

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918

Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

Multi Stepper Click - TB67S261

PID: MIKROE-5051

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S261FTG, a PHASE-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and full-, half-, and quarter-step operation for less motor noise and smoother control. It has a wide operating voltage range of 10V to 47V with an output current capacity of 2A maximum in addition to several built-in error detection circuits. This Click board™ makes the perfect solution for stepping motors in various applications such as office automation, commercial, and industrial equipment.

Multi Stepper Click is supported by a $\underline{\mathsf{mikroSDK}}$ compliant library, which includes functions that simplify software development. This $\underline{\mathsf{Click}}\ \mathsf{board}^{\mathsf{TM}}$ comes as a fully tested product, ready to be used on a system equipped with the $\underline{\mathsf{mikroBUS}^{\mathsf{TM}}}$ socket.

How does it work?

Multi Stepper Click as its foundation uses the TB67S261FTG, a two-phase bipolar stepping motor driver using a PWM chopper (customized by external resistance R2 and capacitor C1) from Toshiba Semiconductor. The TB67S261FTG incorporates a low on-resistance MOSFET output stage, which can deliver a 1.4A current with a motor output voltage rating of 47V, in addition to integrated protection mechanisms such as over-current and over-temperature detection. In addition, it supports full-, half-, and quarter-step resolution, with the help of which motor noise can be significantly reduced with smoother operation and more precise control.

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
ISO 14001: 2015 certification of environmental management system.
OHSAS 18001: 2008 certification of occupational health and safety management system.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918
Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

PCA9555A

PCA955A

PCA9555A

PCA955A

PCA95CA

PCA955A

PCA95CA

PCA95C

As mentioned in the product description, this stepping motor driver is PHASE-in controlled. These control signals are provided through the <u>PCA9555A</u> port expander, which establishes communication with the MCU via the I2C serial interface. This Click board ™ also allows a connection of external control signals on the onboard header J1 on pins labeled as P1 and P2 for the device's PHASE-in control. The PCA9555A also allows choosing the least significant bit (LSB) of its I2C slave address by positioning SMD jumpers labeled as ADDR SEL to an appropriate position marked as 0 and 1.

www.mikroe.com

In addition to PHASE signals, four A/B channel logic signals, INA1, INB1, INB2, and INA2, are used to control the motor, adjusting the desired step resolution. The first three signals are controlled by AN, CLK, and EN pins of the mikroBUS™ socket. The INA2 signal provides the possibility of dual control selected by positioning SMD jumper labeled as JP5 to an appropriate position marked as P6 or INT, which choose control via expander or INT pin of the mikroBUS™ socket. In the case of the selected INT position of the JP5 jumper, the JP10 jumper needs to be unpopulated.

Also, this Click board has a Standby function routed to the RST pin of the mikroBUS socket used to switch to Standby mode by setting all motor control pins to a low logic state. When the Standby mode is active, the TB67S261FTG stops supplying the power to the internal oscillating circuit and motor output part (the motor drive cannot be performed). This Click board also has an additional LED for anomaly indication, but since this version of the stepper driver does not support this feature, this indicator cannot be used.

The motor A/B channel current output value can be set manually using an onboard trimmer labeled as VR1, which sets the reference voltage from 0V to 3.3V. The default configuration of the JP4 jumper is the VREF position that sets both channels' output current via the VR1 trimmer. In this case, avoid position P4 on a jumper JP4 since the VREFA pin requires an analog signal for setting.

Multi Stepper Click supports an external power supply for the TB67S261FTG, which can be connected to the input terminal labeled as VM and should be within the range of 10V to 47V, while the stepper motor coils can be connected to the terminals labeled as B+, B-, A-, and A+.

This Click board[™] can operate with both 3.3V and 5V logic voltage levels selected via the VCC SEL jumper. This way, it is allowed for both 3.3V and 5V capable MCUs to use communication lines properly. However, the Click board[™] comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
ISO 14001: 2015 certification of environmental management system.
OHSAS 18001: 2008 certification of occupational health and safety management system.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918
Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

Specifications

Туре	Stepper		
Applications	Can be used for stepping motors in various applications such as office automation, commercial, and industrial equipment		
On-board modules	TB67S261FTG - PHASE-in controlled bipolar stepping motor driver from Toshiba Semiconductor		
Key Features	Low power consumption, capable of controlling 1 bipolar stepping motor, full/half/quarter-step resolution, integrated error detection circuits, and more		
Interface	GPIO,I2C		
Feature	No ClickID		
Compatibility	mikroBUS™		
Click board size	L (57.15 x 25.4 mm)		
Input Voltage	External,3.3V or 5V		
Driving Signal	Phase		
Voltage Max	50V		
Maximum Current	2A		
Micro Step	4		
RDSOn	0.8		
ADMD	Yes		
MO	No		
Error Signal (LO)	No		
ULVO	No		

www.mikroe.com

Pinout diagram

This table shows how the pinout on Multi Stepper Click - TB67S261 corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).

Notes	Pin	nikro™ BUS				Pin	Notes	
A-Channel Control 1	AN	1	AN	PWM	16	CLK	B-Channel Control 1	
Standby Control	RST	2	RST	INT	15	INT	Interrupt / A-Channel Control 2	
B-Channel Control 2	EN	3	CS	RX	14	NC		
	NC	4	SCK	TX	13	NC		
	NC	5	MISO	SCL	12	SCL	I2C Clock	
	NC	6	MOSI	SDA	11	SDA	I2C Data	
Power Supply	3.3V	7	3.3V	5V	10	5V	Power Supply	
Ground	GND	8	GND	GND	9	GND	Ground	

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918

Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

www.mikroe.com

Onboard settings and indicators

Label	Name	Default	Description		
LD1	PWR	-	Power LED Indicator		
LD2	DIAG	-	LED for anomaly indication is not supported on this MCD version		
JP1-JP2	ADDR SEL	Left	I2C Address Selection 0/1: Left position 0, Right position 1		
JP3	VCC SEL	Left	Logic Level Voltage Selection 3V3/5V: Left position 3V3, Right position 5V		
JP4	JP4	Left	A-Channel Current Reference Selection VREF/P4: Left position VREF, Right position P4		
JP5	JP5	Right	A-Channel Logic Control Selection P6/INT: Left position P6, Right position INT		
JP10	JP10	Unpopulated	Not supported in this MCD version		
J1	J1	Unpopulated	External PHASE Signals Connection Header		
VR1	VR1	-	Current Threshold Trimmer		
TP1	VREF	-	Voltage Reference Testpoint		
TP2	OSCM	-	Oscillating Circuit Crequency Testpoint		
TP3	GND	-	Ground Testpoint		

Multi Stepper Click - TB67S261 electrical specifications

Description	Min	Тур	Max	Unit
Supply Voltage VCC	3.3	-	5	V
External Supply Voltage VM	10	24	47	V
Motor Output Current	-	1.4	-	Α
Motor Output Voltage	10	-	47	V
Operating Temperature Range	-20	+25	+85	°C

Software Support

We provide a library for the Multi Stepper TB67S261 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918 Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com www.mikroe.com

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our <u>LibStock™</u> or found on <u>Mikroe github</u> account.

Library Description

This library contains API for Multi Stepper TB67S261 Click driver.

Key functions

- multisteppertb67s261 set step mode This function sets the step mode resolution settings in ctx->step mode.
- multisteppertb67s261 drive motor This function drives the motor for the specific number of steps at the selected speed.
- multisteppertb67s261 set direction This function sets the motor direction to clockwise or counter-clockwise in ctx->direction.

Example Description

This example demonstrates the use of the Multi Stepper TB67S261 Click board™ by driving the motor in both directions for a desired number of steps.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our <u>LibStock™</u> or found on <u>Mikroe</u> github account.

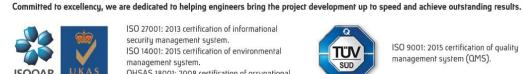
Other Mikroe Libraries used in the example:

- MikroSDK.Board
- MikroSDK.Log
- Click.MultiStepperTB67S261

Additional notes and informations

Depending on the development board you are using, you may need <u>USB UART click</u>, <u>USB UART</u> 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.

mikroSDK


This Click board™ is supported with mikroSDK - MikroElektronika Software Development Kit. To ensure proper operation of mikroSDK compliant Click board[™] demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.

For more information about mikroSDK, visit the official page.

Mikroe produces entire development toolchains for all major microcontroller architectures.

Resources

mikroBUS™

ISO 27001: 2013 certification of informational security management system. ISO 14001: 2015 certification of environmental management system.

OHSAS 18001: 2008 certification of occupational health and safety management system.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918 Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com www.mikroe.com

mikroSDK

Click board™ Catalog

Click Boards™

Downloads

Multi Stepper Click - TB67S261 2D and 3D files

TB67S261 datasheet

PCA9555A datasheet

Multi Stepper Click - TB67S261 schematic

Multi Stepper Click - TB67S261 example on Libstock

Mikroe produces entire development toolchains for all major microcontroller architectures. Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational

health and safety management system.

security management system.

management system.

