EPC2007C – Enhancement Mode Power Transistor

 V_{DS} , 100 V $R_{DS(on)}$, $30\,m\Omega$ I_D , 6 A

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings				
	PARAMETER VALUE UNIT				
V_{DS}	Drain-to-Source Voltage (Continuous)	100	V		
	Continuous ($T_A = 25$ °C, $R_{\theta JA} = 62$ °C/W)	6	А		
I _D	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	40			
W	Gate-to-Source Voltage	6	V		
V_{GS}	Gate-to-Source Voltage	-4	V		
TJ	Operating Temperature	-40 to 150	°C		
T _{STG}	Storage Temperature	-40 to 150	C		

Thermal Characteristics					
	PARAMETER TYP UNIT				
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	3.6			
R _{OJB} Thermal Resistance, Junction-to-Board 9.3 °C		°C/W			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	80			

Note $1: R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

EPC2007C eGaN® FETs are supplied only in passivated die form with solder bumps

Applications

- High Speed DC-DC conversion
- Class-D Audio
- · Wireless Power Transfer
- Lidar

Benefits

- · Ultra High Efficiency
- Zero Q_{RR}
- Ultra Low Q_G
- Ultra Small Footprint

Static Characteristics ($T_J = 25^{\circ}$ C unless otherwise stated)						
PARAMETER TEST CONDITIONS MIN TYP MAX UI						UNIT
BV_DSS	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 75 \mu\text{A}$	100			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$		20	60	μΑ
I _{GSS}	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.25	2	mA
	Gate-to-Source Reverse Leakage	V _{GS} = -4 V		20	60	μΑ
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1.2 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 6 \text{ A}$		24	30	mΩ
VsD	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A, } V_{GS} = 0 \text{ V}$		2.1		V

All measurements were done with substrate connected to source.

	Dynamic Characteristics (T _J = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C_{ISS}	Input Capacitance			170	220	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		1.9	2.7	pF
C_{OSS}	Output Capacitance			110	165	
R_{G}	Gate Resistance			0.4		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 6 \text{ A}$		1.6	2.2	
Q_GS	Gate-to-Source Charge			0.6		
Q_{GD}	Gate-to-Drain Charge $V_{DS} = 50 \text{ V}, I_D = 6 \text{ A}$			0.3	0.6	nC
$Q_{G(TH)}$	Gate Charge at Threshold			0.4		IIC
Q _{OSS}	Output Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		8.3	12.5	
Q_{RR}	Source-Drain Recovery Charge			0		

All measurements were done with substrate connected to source.

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 1: Typical Output Characteristics at 25 °C

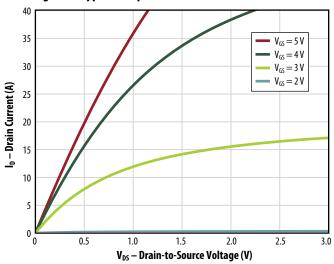


Figure 2: Transfer Characteristics

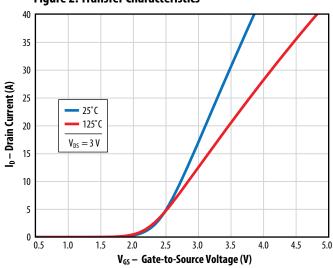


Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

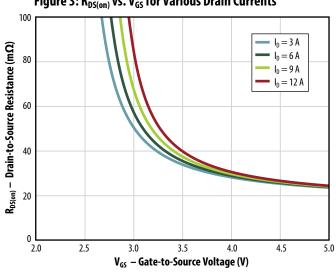
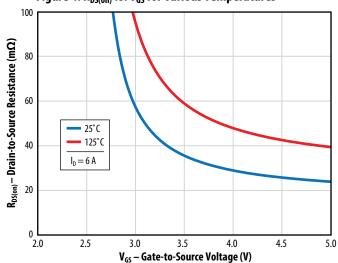



Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

EPC - POWER CONVERSION TECHNOLOGY LEADER | EPC-

EPC-CO.COM

©2021

2

Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

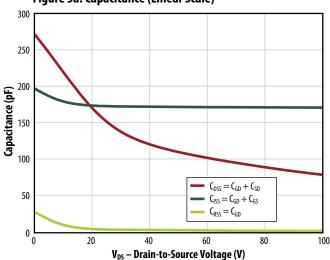


Figure 5b: Capacitance (Log Scale)

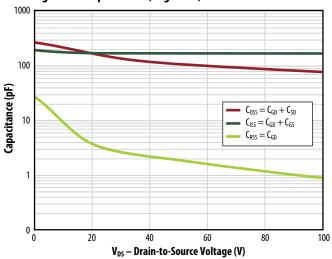


Figure 6: Gate Charge

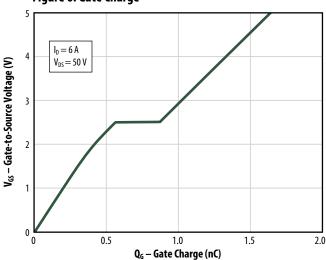


Figure 7: Reverse Drain-Source Characteristics

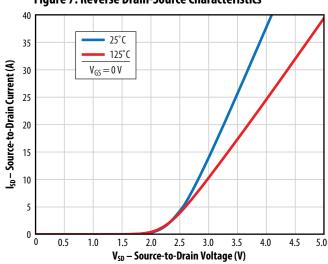


Figure 8: Normalized On-State Resistance vs. Temperature

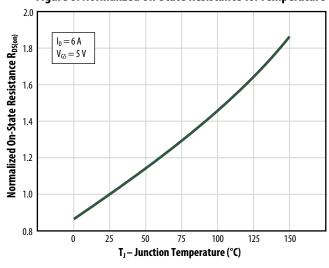
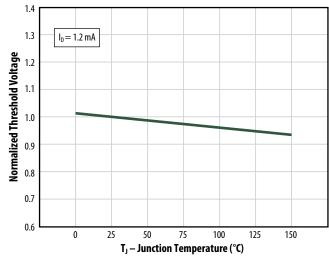
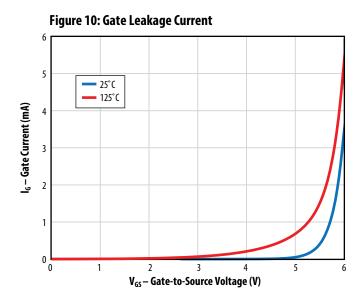
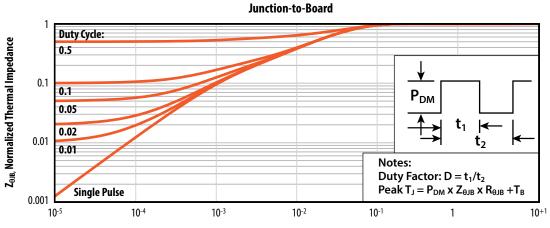




Figure 9: Normalized Threshold Voltage vs. Temperature



All measurements were done with substrate shortened to source.

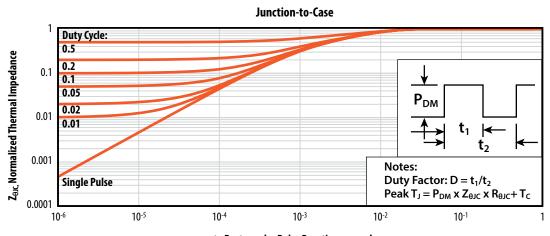
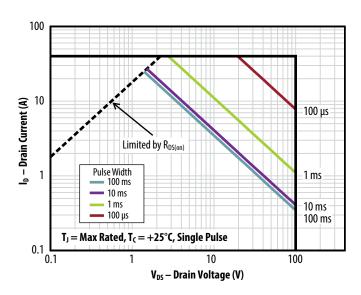
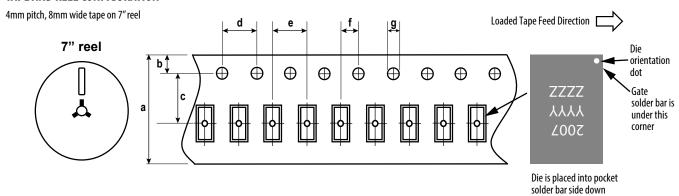

EPC - POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | 3

Figure 11: Transient Thermal Response Curves

 $\mathbf{t}_{\mathbf{p}_{\mathbf{r}}}$ Rectangular Pulse Duration, seconds



 $\mathbf{t}_{\mathbf{p}}$, Rectangular Pulse Duration, seconds


EPC — POWER CONVERSION TECHNOLOGY LEADER

EPC-CO.COM

Figure 12: Safe Operating Area

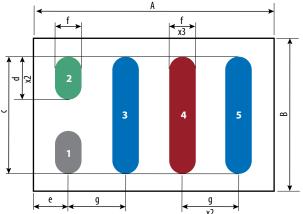
TAPE AND REEL CONFIGURATION

	EPC2007C (note 1)			
Dimension (mm)	target	min	max	
а	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (note 2)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (note 2)	2.00	1.95	2.05	
g	1.5	1.5	1.6	

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard. Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket,

not the pocket hole.

(face side down)


DIE MARKINGS 2007 YYYY Die orientation dot ZZZZ

Gate Pad bump is under this corner

Part	Laser Markings			
Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3	
EPC2007C	2007	YYYY	ZZZZ	

DIE OUTLINE

Solder Bar View

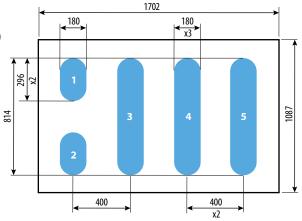
Side View

$ \frac{c}{\sqrt{y}} $	
	(685) Max
	(685) 815 Max
Seating Plane	100 +/- 50

DIM	MICROMETERS			
DIM	MIN	Nominal	MAX	
A	1672	1702	1732	
В	1057	1087	1117	
c	829	834	839	
d	311	316	321	
e	235	250	265	
f	195	200	205	
g	400	400	400	

Pad no. 1 is Gate;

Pad no. 2 is Substrate;*


Pads no. 3 and 5 are Drain;

Pad no. 4 is Source

*Substrate pin should be connected to Source

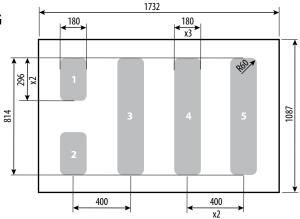
RECOMMENDED LAND PATTERN

(measurements in µm)

The land pattern is solder mask defined
Solder mask is 10 µm smaller per side than bump

Pad no. 1 is Gate

Pad no. 2 is Substrate*


Pads no. 3 and 5 are Drain

Pad no. 4 is Source

*Substrate pin should be connected to Source

RECOMMENDED STENCIL DRAWING

(units in μ m)

Recommended stencil should be 4 mil (100 μ m) thick, must be laser cut , opening per drawing. The corner has a radius of R60.

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

Additional assembly resources available at https://www.epc-co.com/epc/DesignSupport/ AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice.
Revised April, 2021

6