

LV58063MC

Bi-CMOS IC

Step-down Switching Regulator

ON Semiconductor®

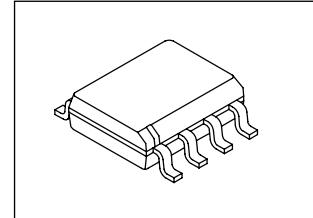
<http://onsemi.com>

Overview

LV58063MC is a 1ch step-down switching regulator. 0.13Ω FET is incorporated on the upper side to achieve high-efficiency operation for large output current.

Low-heat resistance and compact-package SOP8L (200mil) employed.

Current mode control gives superior load current response with easy phase compensation.


EN pin, allowing the standby mode with the current drain of 70µA.

Pulse-by-pulse over-current protection and overheat protection available for protection of load devices.

Externally adjustable soft start time.

Function

- 3A 1ch step-down switching regulator
- Thermal shutdown
- Wide input range (8 to 28V)
- Reference voltage: 0.8V
- High efficiency (90% $I_{OUT}=1A$, $V_{IN}=12V$, $V_{OUT}=5V$)
- Fixed frequency: 370kHz
- Standby mode
- Soft start
- Over-current protection
- Compact package: SOP8L (200mil) with exposed pad
- Overshoot control after over-current protection event

SOP8L (200mil)

Application

- LCD/PDP-TV
- STB
- White Goods
- Office equipment
- General consumer electronics

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

Specifications

Absolute Maximum Ratings at $T_a = 25^\circ\text{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum input V_{IN} voltage	V_{IN} max		32	V
BOOT pin maximum voltage	V_{BT} max		37	V
SW pin maximum voltage	V_{SW} max		V_{IN} max	V
BOOT pin-SW pin maximum voltage	V_{BS-SW} max		7	V
FB, EN, COMP, SS pin maximum voltage	V_{fs} max		7	V
Allowable power dissipation	P_d max	Mount on a specified board *	2.05	W
Junction temperature	T_j max		150	$^\circ\text{C}$
Operating temperature	T_{opr}		-20 to +80	$^\circ\text{C}$
Storage temperature	T_{stg}		-40 to +150	$^\circ\text{C}$

* Specified board: 46.4mm \times 31.8mm \times 1.7mm, glass epoxy.

Note: Plan the maximum voltage while including coil and surge voltages, so that the maximum voltage is not exceeded even for an instant.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Recommended Operating Conditions at $T_a = 25^\circ\text{C}$

Parameter	Symbol	Conditions	Ratings	Unit
V_{IN} pin voltage	V_{IN}		8 to 28	V
BOOT pin voltage	V_{BT}		-0.3 to 34	V
SW pin voltage	V_{SW}		-0.4 to V_{IN}	V
BOOT pin-SW pin voltage	V_{BS-SW}		6.5	V
FB, EN, COMP, SS pin voltage	V_{FSO}		6	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics at $T_a = 25^\circ\text{C}$ $V_{IN} = 12\text{V}$, unless otherwise specified.

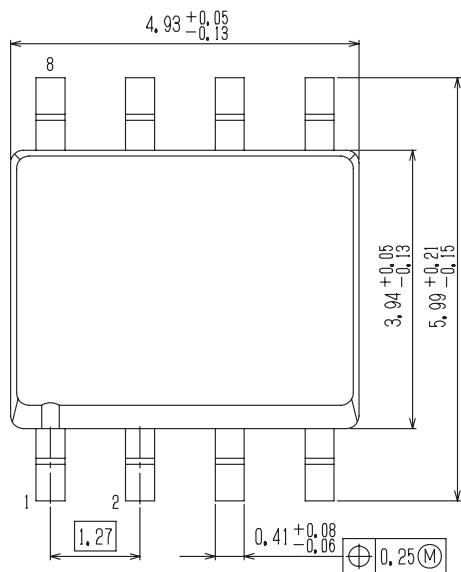
Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
IC current drain in standby	I_{CC1}	$EN=0\text{V}$		70		μA
IC current drain in operation	I_{CC2}	$EN=\text{open}$, $FB=1\text{V}$		5		mA
Efficiency	Effcy	$V_{IN}=12\text{V}$, $I_{OUT}=1\text{A}$, $V_{OUT}=5\text{V}$ Design target: *1		90		%
Reference voltage	V_{ref}	$V_{IN}=8\text{V}$ to 28V ($\pm 2\%$)	-2%	0.8	+2%	V
FB pin bias current	I_{ref}	$FB=0.8\text{V}$ application		10	100	nA
High-side ON resistance	R_{onH}	$BOOT=5\text{V}$		0.13		Ω
Low-side ON resistance	R_{onL}			7		Ω
Oscillation frequency	F_{OSC}		296	370	444	kHz
Oscillation frequency during short-circuit protection	F_{OSC_S}		30	38	46	kHz
EN high-threshold voltage	V_{enH}				1.9	V
EN low-threshold voltage	V_{enL}		0.8			V
EN pull-up current	I_{en}	$EN=0\text{V}$		16		μA
Maximum ON DUTY	D_{max}			80		%
Current limit peak value	I_{cl}	$V_{IN}=12\text{V}$, $V_{OUT}=5\text{V}$, $L=10\mu\text{H}$	3.8			A
Thermal shutdown temperature	T_{tsd}	*Design guarantee *2		160		$^\circ\text{C}$
Thermal shutdown temperature hysteresis	D_{tsd}	*Design guarantee *2		40		$^\circ\text{C}$
Soft start current	I_{SS}	$SS=0\text{V}$	6	10	14	μA

*1: Design target (not tested before shipment)

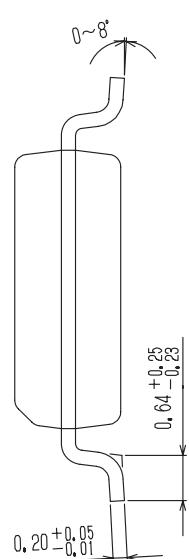
*2: Design guarantee (value guaranteed by design and not tested before shipment)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

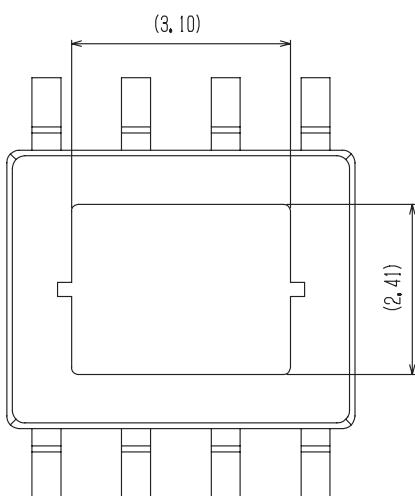
Package Dimensions

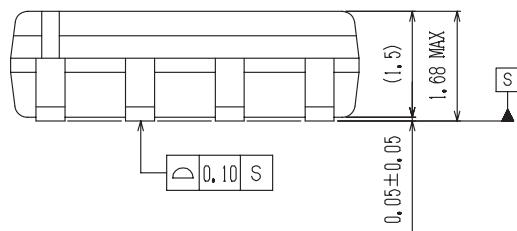

unit : mm

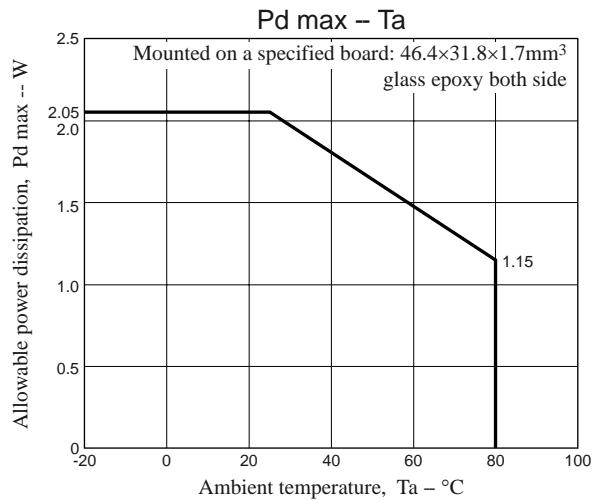
SOIC8 N EP / SOP8L (200 mil)


CASE 751DM

ISSUE 0

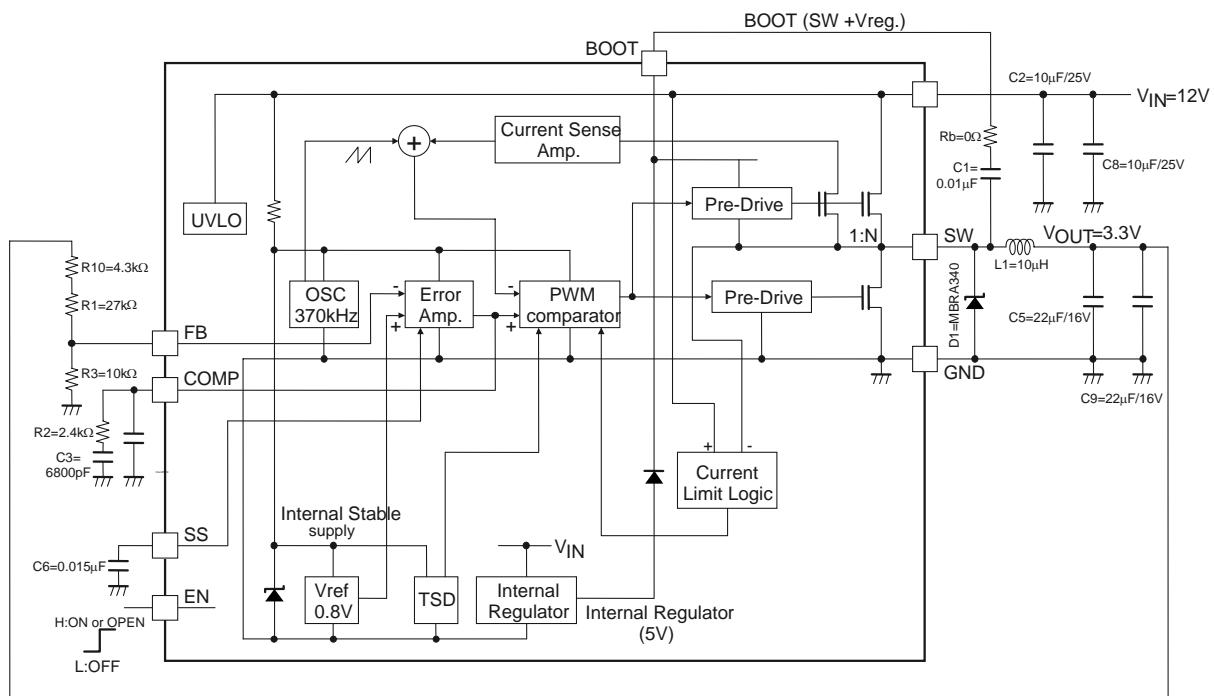

TOP VIEW


SIDE VIEW



BOTTOM VIEW

SIDE VIEW



Pin Assignment

Block Diagram and Sample Application Circuit (3.3V output)

• C_1, C_8, C_5, C_9 = Ceramic capacitor
 • L_1 = CDRH105RNP-100NC (sumida)

Pin Function

Pin No.	Pin name	Description	Equivalent Circuit
1	BOOT	Internal high side mos fet boot strap capacitor Pin. Connect around $0.01\mu\text{F}$ capacitor or greater between SW and BOOT. To operate within absolute maximum rating of SW, to keep stable operation, and to reduce switching noise, please use a series resistor, R_b (value is around 100Ω) is recommended to use.	
2	V _{IN}	Input Voltage Pin. Large Filter Capacitor (equal or larger than $20\mu\text{F}$) should be connected between V _{IN} and GND to eliminate noise on the input and to operate properly. When using electrolytic capacitors, it is recommended to add a ceramic capacitor of about $0.1\mu\text{F}$ between V _{IN} -GND for stability.	See BOOT
3	SW	Power Switching Pin. Connect the output LC filter. Connect the above-mentioned capacitor between this pin and BOOT pin.	See BOOT
4	GND	Ground pin.	
5	FB	Feedback pin. Connect a voltage divider resistor across FB to set the regulated output voltage. The output voltage is given by next equation. $V_{OUT} = V_{ref} \times \left\{ 1 + \frac{(R_1 + R_{10})}{R_3} \right\}$ $V_{ref} = 0.8V$ Example: 3.3V output voltage (See Block Diagram and Sample Application Circuit) $V_{OUT} = 0.8 \times \left\{ 1 + \frac{(27k + 4.3k)}{10k} \right\}$ $=3.304V$	
6	COMP	Phase compensation pin. Connect an external capacitor and a resistor for the DC DC converter close loop-phase compensation.	

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	Description	Equivalent Circuit
7	EN	<p>Enable Pin. If applying logically high voltage, or left open, the converter operates.</p> <p>If connected to GND, the converter's operation stops.</p> <p>It is not applied to the EN before VIN is applied.</p>	
8	SS	<p>Soft start Pin Internal source current (10μA) and external capacitor will make soft start time. Soft start capacitor, C6 is given by next equation, $C6 = 10\mu A \times \frac{T_{ss}}{V_{ref}}$ Where, Tss : soft start time, Vref : reference voltage Example : soft start time 1.2ms $C6 = 10\mu A \times \frac{1.2ms}{0.8 V} = 0.015\mu F$</p>	See FB

Considerations for the design

- Insertion of serial beads in the Schottky diode for removal of noise may cause generation of the negative voltage on SW pin deviating from the absolute maximum rating at the SW pin, resulting in failure of normal operation. Please, do not insert beads as above described. Instead, remove noise by Rb resistor.
- Exposed pad on the bottom side of the IC should be soldered. We cannot recommend other usages of the exposed pad.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV58063MC-AH	SOP8L (200mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel
LV58063MCZ-AH	SOP8L (200mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.