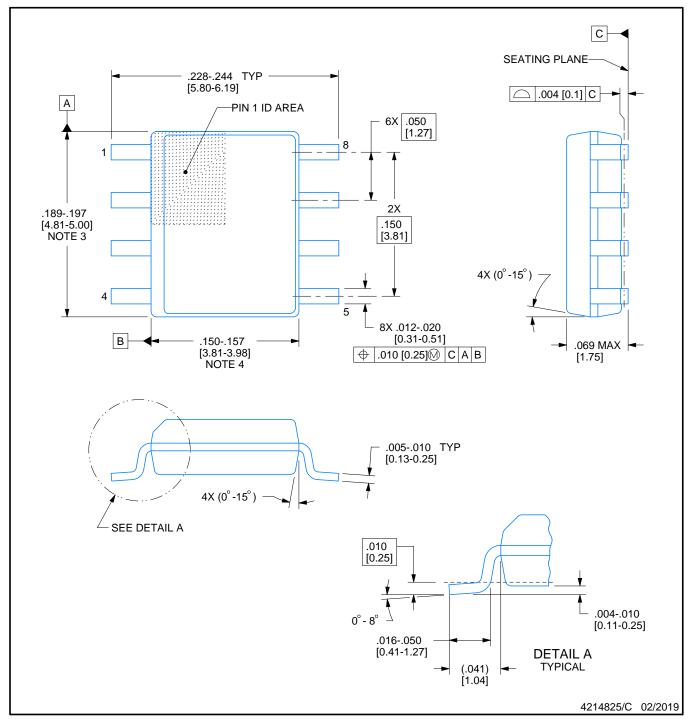
www.ti.com 3-Jun-2022

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65ELT21DGKR	VSSOP	DGK	8	2500	356.0	356.0	35.0
SN65ELT21DR	SOIC	D	8	2500	356.0	356.0	35.0

www.ti.com 3-Jun-2022

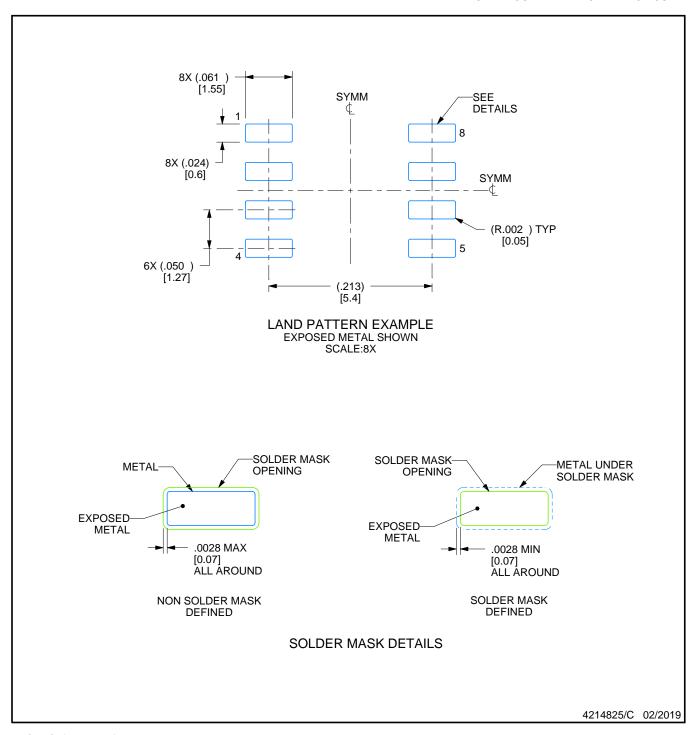
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN65ELT21D	D	SOIC	8	75	506.6	8	3940	4.32
SN65ELT21DGK	DGK	VSSOP	8	80	330.2	6.6	3005	1.88

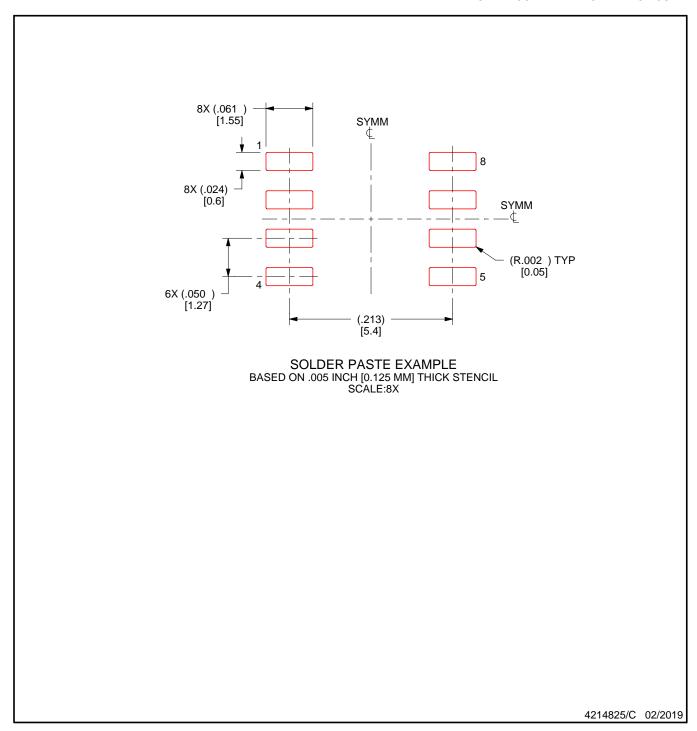
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

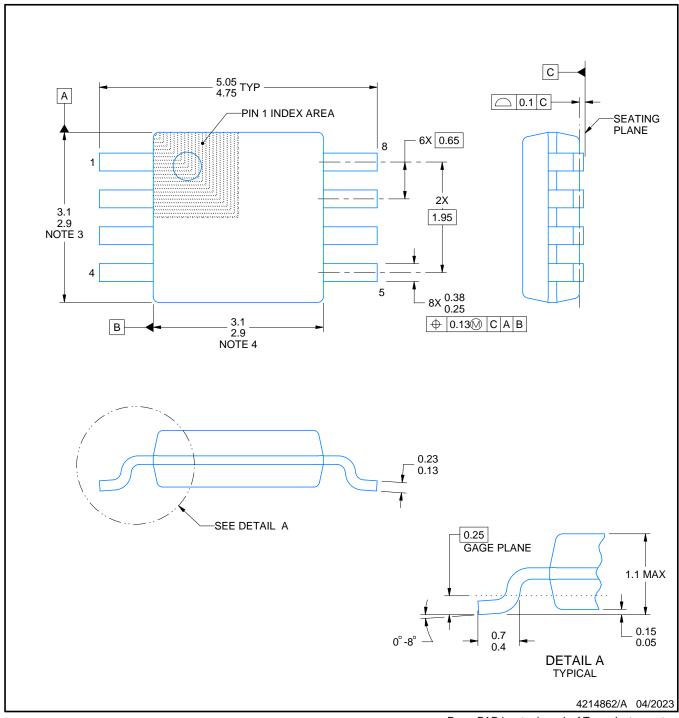


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

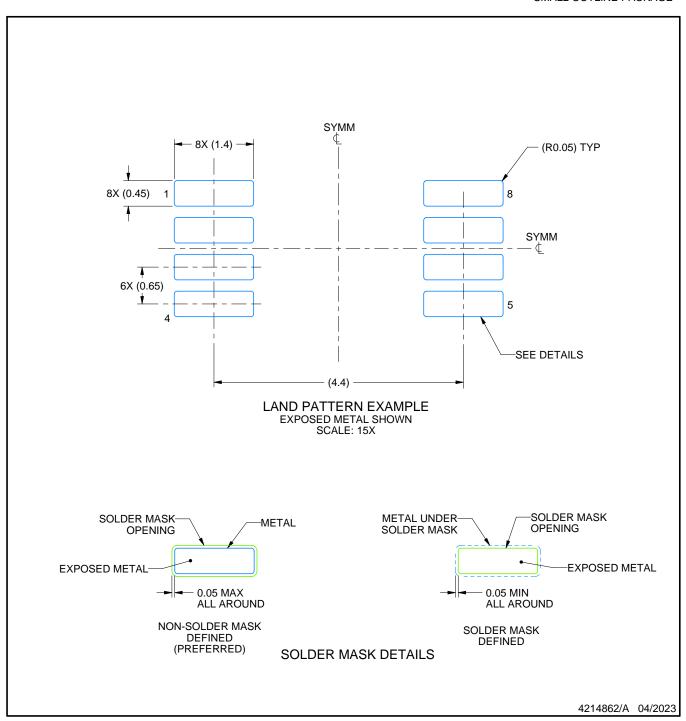

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE PACKAGE

NOTES:

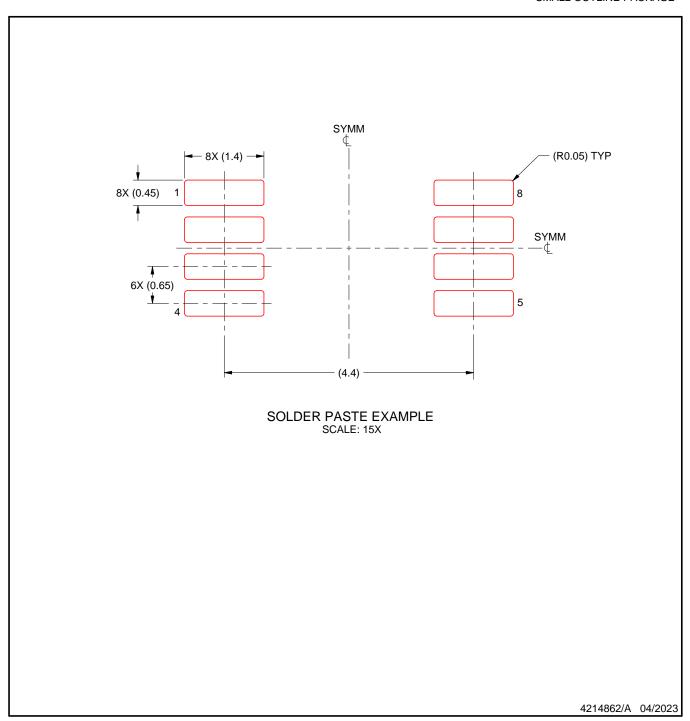
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated