The NCP81220 dual output four plus two phase buck solution is optimized for Intel’s IMVP8 CPUs. The controller combines true differential voltage sensing, differential inductor DCR current sensing, input voltage feed-forward, and adaptive voltage positioning to provide accurately regulated power for notebook applications.

The control system is based on Dual–Edge pulse–width modulation (PWM) combined with DCR current sensing providing an ultra fast initial response to dynamic load events and reduced system cost. The NCP81220 provides the mechanism to shed phases during light load operation and can auto frequency scale in light load conditions while maintaining excellent transient performance.

Dual high performance operational error amplifiers are provided to simplify compensation of the complete system. Patented Dynamic Reference Injection further simplifies loop compensation by eliminating the need to compromise between closed–loop transient response and Dynamic VID performance. Patented Total Current Summing provides highly accurate current monitoring for droop and digital current monitoring.

Features

• Meets Intel’s IMVP8 Specification
• Current Mode Dual Edge Modulation for Fast Initial Response to Transient Loading
• Dual High Performance Operational Error Amplifier
• One Digital Soft Start Ramp for Both Rails
• Dynamic Reference Injection
• Accurate Total Summing Current Amplifier
• DAC with Droop Feed–forward Injection
• Dual High Impedance Differential Voltage and Total Current Sense Amplifiers
• Phase–to–Phase Dynamic Current Balancing
• “Lossless” DCR Current Sensing for Current Balancing
• Pb–free and Halide–free Packages are Available
• Summed Compensated Inductor Current Sensing for Droop
• True Differential Current Balancing Sense Amplifiers for Each Phase
• Adaptive Voltage Positioning (AVP)
• Switching Frequency Range of 180 KHz – 1.17 MHz

Applications

• IMVP8 Desktop
• Gaming

Startup into Pre–Charged Loads while Avoiding False OVP
• Power Saving Phase Shedding
• Vin Feed Forward Ramp Slope
• Over Voltage Protection (OVP) & Under Voltage Protection (UVP)
• Over Current Protection (OCP)
• Dual Power Good Output with Internal Delays

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCP81220MNTXG</td>
<td>QFN52</td>
<td>2500 / Tape &amp; Reel</td>
</tr>
</tbody>
</table>

¹For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
Figure 1. Block Diagram
### Table 1. QFN52 PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IOUT</td>
<td>Total output current monitor for four-phase regulator</td>
</tr>
<tr>
<td>2</td>
<td>EN</td>
<td>Enable. High enables both rails</td>
</tr>
<tr>
<td>3</td>
<td>SDIO</td>
<td>Serial VID data interface</td>
</tr>
<tr>
<td>4</td>
<td>ALERT</td>
<td>Serial VID ALERT</td>
</tr>
<tr>
<td>5</td>
<td>SCLK</td>
<td>Serial VID clock</td>
</tr>
<tr>
<td>6</td>
<td>VR_RDY</td>
<td>VR_RDY indicates both rails ready to accept SVID commands</td>
</tr>
<tr>
<td>7</td>
<td>VCC</td>
<td>Power for the internal control circuits. A decoupling capacitor is connected from this pin to ground</td>
</tr>
<tr>
<td>8</td>
<td>PSYS</td>
<td>System power signal input</td>
</tr>
<tr>
<td>9</td>
<td>VRMP</td>
<td>Feed–forward input of Vin for the ramp–slope compensation. The current fed into this pin is used to control the ramp of the PWM slopes</td>
</tr>
<tr>
<td>10</td>
<td>VR_HOT</td>
<td>OD output. Indicates high VR temperature threshold crossed</td>
</tr>
<tr>
<td>11</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>IOUTA</td>
<td>Total output current monitor for two–phase regulator</td>
</tr>
<tr>
<td>14</td>
<td>VSNA</td>
<td>Differential output voltage positive sense for two–phase rail</td>
</tr>
<tr>
<td>15</td>
<td>VSPA</td>
<td>Differential output voltage negative sense for two–phase rail</td>
</tr>
<tr>
<td>16</td>
<td>DIFFA</td>
<td>Output of the two–phase regulator(2)s differential remote sense amplifier</td>
</tr>
<tr>
<td>17</td>
<td>FBA</td>
<td>Error amplifier voltage feedback for two–phase regulator</td>
</tr>
<tr>
<td>18</td>
<td>COMP A</td>
<td>Output of the error amplifier and the inverting inputs of the PWM comparators for two–phase regulator</td>
</tr>
<tr>
<td>19</td>
<td>CSCOMPA</td>
<td>Output of total–current–sense amplifier for two–phase regulator</td>
</tr>
<tr>
<td>20</td>
<td>ILIMA</td>
<td>Over–current threshold setting – programmed with a resistor to CSCOMPA for two–phase regulator</td>
</tr>
<tr>
<td>21</td>
<td>CSSUMA</td>
<td>Inverting input of total–current–sense amplifier for two–phase regulator</td>
</tr>
<tr>
<td>22</td>
<td>CSREF A</td>
<td>Total–current–sense amplifier reference voltage input for two–phase regulator</td>
</tr>
<tr>
<td>23</td>
<td>CSP1A</td>
<td>Non–inverting input to current–balance amplifier for Phase 1 of two–phase regulator.</td>
</tr>
<tr>
<td>24</td>
<td>CSN1A</td>
<td>Inverting input to the current–balance amplifier for Phase 1 of two–phase regulator.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>-------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>25</td>
<td>CSP2A</td>
<td>Non-inverting input to current-balance amplifier for Phase 2 of the two-phase regulator. Pull this pin to Vcc to disable Phase 2.</td>
</tr>
<tr>
<td>26</td>
<td>CSN2A</td>
<td>Inverting input to the current-balance amplifier for Phase 2 of the two-phase regulator</td>
</tr>
<tr>
<td>27</td>
<td>TSENSEA</td>
<td>Temperature sense input for two-phase regulator</td>
</tr>
</tbody>
</table>
| 28     | PWM1A / ICCMAXA | PWM1 output for two-phase regulator  
During startup, ICCMAX for two-phase regulator is programmed with a pull-down resistor |
| 29     | PWM2A / VBOOTA | PWM2 output for two-phase regulator  
Pin-program for two-phase Vboot.                                                                 |
| 30     | DRON         | External FET driver enable for discrete driver or ONsemi DrMOS                                        |
| 31     | PWM4 / ROSC  | PWM4 output for four-phase regulator  
Pulldown on this pin programs the operating frequency for both rails                                |
| 32     | PWM3 / ICCMAX | PWM3 output for four-phase regulator  
Pulldown on this pin programs ICCMAX for four-phase rail during startup |
| 33     | PWM2 / VBOOT | PWM2 output for four-phase regulator  
Pin-program for four-phase Vboot.                                                                       |
| 34     | PWM1 / SV_ADDR | PWM1 output for four-phase regulator  
Pulldown on this pin configures SVID address                                                               |
| 35     | TSENSE       | Temperature sense input for four-phase regulator                                                      |
| 36     | CSN1         | Differential current sense negative for Phase 1 of four-phase rail                                     |
| 37     | CSP1         | Differential current sense positive for Phase 1 of four-phase rail                                     |
| 38     | CSN2         | Differential current sense negative for Phase 2 of four-phase rail                                     |
| 39     | CSP2         | Differential current sense positive for Phase 2 of four-phase rail                                     |
| 40     | CSN3         | Differential current sense negative for Phase 3 of four-phase rail                                     |
| 41     | CSP3         | Differential current sense positive for Phase 3 of four-phase rail                                     |
| 42     | CSN4         | Differential current sense negative for Phase 4 of four-phase rail                                     |
| 43     | CSP4         | Differential current sense positive for Phase 4 of four-phase rail                                     |
| 44     | CSREF        | Total-current-sense amplifier reference voltage input for four-phase regulator                         |
| 45     | CSSUM        | Inverting input of total-current-sense amplifier for four-phase regulator                             |
| 46     | ILIM         | Over-current threshold setting – programmed with a resistor to CSCOMP for four-phase regulator        |
| 47     | CSCOMP       | Output of total-current-sense amplifier for four-phase regulator                                     |
| 48     | COMP         | Output of the error amplifier and the inverting inputs of the PWM comparators for four-phase regulator |
| 49     | FB           | Error amplifier voltage feedback for four-phase regulator                                             |
| 50     | DIFF         | Output of the four-phase regulator’s differential remote sense amplifier                              |
| 51     | VSP          | Differential output voltage sense positive for four-phase regulator                                   |
| 52     | VSN          | Differential output voltage sense negative for four-phase regulator                                   |
| 53     | Flag         | GND                                                     |
Table 2. ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Pin Symbol</th>
<th>VMAX</th>
<th>VMIN</th>
<th>ISOURCE</th>
<th>ISINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP, COMPA</td>
<td>VCC + 0.3 V</td>
<td>−0.3 V</td>
<td>2 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>CSCOMP, CSCOMPA</td>
<td>VCC + 0.3 V</td>
<td>−0.3 V</td>
<td>2 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>DIFF, DIFFA</td>
<td>VCC + 0.3 V</td>
<td>−0.3 V</td>
<td>2 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>PWM1, PWM2, PWM3, PWM4, PWM1A, PWM2A</td>
<td>VCC + 0.3 V</td>
<td>−0.3 V</td>
<td>2 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>VSN, VSNA</td>
<td>GND + 300 mV</td>
<td>GND − 300 mV</td>
<td>1 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>VRDY</td>
<td>VCC + 0.3 V</td>
<td>−0.3 V</td>
<td>2 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>VRMP</td>
<td>+25 V</td>
<td>−0.3 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Other Pins</td>
<td>VCC + 0.3 V</td>
<td>−0.3 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

*All signals referenced to GND unless noted otherwise.

Table 3. THERMAL INFORMATION

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Characteristic – QFN Package (Note 1)</td>
<td>RJA</td>
<td>68</td>
<td>°C/W</td>
</tr>
<tr>
<td>Operating Junction Temperature Range (Note 2)</td>
<td>TJ</td>
<td>−10 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Ambient Temperature Range</td>
<td></td>
<td>−10 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Storage Temperature Range</td>
<td>TSTG</td>
<td>−40 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Moisture Sensitivity Level – QFN Package</td>
<td>MSL</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ESD Human Body Model</td>
<td>HBM</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>ESD Machine Model</td>
<td>MM</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>ESD Charged device model</td>
<td>CDM</td>
<td>1000</td>
<td>V</td>
</tr>
</tbody>
</table>

*The maximum package power dissipation must be observed.

1. JESD 51−5 (1S2P Direct–Attach Method) with 0 LFM
2. JESD 51−7 (1S2P Direct–Attach Method) with 0 LFM

Table 4. NCP81220 (4+2) ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ERROR AMPLIFIER</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td></td>
<td>−400</td>
<td>400</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Open Loop DC Gain</td>
<td>CL = 20 pF to GND, RL = 10 kΩ to GND</td>
<td>80</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Open Loop Unity Gain Bandwidth</td>
<td>CL = 20 pF to GND, RL = 10 kΩ to GND</td>
<td>20</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>slew Rate</td>
<td>ΔVin = 100 mV, G = −10 V/V, ΔVout = 0.75 V − 1.52 V, CL = 20 pF to GND, DC Load = 10 kΩ to GND</td>
<td>20</td>
<td></td>
<td></td>
<td>V/µs</td>
</tr>
<tr>
<td>Maximum Output Voltage</td>
<td>ISOURCE = 2.0 mA</td>
<td>3.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Minimum Output Voltage</td>
<td>ISINK = 2.0 mA</td>
<td></td>
<td>−</td>
<td>−</td>
<td>V</td>
</tr>
</tbody>
</table>

| **DIFFERENTIAL SUMMING AMPLIFIER**             |                 |     |     |     |       |
| Input Bias Current                             |                 | −400| 400 | nA  |       |
| VSP Input Voltage Range                        |                 | −0.3| −   | 3.0 | V     |
| VSN Input Voltage Range                        |                 | −0.3| −   | 0.3 | V     |
| −3 dB Bandwidth                                | CL = 20 pF to GND, RL = 10 kΩ to GND | 12  |     |     | MHz   |
### Table 4. NCP81220 (4+2) ELECTRICAL CHARACTERISTICS

Unless otherwise stated: $-10^\circ\text{C} < T_A < 100^\circ\text{C}$; $4.75\text{ V} < \text{VCC} < 5.25\text{ V}$; $C_{\text{VCC}} = 0.1\ \text{\mu F}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DIFFERENTIAL SUMMING AMPLIFIER</strong></td>
<td>VS+ to VS− = 0.5 to 1.3 V</td>
<td></td>
<td>1</td>
<td></td>
<td>V/V</td>
</tr>
<tr>
<td>Closed Loop DC gain VS to DIFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droop Accuracy</td>
<td>CSREF−DROOP = 80 mV</td>
<td>−42</td>
<td>−40</td>
<td>−38</td>
<td>mV</td>
</tr>
<tr>
<td>DAC = 0.8 V to 1.2 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Output Voltage</td>
<td>$I_{\text{SOURCE}} = 2\ \text{mA}$</td>
<td>3.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Minimum Output Voltage</td>
<td>$I_{\text{SINK}} = 2\ \text{mA}$</td>
<td></td>
<td></td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td><strong>CURRENT SUMMING AMPLIFIER</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Voltage (Vos)</td>
<td></td>
<td>−300</td>
<td>300</td>
<td></td>
<td>\mu V</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>CSSUM = CSREF = 1 V</td>
<td></td>
<td>−7.5</td>
<td>7.5</td>
<td>\mu A</td>
</tr>
<tr>
<td>Open Loop Gain</td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Current Sense Unity Gain Bandwidth</td>
<td>$C_L = 20\ \text{pF}$ to GND, $R_L = 10\ \text{K\Omega}$ to GND</td>
<td></td>
<td>10</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Maximum CSCOMP (A) Output Voltage</td>
<td>$I_{\text{source}} = 2\ \text{mA}$</td>
<td>3.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Minimum CSCOMP(A) Output Voltage</td>
<td>$I_{\text{sink}} = 2\ \text{mA}$</td>
<td></td>
<td></td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td><strong>CURRENT BALANCE AMPLIFIER</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>CSPX = CSNX = 1.2 V</td>
<td></td>
<td>−50</td>
<td>−</td>
<td>50</td>
</tr>
<tr>
<td>Common Mode Input Voltage Range</td>
<td>CSPX = CSREF</td>
<td></td>
<td>0</td>
<td>−</td>
<td>2.5</td>
</tr>
<tr>
<td>Differential Mode Input Voltage Range</td>
<td>CSNX = 1.2 V</td>
<td></td>
<td>−30</td>
<td>−</td>
<td>30</td>
</tr>
<tr>
<td>Closed loop Input Offset Voltage Matching</td>
<td>CSPX = 1.2 V, Measured from the average</td>
<td></td>
<td>−1.5</td>
<td>−</td>
<td>1.5</td>
</tr>
<tr>
<td>Current Sense Amplifier Gain</td>
<td>$0\ \text{V} &lt; \text{CSPX} &lt; 0.1\ \text{V}$</td>
<td>5.7</td>
<td>6.0</td>
<td>6.3</td>
<td>V/V</td>
</tr>
<tr>
<td>Multiphase Current Sense Gain Matching</td>
<td>CSREF = CSP = 10 mV to 30 mV</td>
<td>±3</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>−3 dB Bandwidth</td>
<td>Guaranteed by simulation</td>
<td></td>
<td>8</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td><strong>BIAS SUPPLY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage Range</td>
<td></td>
<td>4.75</td>
<td></td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>VCC Quiescent Current</td>
<td>PS0</td>
<td></td>
<td>55</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>VCC Quiescent Current</td>
<td>PS1</td>
<td></td>
<td>55</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>VCC Quiescent Current</td>
<td>PS2</td>
<td></td>
<td>55</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>VCC Quiescent Current</td>
<td>PS3</td>
<td></td>
<td>35</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>VCC Quiescent Current</td>
<td>PS4 (@25°C)</td>
<td></td>
<td>230</td>
<td></td>
<td>\mu A</td>
</tr>
<tr>
<td>UVLO Threshold</td>
<td>VCC rising</td>
<td></td>
<td>4.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCC falling</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCC UVLO Hysteresis</td>
<td></td>
<td>90</td>
<td>300</td>
<td>450</td>
<td>mV</td>
</tr>
<tr>
<td><strong>VRMP</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Range</td>
<td></td>
<td>4.5</td>
<td></td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>VRMP UVLO Threshold</td>
<td>VRMP rising</td>
<td></td>
<td>4.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VRMP falling</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VRMP UVLO Hysteresis</td>
<td></td>
<td></td>
<td>800</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td><strong>DAC SLEW RATE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft Start/Slow Slew Rate</td>
<td>1/2 SR Fast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew Rate Fast</td>
<td></td>
<td></td>
<td>&gt;10</td>
<td></td>
<td>mv/\mu s</td>
</tr>
</tbody>
</table>

[www.onsemi.com](http://www.onsemi.com)
Table 4. NCP81220 (4+2) ELECTRICAL CHARACTERISTICS
Unless otherwise stated: $-10^\circ C < T_A < 100^\circ C$; $4.75\, V < VCC < 5.25\, V$; $C_{VCC} = 0.1\, \mu F$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DAC SLEW RATE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUX Soft Start/Slow Slew Rate</td>
<td>1/2 SR Fast</td>
<td></td>
<td></td>
<td></td>
<td>mv/\mu s</td>
</tr>
<tr>
<td>AUX Slew Rate Fast</td>
<td>&gt;10</td>
<td></td>
<td></td>
<td></td>
<td>mv/\mu s</td>
</tr>
<tr>
<td><strong>ENABLE INPUT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable High Input Leakage Current</td>
<td></td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>\mu A</td>
</tr>
<tr>
<td>Upper Threshold</td>
<td>VUPPER</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Lower Threshold</td>
<td>VLOWER</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Enable Delay Time</td>
<td>Measure time from Enable transitioning HI, VBOOT is not 0 V</td>
<td></td>
<td></td>
<td></td>
<td>2.5 ms</td>
</tr>
<tr>
<td><strong>DRON</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output High Voltage</td>
<td>Sourcing 500 \mu A</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>Sinking 500 \mu A</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td>Pull Up Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0 k\Omega</td>
</tr>
<tr>
<td>Rise/Fall Time</td>
<td>CL (PCB) = 20 pF, $\Delta V_0 = 10%$ to 90%</td>
<td>-</td>
<td>160</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Internal Pull Down Resistance</td>
<td>VCC = 0 V</td>
<td></td>
<td></td>
<td></td>
<td>70 k\Omega</td>
</tr>
<tr>
<td><strong>IOUT /IOUTA OUTPUT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Referred Offset Voltage</td>
<td>Ilimit to CSREF</td>
<td>-4</td>
<td></td>
<td>+4</td>
<td>mV</td>
</tr>
<tr>
<td>Output current max</td>
<td>Ilimit sink current 30 \mu A</td>
<td>285</td>
<td>300</td>
<td>315</td>
<td>\mu A</td>
</tr>
<tr>
<td>Current Gain</td>
<td>(iout current)/(illimit Current) $R_{lim} = 20, K$, $R_{iout} = 5, K$ $DAC = 0.8, V$, 1.25 $V$, 1.52 $V$</td>
<td>9.5</td>
<td>10</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td><strong>OSCILLATOR</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Frequency Range</td>
<td></td>
<td>180</td>
<td>1170</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Switching Frequency Accuracy</td>
<td>180 kHz &lt; Fsw &lt; 1170 kHz</td>
<td>-10</td>
<td>-</td>
<td>10</td>
<td>%</td>
</tr>
<tr>
<td><strong>PSYS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current max</td>
<td>rsys = 25 K</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>ADC resolution</td>
<td>8 bit</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Register update rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
</tr>
<tr>
<td><strong>OUTPUT OVER VOLTAGE &amp; UNDER VOLTAGE PROTECTION (OVP &amp; UVP)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over Voltage Threshold During Soft–Start</td>
<td>CSREF Rising</td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>Over Voltage Threshold Above DAC</td>
<td>VSP rising</td>
<td></td>
<td></td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>Over Voltage Delay</td>
<td>VSP rising to PWMx low</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Under Voltage Threshold Below DAC–DROOP</td>
<td>VSP falling</td>
<td></td>
<td></td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>Under−voltage Hysteresis</td>
<td>VSP rising</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Under Voltage Threshold Below DAC–Droop</td>
<td>VSP falling</td>
<td></td>
<td></td>
<td></td>
<td>370</td>
</tr>
<tr>
<td>Under−voltage Hysteresis</td>
<td>VSP rising</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Under−Voltage Delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td><strong>SVID DAC</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Voltage Accuracy</td>
<td>$0.75, V \leq DAC &lt; 1.52, V$</td>
<td>-0.5</td>
<td></td>
<td></td>
<td>-8</td>
</tr>
<tr>
<td></td>
<td>$0.5, V &lt; DAC &lt; 0.745, V$</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$0.25, V &lt; DAC &lt; 0.495, V$</td>
<td></td>
<td></td>
<td></td>
<td>-10</td>
</tr>
</tbody>
</table>
### Table 4. NCP81220 (4+2) ELECTRICAL CHARACTERISTICS

Unless otherwise stated: $-10°C < T_A < 100°C; 4.75\,V < V_{CC} < 5.25\,V; C_{VCC} = 0.1 \mu F$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OVERCURRENT PROTECTION</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILIM Threshold Current (OCP shut-down after 50 $\mu$s delay)</td>
<td>Main Rail, $R_{lim} = 20,k\Omega$</td>
<td>8.0</td>
<td>10</td>
<td>11.0</td>
<td>$\mu A$</td>
</tr>
<tr>
<td>ILIM Threshold Current (immediate OCP shutdown)</td>
<td>Main Rail, $R_{lim} = 20,k\Omega$</td>
<td>13</td>
<td>15</td>
<td>16.5</td>
<td>$\mu A$</td>
</tr>
<tr>
<td>ILIM Threshold Current (OCP shut-down after 50 $\mu$s delay)</td>
<td>Main Rail, $RLIM = 20,K (N = number of phases in PS0 mode)$</td>
<td>10/N</td>
<td></td>
<td></td>
<td>$\mu A$</td>
</tr>
<tr>
<td>ILIM Threshold Current (immediate OCP shutdown)</td>
<td>Main Rail, $RLIM = 20,K (N = number of phases in PS0 mode)$</td>
<td>15/N</td>
<td></td>
<td></td>
<td>$\mu A$</td>
</tr>
<tr>
<td>ILIM Threshold Current (immediate OCP shutdown)</td>
<td>Auxiliary Rail, $R_{lim} = 20,k\Omega$</td>
<td>8.0</td>
<td>10</td>
<td>11.0</td>
<td>$\mu A$</td>
</tr>
<tr>
<td>ILIM Threshold Current (immediate OCP shutdown)</td>
<td>Auxiliary Rail, $R_{lim} = 20,k\Omega$</td>
<td>13</td>
<td>15</td>
<td>16.5</td>
<td>$\mu A$</td>
</tr>
<tr>
<td>ILIM Threshold Current (OCP shut-down after 50 $\mu$s delay)</td>
<td>Auxiliary Rail $RLIM = 20,K$</td>
<td>10/N</td>
<td></td>
<td></td>
<td>$\mu A$</td>
</tr>
<tr>
<td>ILIM Threshold Current (immediate OCP shutdown)</td>
<td>Auxiliary Rail $RLIM = 20,K$</td>
<td>15/N</td>
<td></td>
<td></td>
<td>$\mu A$</td>
</tr>
<tr>
<td><strong>MODULATORS (PWM COMPARATORS) FOR MAIN RAIL &amp; AUXILIARY RAIL</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM Min Pulse Width</td>
<td>$F_{sw} = 350,kHz$</td>
<td>60</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>0% Duty Cycle</td>
<td>COMP voltage when the PWM outputs remain LO</td>
<td>1.3</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>100% Duty Cycle</td>
<td>COMP voltage when the PWM outputs remain HI $VR_{MP} = 12.0,V$</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>PWM Ramp Duty Cycle Matching</td>
<td>$COMP = 2,V, PWM,Ton,matching$</td>
<td>1</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>PWM Phase Angle Error</td>
<td>Between adjacent phases</td>
<td>±5</td>
<td></td>
<td></td>
<td>deg</td>
</tr>
<tr>
<td><strong>TSENSE/TSENSEA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$VR_{HOT}$ Assert Threshold</td>
<td>106°C Threshold</td>
<td>466</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>$VR_{HOT}$ Rising Threshold</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Alert Assertion Threshold</td>
<td>103°C Threshold</td>
<td>485</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Alert Rising Threshold</td>
<td>513</td>
<td></td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Bias Current</td>
<td></td>
<td>115</td>
<td>120</td>
<td>125</td>
<td>$\mu A$</td>
</tr>
<tr>
<td><strong>VR_HOT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>$I_{sink} = 20,mA$</td>
<td>–</td>
<td></td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>High Impedance State</td>
<td>–1.0</td>
<td>–</td>
<td>1.0</td>
<td>$\mu A$</td>
</tr>
<tr>
<td><strong>ADC</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Range</td>
<td></td>
<td>0</td>
<td>2.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Total Unadjusted Error (TUE)</td>
<td></td>
<td>–1.25</td>
<td>+1.25</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Differential Nonlinearity (DNL)</td>
<td>8–bit</td>
<td>±1</td>
<td></td>
<td>1</td>
<td>LSB</td>
</tr>
<tr>
<td>Power Supply Sensitivity</td>
<td></td>
<td>±1</td>
<td></td>
<td>1</td>
<td>%</td>
</tr>
<tr>
<td>Conversion Time</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>$\mu s$</td>
</tr>
<tr>
<td>Round Robin</td>
<td></td>
<td>145</td>
<td></td>
<td></td>
<td>$\mu s$</td>
</tr>
<tr>
<td><strong>VRDY OUTPUT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>$I_{VDD(AL_VRDY)} = 4,mA$</td>
<td>–</td>
<td>–</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>Rise Time</td>
<td>External pull-up of 1 $K\Omega$ to 3.3 $V$, $C_{TOT} = 45,pF$, $\Delta V_{o} = 10%$ to 90%</td>
<td>150</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
Table 4. NCP81220 (4+2) ELECTRICAL CHARACTERISTICS
Unless otherwise stated: −10°C < TA < 100°C; 4.75 V < VCC < 5.25 V; CVCC = 0.1 μF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>VRDY OUTPUT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>External pull-up of 1 KΩ to 3.3 V, C_{TOT} = 45 pF, ΔVo = 90% to 10%</td>
<td>150</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage at Power-up</td>
<td>VRDY pulled up to 5 V via 2 KΩ enable low</td>
<td>−</td>
<td>−</td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td>Output Leakage Current When High</td>
<td>VRDY = 5.0 V</td>
<td>−1.0</td>
<td>−</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>VR_RDY Delay (rising)</td>
<td>EN rising to VRDY (TA)</td>
<td>0</td>
<td>2.5</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>VRDY Delay (falling)</td>
<td>From OVP</td>
<td>300</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enable falling to VR_RDY falling (TD+TE)</td>
<td></td>
<td></td>
<td>1.5</td>
<td>μs</td>
</tr>
<tr>
<td><strong>PWM (A), OUTPUTS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output High Voltage</td>
<td>Sourcing 500 μA</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output Mid Voltage</td>
<td>No Load, PS0&amp;1</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>V</td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>Sinking 500 μA</td>
<td>−</td>
<td>−</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td>Rise and Fall Time</td>
<td>CL (PCB) = 50 pF, ΔVo = 10% to 90% of VCC</td>
<td>−</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Tri-State Output Leakage</td>
<td>Gx = 2.0 V, x = 1–2, EN = Low</td>
<td>−1.0</td>
<td>−</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td><strong>PHASE DETECTION</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSP2, CSP3, CSP4, CSP1A, CSP2A Pin Threshold Voltage</td>
<td>4.7</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Phase Detect Timer</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td><strong>SCLK, SDIO</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIL</td>
<td>Input Low Voltage</td>
<td>0.45</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VIH</td>
<td>Input High Voltage</td>
<td>0.65</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOH</td>
<td>Output High Voltage</td>
<td>1.05</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOL</td>
<td>SDIO, ALERT and VR_HOT</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Leakage Current</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>VR clock to data delay (Tco) (Note 3)</td>
<td></td>
<td>4</td>
<td>8.3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Setup time (Tsu) (Note 3)</td>
<td></td>
<td>7</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Hold time (Thld) (Note 3)</td>
<td></td>
<td>14</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

3. Guaranteed by design or characterization data, not in production test.
Table 5. IMVP8 VID CODES

<table>
<thead>
<tr>
<th>VID7</th>
<th>VID6</th>
<th>VID5</th>
<th>VID4</th>
<th>VID3</th>
<th>VID2</th>
<th>VID1</th>
<th>VID0</th>
<th>Voltage (V)</th>
<th>HEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>02</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>03</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>04</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>05</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>06</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>07</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>08</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>09</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0D</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0E</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0F</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1D</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1E</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1F</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2A</td>
</tr>
</tbody>
</table>
### Table 5. IMVP8 VID CODES

<table>
<thead>
<tr>
<th>VID7</th>
<th>VID6</th>
<th>VID5</th>
<th>VID4</th>
<th>VID3</th>
<th>VID2</th>
<th>VID1</th>
<th>VID0</th>
<th>Voltage (V)</th>
<th>HEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.46</td>
<td>2B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.465</td>
<td>2C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.47</td>
<td>2D</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.475</td>
<td>2E</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.48</td>
<td>2F</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.49</td>
<td>31</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.495</td>
<td>32</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>33</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.505</td>
<td>34</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.51</td>
<td>35</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.515</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.52</td>
<td>37</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.525</td>
<td>38</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.53</td>
<td>39</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.535</td>
<td>3A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.54</td>
<td>3B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.545</td>
<td>3C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.55</td>
<td>3D</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.555</td>
<td>3E</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.56</td>
<td>3F</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.565</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.57</td>
<td>41</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.575</td>
<td>42</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.58</td>
<td>43</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.585</td>
<td>44</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.59</td>
<td>45</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.595</td>
<td>46</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>47</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.605</td>
<td>48</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.61</td>
<td>49</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.615</td>
<td>4A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.62</td>
<td>4B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.625</td>
<td>4C</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.63</td>
<td>4D</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.635</td>
<td>4E</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.64</td>
<td>4F</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.645</td>
<td>50</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.65</td>
<td>51</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.655</td>
<td>52</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.66</td>
<td>53</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.665</td>
<td>54</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.67</td>
<td>55</td>
</tr>
</tbody>
</table>
Table 5. IMVP8 VID CODES

<table>
<thead>
<tr>
<th>VID7</th>
<th>VID6</th>
<th>VID5</th>
<th>VID4</th>
<th>VID3</th>
<th>VID2</th>
<th>VID1</th>
<th>VID0</th>
<th>Voltage (V)</th>
<th>HEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.675</td>
<td>56</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.68</td>
<td>57</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.685</td>
<td>58</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.69</td>
<td>59</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.695</td>
<td>5A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.70</td>
<td>5B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.71</td>
<td>5D</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.715</td>
<td>5E</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.72</td>
<td>5F</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.725</td>
<td>60</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.73</td>
<td>61</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.735</td>
<td>62</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.74</td>
<td>63</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.745</td>
<td>64</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.75</td>
<td>65</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.755</td>
<td>66</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.76</td>
<td>67</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.765</td>
<td>68</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.77</td>
<td>69</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.775</td>
<td>6A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.78</td>
<td>6B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.785</td>
<td>6C</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.79</td>
<td>6D</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.795</td>
<td>6E</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.8</td>
<td>6F</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.805</td>
<td>70</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.81</td>
<td>71</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.815</td>
<td>72</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.82</td>
<td>73</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.825</td>
<td>74</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.83</td>
<td>75</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.835</td>
<td>76</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.84</td>
<td>77</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.845</td>
<td>78</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.85</td>
<td>79</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.855</td>
<td>7A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.86</td>
<td>7B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.865</td>
<td>7C</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.87</td>
<td>7D</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.875</td>
<td>7E</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.88</td>
<td>7F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.885</td>
<td>80</td>
</tr>
<tr>
<td>VID7</td>
<td>VID6</td>
<td>VID5</td>
<td>VID4</td>
<td>VID3</td>
<td>VID2</td>
<td>VID1</td>
<td>VID0</td>
<td>Voltage (V)</td>
<td>HEX</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.89</td>
<td>81</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.895</td>
<td>82</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.91</td>
<td>85</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.915</td>
<td>86</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.92</td>
<td>87</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.925</td>
<td>88</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.93</td>
<td>89</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.935</td>
<td>8A</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.94</td>
<td>8B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.945</td>
<td>8C</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.95</td>
<td>8D</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.955</td>
<td>8E</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.96</td>
<td>8F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.965</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.97</td>
<td>91</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.975</td>
<td>92</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.98</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.985</td>
<td>94</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.99</td>
<td>95</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.995</td>
<td>96</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
<td>97</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.100</td>
<td>98</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.01</td>
<td>99</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.015</td>
<td>9A</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.02</td>
<td>9B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1025</td>
<td>9C</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.03</td>
<td>9D</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1035</td>
<td>9E</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.04</td>
<td>9F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.1045</td>
<td>A0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.105</td>
<td>A1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.055</td>
<td>A2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.06</td>
<td>A3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.065</td>
<td>A4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.07</td>
<td>A5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.1075</td>
<td>A6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.08</td>
<td>A7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.1085</td>
<td>A8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.09</td>
<td>A9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>AB</td>
</tr>
</tbody>
</table>
Table 5. IMVP8 VID CODES

<table>
<thead>
<tr>
<th>VID7</th>
<th>VID6</th>
<th>VID5</th>
<th>VID4</th>
<th>VID3</th>
<th>VID2</th>
<th>VID1</th>
<th>VID0</th>
<th>Voltage (V)</th>
<th>HEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.105</td>
<td>AC</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.11</td>
<td>AD</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.115</td>
<td>AE</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.12</td>
<td>AF</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.125</td>
<td>B0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.13</td>
<td>B1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.135</td>
<td>B2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.14</td>
<td>B3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.145</td>
<td>B4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.15</td>
<td>B5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.155</td>
<td>B6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.16</td>
<td>B7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.165</td>
<td>B8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.17</td>
<td>B9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.175</td>
<td>BA</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.18</td>
<td>BB</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.185</td>
<td>BC</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.19</td>
<td>BD</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.195</td>
<td>BE</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.2</td>
<td>BF</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.205</td>
<td>C0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.21</td>
<td>C1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.215</td>
<td>C2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.22</td>
<td>C3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.225</td>
<td>C4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.23</td>
<td>C5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.235</td>
<td>C6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.24</td>
<td>C7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.245</td>
<td>C8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.25</td>
<td>C9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.255</td>
<td>CA</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.26</td>
<td>CB</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.265</td>
<td>CC</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.27</td>
<td>CD</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.275</td>
<td>CE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.28</td>
<td>CF</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.285</td>
<td>D0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.285</td>
<td>D0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.29</td>
<td>D1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.295</td>
<td>D2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.3</td>
<td>D3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.305</td>
<td>D4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.31</td>
<td>D5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.315</td>
<td>D6</td>
</tr>
<tr>
<td>VID7</td>
<td>VID6</td>
<td>VID5</td>
<td>VID4</td>
<td>VID3</td>
<td>VID2</td>
<td>VID1</td>
<td>VID0</td>
<td>Voltage (V)</td>
<td>HEX</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.32</td>
<td>D7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.325</td>
<td>D8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.33</td>
<td>D9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.335</td>
<td>DA</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.34</td>
<td>DB</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.345</td>
<td>DC</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.35</td>
<td>DD</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.355</td>
<td>DE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.36</td>
<td>DF</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.365</td>
<td>E0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.37</td>
<td>E1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.375</td>
<td>E2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.38</td>
<td>E3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.385</td>
<td>E4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.39</td>
<td>E5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.395</td>
<td>E6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.4</td>
<td>E7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.405</td>
<td>E8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.41</td>
<td>E9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.415</td>
<td>EA</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.42</td>
<td>EB</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.425</td>
<td>EC</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.43</td>
<td>ED</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.435</td>
<td>EE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.44</td>
<td>EF</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.445</td>
<td>F0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.45</td>
<td>F1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.455</td>
<td>F2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.46</td>
<td>F3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.465</td>
<td>F4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.47</td>
<td>F5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.475</td>
<td>F6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.48</td>
<td>F7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.485</td>
<td>F8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.49</td>
<td>F9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.495</td>
<td>FA</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>FB</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.505</td>
<td>FC</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.51</td>
<td>FD</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.515</td>
<td>FE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.52</td>
<td>FF</td>
</tr>
</tbody>
</table>
## Startup Timing

**VR_EN**
- **at the pin**
- **internal**
- **open drain**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td></td>
<td></td>
<td>2.5 ms</td>
</tr>
<tr>
<td>TB</td>
<td></td>
<td></td>
<td>VID / Slow</td>
</tr>
<tr>
<td>TD</td>
<td>0 μs</td>
<td></td>
<td>1 μs</td>
</tr>
<tr>
<td>TE</td>
<td></td>
<td></td>
<td>500 ns</td>
</tr>
</tbody>
</table>
NCP81220

SVID Timing Diagram

CPU Driving, Single Data Rate

SCLK

SDIO

Tco_CPU = clock to data delay in CPU

tsu = 0.5 * T - Tco_CPU

thld = 0.5 * T + Tco_CPU

VR Driving, Single Data Rate

SCLK

SDIO

Tco_VR = clock to data delay in VR

tsu = T - 2 * Tfly - Tco_VR

thld = 2 * Tfly + Tco_VR

Tfly propagation time on Serial VID bus

General

The NCP81220 is a dual rail four plus two phase dual edge modulated multiphase PWM controller, with a serial SVID interface. The NCP81220 is optimized to meet Intel’s IMVP8 Specifications and implements PS0, PS1, PS2, PS3 and PS4 power saving states. The NCP81220 is designed to work in desktop and gaming applications.

<table>
<thead>
<tr>
<th>Power Status</th>
<th>PWM Output Operating Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS0</td>
<td>Multi-phase PWM interleaving output</td>
</tr>
<tr>
<td>PS1</td>
<td>Single-phase RPM CCM mode (Selectable 1 or 2 phase count)</td>
</tr>
<tr>
<td>PS2</td>
<td>Single-phase RPM DCM mode (PWM1 only, PWM2-3 stay in Mid)</td>
</tr>
<tr>
<td>PS3</td>
<td>Single-phase RPM DCM mode (PWM1 only, PWM2-3 stay in Mid)</td>
</tr>
<tr>
<td>PS4</td>
<td>Vout to 0 V, no phase state</td>
</tr>
</tbody>
</table>

Phase Interleaving

Phase interleaving is only possible when both rails are programmed with the same Fsw. If the Fsw is different, it is impossible to keep phases from different rails from firing at the same time.
**SVID Addresses/Phase Configuration**

During startup, Pin 34 (PWM1/SV_ADDR) is sampled to determine the SVID address and the phase configuration. More details in the table below:

<table>
<thead>
<tr>
<th>Resistor</th>
<th>“main” SVID Address</th>
<th>“A” Address</th>
<th>4+2 or 3+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kΩ</td>
<td>0 (Core)</td>
<td>1 (GT)</td>
<td>4+2</td>
</tr>
<tr>
<td>25 kΩ</td>
<td>1 (GT)</td>
<td>0 (Core)</td>
<td>4+2</td>
</tr>
<tr>
<td>45 kΩ</td>
<td>0 (Core)</td>
<td>2 (SA)</td>
<td>4+2</td>
</tr>
<tr>
<td>70 kΩ</td>
<td>1 (GT)</td>
<td>3 (GTUS)</td>
<td>4+2</td>
</tr>
<tr>
<td>95 kΩ</td>
<td>0 (Core)</td>
<td>1 (GT)</td>
<td>3+3</td>
</tr>
<tr>
<td>125 kΩ</td>
<td>1 (GT)</td>
<td>0 (Core)</td>
<td>3+3</td>
</tr>
<tr>
<td>165 kΩ</td>
<td>0 (Core)</td>
<td>2 (SA)</td>
<td>3+3</td>
</tr>
<tr>
<td>220 kΩ</td>
<td>1 (GT)</td>
<td>3 (GTUS)</td>
<td>3+3</td>
</tr>
</tbody>
</table>

The table above shows how to configure the part as either a 4+2 or a 3+3, however, if an alternative configuration such as 2+2 or 3+2 is desired then the phase that is no longer required must have its CSP pin shorted to 5 V. If any more than 2 phases are required on the GT rail then one of the 3+3 options in the table above must be selected.
I.e. if a 2+2 configuration is required, you must select a 4+2 configuration from the table above and then disable 2 phases from the Core rail by shorting CSP2 and CSP4 to 5 V. If a 2+3 configuration is required, you will select a 3+3 configuration from the table above and disable the third phase of the Core rail by shorting CSP3 to 5 V. In this instance PWM4 is used on the GT rail.

Serial VID Interface (SVID)

The Serial VID Interface (SVID Interface) is a 3 wire digital interface used to transfer power management information between the CPU (Master) and the NCP81220 (Slave). The 3 wires are clock (SCLK), data (SDIO) and ALERT. The SCLK is unidirectional and generated by the master. The SDIO is bi-directional, used for transferring data from the CPU to the NCP81220 and from the NCP81220 to the CPU. The ALERT is an open drain output from the NCP81220 to signal to the master that the Status Register should be read.

SCLK, SDIO and ALERT should be pulled high to CPU I/O voltage Vtt (which is typically 1.0 to 1.1 V) using 55 Ω Resistors.

The SVID bus will operate at a max frequency of 43 MHz. VID code change is supported by SVID interface with three options as below:

<table>
<thead>
<tr>
<th>Option</th>
<th>SVID Command Code</th>
<th>Feature Description</th>
<th>Register Address (Indicating the slew rate of VID code change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SetVID_Fast</td>
<td>01h</td>
<td>&gt;10mV/us VID code change slew rate</td>
<td>24h</td>
</tr>
<tr>
<td>SetVID_Slow</td>
<td>02h</td>
<td>=1/2 of SetVID_Fast VID code change slew rate</td>
<td>25h</td>
</tr>
<tr>
<td>SetVID_Decay</td>
<td>03h</td>
<td>No control, VID code down</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Serial VID

The NCP81220 supports the Intel serial VID interface. It communicates with the microprocessor through three wires (SCLK, SDIO, ALERT). The table of supported registers is shown below.

Table 6. SVID REGISTER MAP

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Description</th>
<th>Access</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Vendor ID</td>
<td>Uniquely identifies the VR vendor. The vendor ID assigned by Intel to ON Semi-conductor is 0x1Ah</td>
<td>R</td>
<td>1Ah</td>
</tr>
<tr>
<td>01h</td>
<td>Product ID</td>
<td>Uniquely identifies the VR product. The VR vendor assigns this number.</td>
<td>R</td>
<td>20h</td>
</tr>
<tr>
<td>02h</td>
<td>Product Revision</td>
<td>Uniquely identifies the revision or stepping of the VR control IC. The VR vendor assigns this data.</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>03h</td>
<td>Product date code ID</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>05h</td>
<td>Protocol ID</td>
<td>Identifies the SVID Protocol the controller supports</td>
<td>R</td>
<td>05h</td>
</tr>
<tr>
<td>06h</td>
<td>Capability</td>
<td>Inform the Master of the controller’s Capabilities, 1 = supported, 0 = not supported Bit 7 = Iout_format. Bit 7 = 0 when 1A = 1LSB of Reg 15h. Bit 7 = 1 when Reg 15 FFh = Icc.Max. Default = 1 Bit 6 = ADC Measurement of Temp Supported = 1 Bit 5 = ADC Measurement of PIN Supported = 0 Bit 4 = ADC Measurement of VIN Supported = 0 Bit 3 = ADC Measurement of IIN Supported = 0 Bit 2 = ADC Measurement of POUT Supported = 1 Bit 1 = ADC Measurement of VOUT Supported = 1 Bit 0 = ADC Measurement of IOUT Supported = 1</td>
<td>R</td>
<td>D7h</td>
</tr>
<tr>
<td>10h</td>
<td>Status_1</td>
<td>Data register read after the ALERT# signal is asserted. Conveying the status of the VR.</td>
<td>R</td>
<td>00h</td>
</tr>
<tr>
<td>11h</td>
<td>Status_2</td>
<td>Data register showing optional status_2 data.</td>
<td>R</td>
<td>00h</td>
</tr>
<tr>
<td>12h</td>
<td>Temp zone</td>
<td>Data register showing temperature zones the system is operating in</td>
<td>R</td>
<td>00h</td>
</tr>
<tr>
<td>15h</td>
<td>I_out</td>
<td>8 bit binary word ADC of current. This register reads 0xFF when the output current is at Icc.Max</td>
<td>R</td>
<td>01h</td>
</tr>
<tr>
<td>16h</td>
<td>V_out</td>
<td>8 bit binary word ADC of output voltage, measured between VSP and VSN. LSB size is 9.8 mV</td>
<td>R</td>
<td>01h</td>
</tr>
<tr>
<td>17h</td>
<td>VR_Temp</td>
<td>8 bit binary word ADC of voltage. Binary format in deg C, IE 100C=64h. A value of 00h indicates this function is not supported</td>
<td>R</td>
<td>01h</td>
</tr>
<tr>
<td>18h</td>
<td>P_out</td>
<td>8 bit binary word representative of output power. The output voltage is multiplied by the output current value and the result is stored in this register. A value of 00h indicates this function is not supported</td>
<td>R</td>
<td>01h</td>
</tr>
<tr>
<td>Index</td>
<td>Name</td>
<td>Description</td>
<td>Access</td>
<td>Default</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>1Ah</td>
<td>Input Voltage</td>
<td>8 bit binary word ADC of voltage, optional for control IC that supports direct ADC conversion of average input voltage. A value of 00h indicates this function is not supported</td>
<td>R</td>
<td>00h</td>
</tr>
<tr>
<td>1Bh</td>
<td>Input Power</td>
<td>Required for Input Power Domain Address 0Dh</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>1Ch</td>
<td>Status2_last_read</td>
<td>When the status 2 register is read its contents are copied into this register. The format is the same as the Status 2 Register.</td>
<td>R</td>
<td>00h</td>
</tr>
<tr>
<td>21h</td>
<td>Icc_Max</td>
<td>Data register containing the Icc_Max the platform supports. The value is measured on the ICCMAX pin on power up and placed in this register. From that point on the register is read only.</td>
<td>R</td>
<td>00h</td>
</tr>
<tr>
<td>22h</td>
<td>Temp_Max</td>
<td>Data register containing the max temperature the platform supports and the level VR_hot asserts. This value defaults to 106 °C and programmable over the SVID Interface</td>
<td>R/W</td>
<td>6Ah</td>
</tr>
<tr>
<td>24h</td>
<td>SR_fast</td>
<td>Slew Rate for SetVID_fast commands. Binary format in mV/us.</td>
<td>R</td>
<td>00h</td>
</tr>
<tr>
<td>25h</td>
<td>SR_slow</td>
<td>Slew Rate for SetVID_slow commands. It is 16, 8, 4 or 2 times slower than the SR_fast rate. Binary format in mV/us. FAST/2 is default for IMVP8.</td>
<td>R</td>
<td>07h</td>
</tr>
<tr>
<td>26h</td>
<td>Vboot</td>
<td>The boot voltage is programmed at startup using a resistor to GND and subsequently controlled from here. The controller will ramp to Vboot and hold at Vboot until it receives a new SVID SetVID command to move to a different voltage.</td>
<td>R</td>
<td>00h</td>
</tr>
</tbody>
</table>
| 2Ah   | SR_Slow selector | 01 = Fast_SR/2: default  
02 = Fast_SR/4  
04 = Fast_SR/8  
08 = Fast_SR/16                                                                                                                  | R/W    | 01h     |
| 2Bh   | PS4 exit latency | Reflects the latency of exiting PS4 state. The exit latency is defined as the time duration, in μs, from the ACK of the SETVID Slow/Fast command to the output voltage beginning to ramp | R      | 8Ch     |
| 2Ch   | PS3 exit latency | Reflects the latency of exiting PS3 state. The exit latency is defined as the time duration, in μs, from the ACK of the SETVID/SetPS command until the controller is capable of supplying max current of the command PS state. | R      | 55h     |
| 2Dh   | EN to Ready for SVID command (TA) | Reflects the latency from enable assertion to the VR controller being ready to accept SVID commands.                                                                                   | R      | CAh     |
| 30h   | Vout_Max         | Programmed by master and sets the maximum VID the VR will support. If a higher VID code is received, the VR should respond with “not supported” acknowledge. IMVP8 VID format.                     | RW     | FBh     |
| 31h   | VID setting      | Data register containing currently programmed VID voltage. VID data format.                                                                                                                     | RW     | 00h     |
| 32h   | Pwr State        | Register containing the current programmed power state.                                                                                                                                       | RW     | 00h     |
| 33h   | Offset           | Sets offset in VID steps added to the VID setting for voltage margining. Bit 7 is sign bit, 0 = positive margin, 1 = negative margin. Remaining 7 BITS are # VID steps for margin 2s complement.  
00h=no margin  
01h=+1 VID step  
02h=+2 VID steps  
FFh=−1 VID step  
FEh=−2 VID steps.                                                                 | RW     | 00h     |
| 34h   | MultiVR Config   |                                                                                                                                                                                            | RW     | 01h     |
| 35h   | SetRegADR        | Scratch pad register for temporary storage of SetRegADR pointer register                                                                                                                      | RW     |         |
| 42h   | IVID1−VID        |                                                                                                                                                                                            | RW     | 00h     |
| 43h   | IVID1−I          | Maximum instantaneous current for single phase operation. Threshold set based on IVID1−I = (IccMax/Num of Phases + 8). Note: IVID−I must not be programmed with a value greater than IccMax.                        | RW     |         |
| 44h   | IVID2−VID        | maximum instantaneous current for IVID 2 state. Default matches IVID1−I. Note: IVID−I must not be programmed with a value greater than IccMax.                                                   | RW     | 00h     |
| 45h   | IVID2−I          | Maximum instantaneous current for IVID 2 state. Default matches IVID1−I. Note: IVID−I must not be programmed with a value greater than IccMax.                                                   | RW     | 00h     |
| 46h   | IVID3−VID        | Maximum instantaneous current for DCM/CCM decision threshold. Note: IVID−I must not be programmed with a value greater than IccMax.                                                           | RW     |         |
| 47h   | IVID3−I          | Maximum instantaneous current for DCM/CCM decision threshold. Note: IVID−I must not be programmed with a value greater than IccMax.                                                           | RW     |         |
**BOOT Voltage Programming**

The NCP81220 has a \( V_{BOOT} \) voltage register that can be externally programmed for both core and auxiliary boot-up output voltages (pins 29 and 33). The \( V_{BOOT} \) voltage for main and auxiliary rails can be programmed with a resistor from \( V_{BOOT} \) and \( V_{BOOTA} \) pin to GND. The \( V_{BOOT} \) value can be read back over the SVID interface in register (0x26). Pin 33 (PWM2/V\( V_{BOOT} \)) is used to set the boot voltage for the main rail, pin 29 (PWM2A/V\( V_{BOOTA} \)) is used to configure the Auxiliary rail. On power up a 10 \( \mu \)A current is sourced from these pins through a resistor connected to this pin and the resulting voltage is measured. Table 7 shows the resistor values that should be used and the corresponding \( V_{BOOT} \) options.

### Table 7. VBOOT PROGRAMMABILITY

<table>
<thead>
<tr>
<th>Resistor</th>
<th>( V_{BOOT} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 k( \Omega )</td>
<td>0</td>
</tr>
<tr>
<td>30 k( \Omega )</td>
<td>0.8</td>
</tr>
<tr>
<td>60 k( \Omega )</td>
<td>1.05</td>
</tr>
<tr>
<td>100 k( \Omega )</td>
<td>1.2</td>
</tr>
<tr>
<td>160 k( \Omega )</td>
<td>1.4</td>
</tr>
<tr>
<td>220 k( \Omega )</td>
<td>1.5</td>
</tr>
</tbody>
</table>

**Precision Oscillator**

A programmable precision oscillator is provided. The clock oscillator serves as the master clock to the ramp generator circuit. This oscillator is programmed by a resistor to ground on the ROSC pin. The oscillator frequency range is between 180 KHz/phase to 1.17 MHz/phase. The ROSC pin provides approximately 2 V out and the source current is mirrored into the internal ramp oscillator. Available frequency options are as follows:

<table>
<thead>
<tr>
<th>Resistor (k( \Omega ))</th>
<th>Frequency (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>180</td>
</tr>
<tr>
<td>14.7</td>
<td>225</td>
</tr>
<tr>
<td>20</td>
<td>270</td>
</tr>
<tr>
<td>26.1</td>
<td>315</td>
</tr>
<tr>
<td>33.2</td>
<td>360</td>
</tr>
<tr>
<td>41.2</td>
<td>405</td>
</tr>
<tr>
<td>49.9</td>
<td>450</td>
</tr>
<tr>
<td>60.4</td>
<td>495</td>
</tr>
<tr>
<td>71.5</td>
<td>540</td>
</tr>
<tr>
<td>84.5</td>
<td>630</td>
</tr>
<tr>
<td>100</td>
<td>720</td>
</tr>
<tr>
<td>118.3</td>
<td>810</td>
</tr>
<tr>
<td>136.6</td>
<td>900</td>
</tr>
<tr>
<td>157.7</td>
<td>990</td>
</tr>
<tr>
<td>182.1</td>
<td>1080</td>
</tr>
<tr>
<td>249</td>
<td>1170</td>
</tr>
</tbody>
</table>

**IVID and Phase Shedding**

In PS0, the each rail of the NCP81220 can change its operating mode based on output current and/or programmed VID. As the IMVP8 SVID IVID registers only define a maximum current associated with specific VIDs, each rail can make phase-shed decisions based on the IOUT level in addition to the programmed VID. If IOUT is less than IVID2–I for longer than 2 ms, the multiphase rail will shed the phase and operate in single-phase mode, even if VID is greater than IVID2–VID. The second phase can also be turned off without the 2 ms delay if programmed VID is less than IVID2–VID, and IOUT is verified to be less than IVID2–I.

Also while in PS0, the operating mode can drop to single-phase DCM operation if programmed VID is less than IVID3–VID. Each rail will not drop into DCM mode based on IOUT alone.

The controller exits Efficiency Optimized Modes and turns off all phases when any SetVID command is issued, if a transient load is detected, or if output loading crosses the IVID2–I threshold.

If a SetPS command is received, the controller will place itself in the lowest appropriate state. For example, if in PS0 the controller has automatically transitioned into DCM RPM and receives a SetPS = 1 command, the PS register will be updated, but the controller will remain in DCM RPM mode. If while in PS1 the current increases or a transient is detected, the controller will move into CCM mode.

See IMVP8 specification for more details on IVID

**PSYS**

The psys pin is an analog input to the NCP81220. It is a system input power monitor that facilitates the monitoring of the total platform system power. The system power is sensed at the platform charging device, the NCP81220 facilitates reporting back current and through the SVID interface at address 0Dh.

**PSYS Disable**

The PSYS feature can be disabled by pulling the PSYS pin to 5 V.

**Phase Disable**

If a lower number of phases is required then phases can be disabled by pulling the relevant CSP pin directly to 5 V. For the Core rail here are the options for active phases:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Phase</td>
<td>All phases active</td>
</tr>
<tr>
<td>3 Phase</td>
<td>PWM4 is disabled by connecting CSP4 to 5 V.</td>
</tr>
<tr>
<td>2 Phase</td>
<td>PWM2 and PWM4 are disabled by connecting CSP2 and CSP4 to 5 V.</td>
</tr>
<tr>
<td>1 Phase</td>
<td>Only PWM1 is active, CSP2, CSP3 and CSP4 are tied to 5 V.</td>
</tr>
</tbody>
</table>

For the GT rail PWM1A & PWM2A can be disabled by connecting CSP1A & CSP2A to 5 V.
Remote Sense Amplifier

A high performance high input impedance true differential amplifier is provided to accurately sense the output voltage of the regulator. The VSP and VSN inputs should be connected to the regulator’s output voltage sense points. The remote sense amplifier takes the difference of the output voltage with the DAC voltage and adds the droop voltage to

\[ V_{\text{DIFOUT}} = (V_{\text{VSP}} - V_{\text{VSN}}) + (1.3V - V_{\text{DAC}}) + (V_{\text{DROOP}} - V_{\text{CSREF}}) \]

This signal then goes through a standard error compensation network and into the inverting input of the error amplifier. The non-inverting input of the error amplifier is connected to the same 1.3 V reference used for the differential sense amplifier output bias.

High Performance Voltage Error Amplifier

A high performance error amplifier is provided for high bandwidth transient performance. A standard type III compensation circuit is normally used to compensate the system.

Differential Current Feedback Amplifiers

Each phase has a low offset differential amplifier to sense that phase current for current balance. The inputs to the CSNx and CSPx pins are high impedance inputs. It is recommended that any external filter resistor RCSN does not exceed 10 kΩ to avoid offset issues with leakage current. It is also recommended that the voltage sense element be no less than 0.5 mΩ for accurate current balance. Fine tuning of this time constant is generally not required. The individual phase current is summed into the PWM comparator feedback this way current is balanced via a current mode control approach.

Total Current Sense Amplifier

The NCP81220 uses a patented approach to sum the phase currents into a single temperature compensated total current signal. This signal is then used to generate the output voltage droop, total current limit, and the output current monitoring functions. The total current signal is floating with respect to CSREF. The current signal is the difference between CSCOMP and CSREF. The Ref(n) resistors sum the signals from the output side of the inductors to create a low impedance virtual ground. The amplifier actively filters and gains up the voltage applied across the inductors to recover the voltage drop across the inductor series resistance (DCR). Rth is placed near an inductor to sense the temperature of the inductor. This allows the filter time constant and gain to be a function of the Rth NTC resistor and compensate for the change in the DCR with temperature.

The DC gain equation for the current sensing:

\[ V_{\text{CSCOMP}} - V_{\text{CSREF}} = \frac{Rcs2 + Rcs1 \cdot Rth}{Rcs1 + Rth} \cdot \left( I_{\text{OUT TOTAL}} \cdot DCR \right) \]

Set the gain by adjusting the value of the Rph resistors. The DC gain should be set to the output voltage droop. If the voltage from CSCOMP to CSREF is less than 100 mV at ICCMAX then it is recommend increasing the gain of the CSCOMP amp. This is required to provide a good current signal to offset voltage ratio for the ILIMIT pin. When no droop is needed, the gain of the amplifier should be set to provide ~100 mV across the current limit programming resistor at full load. The values of Rcs1 and Rcs2 are set based on the 100 k NTC and the temperature effect of the inductor and should not need to be changed. The NTC should be placed near the closest inductor. The output voltage droop should be set with the droop filter divider.

The pole frequency in the CSCOMP filter should be set equal to the zero from the output inductor. This allows the circuit to recover the inductor DCR voltage drop current signal. Cs1 and Cs2 are in parallel to allow for fine tuning of the time constant using commonly available values. It is best to fine tune this filter during transient testing.

\[ F_z = \frac{\text{DCR@25C}}{2 \cdot \text{PI} \cdot L_{\text{Phase}}} \]

Programming the Current Limit

The NCP81220 compares a programmable current–limit set point to the voltage from the output of the current–summing amplifier. The level of current limit is set with the resistor from the ILIM pin to CSCOMP. The current through the external resistor connected between ILIM and CSCOMP is then compared to the internal current limit current \( I_{\text{CL}} \). If the current generated through this resistor into
the ILIM pin (Ilim) exceeds the internal current-limit threshold current (ICL), an internal latch-off counter starts, and the controller shuts down if the fault is not removed after 50 μs (shut down immediately for 150% load current) after which the outputs will remain disabled until the Vcc voltage or EN is toggled.

The voltage swing of CSCOMP cannot go below ground. This limits the voltage drop across the DCR through the current balance circuitry. An inherent per-phase current limit protects individual phases if one or more phases stop functioning because of a faulty component. The over-current limit is programmed by a resistor on the ILIM pin. The resistor value can be calculated by the following equations,

\[
R_{\text{ILIM}} = \frac{I_{\text{lim}} \cdot DCR \cdot R_{CS}/R_{PH}}{I_{\text{CL}}}
\]

Where ICL = 10 μA

**Programming DAC Feed–Forward Filter**

The DAC feed–forward implementation is realized by having a filter on the VSN pin. Programming Rvsn sets the gain of the DAC feed–forward and Cvsn provides the time constant to cancel the time constant of the system per the following equations. Cout is the total output capacitance and Rout is the output impedance of the system.

- **Equation related to the Rilim:**
  \[
  R_{\text{ILIM}} = \frac{I_{\text{lim}} \cdot DCR \cdot R_{CS}/R_{PH}}{I_{\text{CL}}}
  \]

- **Programming IOUT**
  The IOUT pin sources a current in proportion to the ILIMIT sink current. The voltage on the IOUT pin is monitored by the internal A/D converter and should be scaled with an external resistor to ground such that a load equal to ICCMAX generates a 2.5 V signal on IOUT. A pull-up resistor from 5 V VCC can be used to offset the IOUT signal positive if needed.

\[
R_{\text{IOUT}} = \frac{2.5 \text{ V} \cdot R_{\text{LIMIT}}}{10 \cdot \frac{R_{cs2} + R_{cs1} \cdot R_{th}}{R_{cs1} + R_{th}} \cdot (I_{\text{out ICC MAX}} \cdot DCR)}
\]

**Programming ICC_MAX**

The SVID interface provides the platform ICC_MAX value at register 21h for. A resistor to ground on the IMAX pin programs these registers at the time the part is enabled. 10 μA is sourced from these pins to generate a voltage on the program resistor. The value of the register is 1 A per LSB and is set by the equation below. The resistor value should be no less than 10 k.

\[
\text{ICC_MAX}_{21\text{h}} = \frac{R \cdot 10 \mu A \cdot 255 A}{2.5 \text{ V}}
\]

**Programming DAC Feed–Forward Filter**

The DAC feed–forward implementation is realized by having a filter on the VSN pin. Programming Rvsn sets the gain of the DAC feed–forward and Cvsn provides the time constant to cancel the time constant of the system per the following equations. Cout is the total output capacitance and Rout is the output impedance of the system.

- **Equation for Rvsn:**
  \[
  R_{vsn} = \frac{\text{Cout} \cdot \text{Rout} \cdot 453.6 \times 10^6}{453.6 \times 10^6}
  \]

- **Equation for Cvsn:**
  \[
  C_{vsn} = \frac{\text{Rout} \cdot \text{Cout}}{R_{vsn}}
  \]

**Programming DROOP**

The signals CSCOMP and CSREF are differentially summed with the output voltage feedback to add precision voltage droop to the output voltage.

\[
\text{Droop} = DCR \cdot (R_{CS}/R_{PH})
\]

**Programming TSENSE**

A temperature sense inputs are provided. A precision current is sourced out the output of the TSENSE pin to generate a voltage on the temperature sense network. The voltage on the temperature sense input is sampled by the internal A/D converter. A 10 k NTC similar to the TSM0B103H3371RZ should be used. Rcomp1 is mainly used for noise. See the specification table for the thermal sensing voltage thresholds and source current.
Precision Oscillator

A programmable precision oscillator is provided. The clock oscillator serves as the master clock to the ramp generator circuit. The oscillator frequency range is between 180 kHz/phase to 1170 kHz/phase. The operating frequency can be programmed using a resistor to ground from PWM4.

The oscillator generates triangle ramps that are 0.5~1.3 V in amplitude depending on the VRMP pin voltage to provide input voltage feed forward compensation. The ramps are equally spaced out of phase with respect to each other and the signal phase rail is set half way between phases 1 and 2 of the multi phase rail for minimum input ripple current.

Programming the Ramp Feed–Forward Circuit

The ramp generator circuit provides the ramp used by the PWM comparators. The ramp generator provides voltage feed–forward control by varying the ramp magnitude with respect to the VRMP pin voltage. The VRMP pin also has a 4 V UVLO function. The VRMP UVLO is only active after the controller is enabled. The VRMP pin is high impedance input when the controller is disabled.

The PWM ramp time is changed according to the following,

\[ V_{RAMPpk} = \frac{V_{pkPP}}{C0043} \cdot \frac{0.1}{C0064} \cdot V_{VRMP} \]

PWM Comparators

The non–inverting input of the comparator for each phase is connected to the summed output of the error amplifier (COMP) and each phase current (I*DCR*Phase Balance Gain Factor). The inverting input is connected to the oscillator ramp voltage with a 1.3 V offset. The operating input voltage range of the comparators is from 0 V to 3.0 V and the output of the comparator generates the PWM output.

During steady state operation, the duty cycle is centered on the valley of the sawtooth ramp waveform. The steady state duty cycle is still calculated by approximately \( V_{out}/V_{in} \). During a transient event, the controller will operate in a hysteretic mode with the duty cycles pull in for all phases as the error amp signal increases with respect to all the ramps.
Protection Features

Under Voltage Lockouts

There are several under voltage monitors in the system. Hysteresis is incorporated within the comparators. NCP81220 monitors the 5 V VCC supply. The gate driver monitors both the gate driver VCC and the BST voltage. When the voltage on the gate driver is insufficient it will pull DRON low and prevents the controller from being enabled. The gate driver will hold DRON low for a minimum period of time to allow the controller to hold off its startup sequence. In this case the PWM is set to the MID state to begin soft start.

![Figure 2. Gate Driver UVLO Restart](image)

Soft Start

Soft start is implemented internally. A digital counter steps the DAC up from zero to the target voltage based on the predetermined rate in the spec table. The PWM signals will start out open with a test current to collect data on phase count and for setting internal registers. After the configuration data is collected, if the controller is enabled the PWMS will be set to 2.0 V MID state to indicate that the drivers should be in diode mode. DRON will then be asserted. As the DAC ramps the PWM outputs will begin to fire. Each phase will move out of the MID state when the first PWM pulse is produced. When the controller is disabled the PWM signal will return to the MID state.

![Figure 3. Soft-Start Sequence](image)

Over Voltage Protection

The output voltage is also monitored at the output of the differential amplifier for OVP. During normal operation, if the output voltage exceeds the DAC voltage (DAC voltage includes offset) by 400 mV, the VR_RDY flag goes low, and the output voltage will be ramped down to 0 V. At the same time, the high side gate drivers are all turned off and the low side gate drivers are all turned on. The part will stay in this mode until the Vcc voltage or EN is toggled.
Figure 4. OVP Behavior at Startup

Figure 5. OVP During Normal Operation Mode