

N-channel 800 V, 0.95 Ω typ., 6.5 A MDmesh Power MOSFET in a TO-220FP package

Features

Order code	V_{DS}	$R_{DS(on)}$ max.	I_D
STF7NM80	800 V	1.05 Ω	6.5 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Applications

- Switching applications

Description

This N-channel Power MOSFET is developed using STMicroelectronics' revolutionary MDmesh technology, which associates the multiple drain process with the company's PowerMESH horizontal layout. This device offers extremely low on-resistance, high dv/dt, and excellent avalanche characteristics. Using STMicroelectronics's proprietary strip technique, this Power MOSFET boasts an overall dynamic performance that is superior to similar products on the market.

Product status link

[STF7NM80](#)

Product summary

Order code	STF7NM80
Marking	F7NM80
Package	TO-220FP
Packing	Tube

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	800	V
V_{GS}	Gate-source voltage	± 30	V
I_D ⁽¹⁾	Drain current (continuous) at $T_C = 25^\circ\text{C}$	6.5	A
	Drain current (continuous) at $T_C = 100^\circ\text{C}$	4	
$I_{DM}^{(1)(2)}$	Drain current (pulsed)	26	A
P_{TOT}	Total power dissipation at $T_C = 25^\circ\text{C}$	25	W
V_{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink ($t = 1\text{ s}$, $T_C = 25^\circ\text{C}$)	2.5	kV
T_{stg}	Storage temperature range	-55 to 150	$^\circ\text{C}$
T_J	Operating junction temperature range		$^\circ\text{C}$

1. This value is limited by maximum junction temperature.
2. Pulse width is limited by safe operating area.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R_{thJC}	Thermal resistance, junction-to-case	5	$^\circ\text{C}/\text{W}$
R_{thJA}	Thermal resistance, junction-to-ambient	62.5	$^\circ\text{C}/\text{W}$

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AS}	Avalanche current, repetitive or non-repetitive (pulse width limited by T_J max.)	1	A
E_{AS}	Single pulse avalanche energy (starting $T_J = 25^\circ\text{C}$, $I_D = I_{AS}$, $V_{DD} = 50\text{ V}$)	240	mJ

2 Electrical characteristics

$T_C = 25^\circ\text{C}$ unless otherwise specified.

Table 4. On/off states

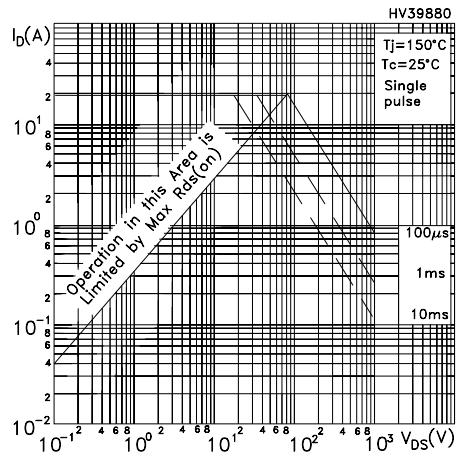
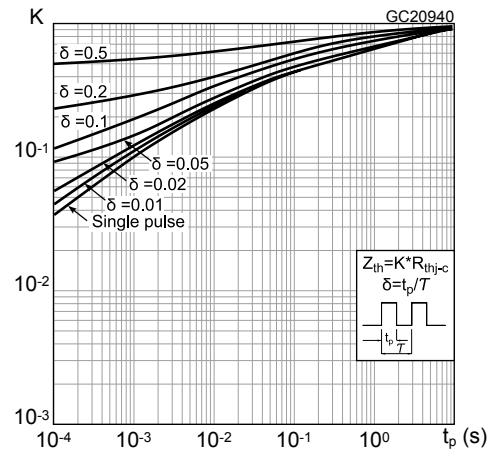
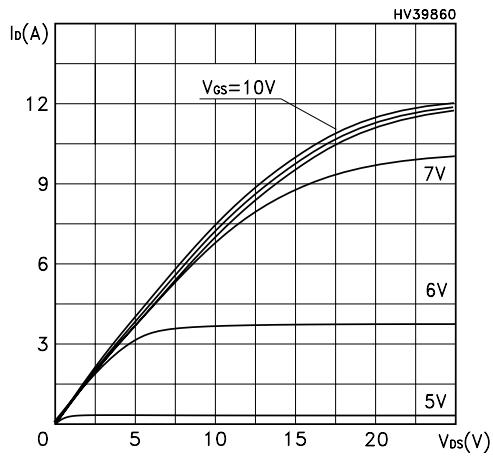
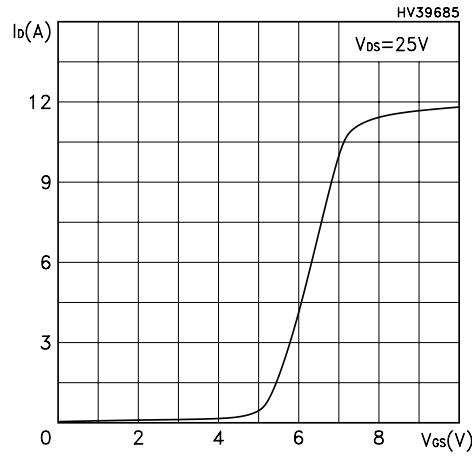
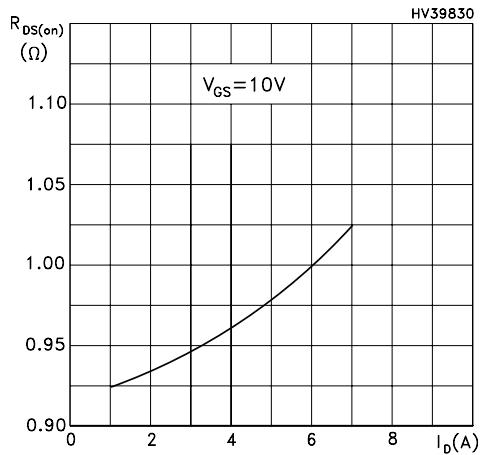
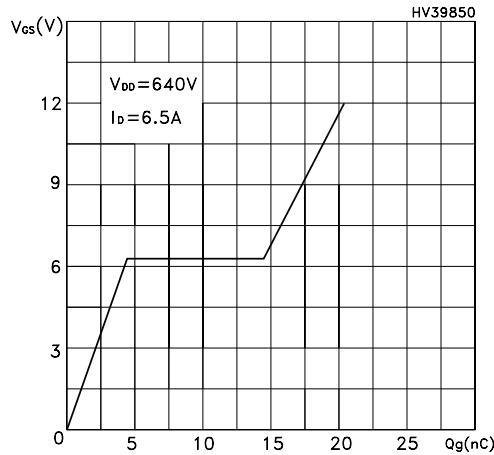
Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
$V_{(\text{BR})\text{DSS}}$	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	800			V
I_{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$			10	μA
		$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}, T_C = 125^\circ\text{C}^{(1)}$			100	
I_{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 30 \text{ V}$			± 100	nA
$V_{\text{GS}(\text{th})}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$	3	4	5	V
$R_{\text{DS}(\text{on})}$	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 3.25 \text{ A}$		0.95	1.05	Ω

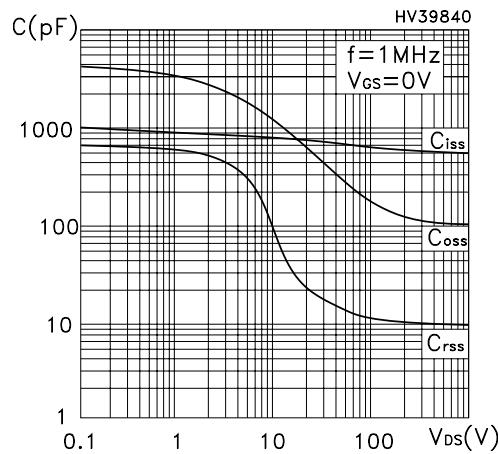
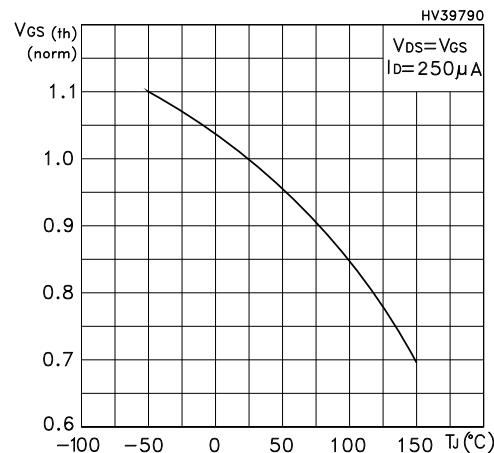
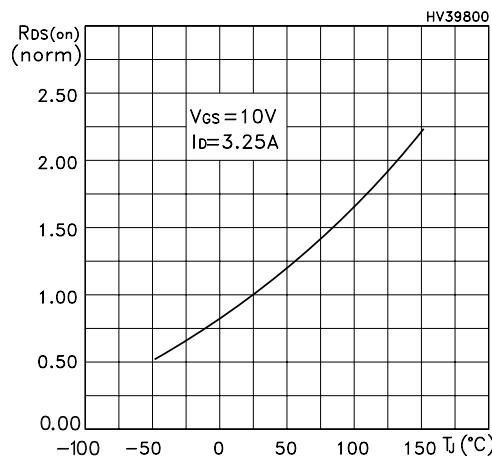
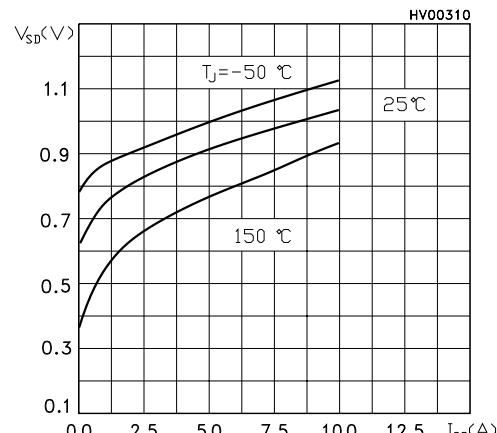
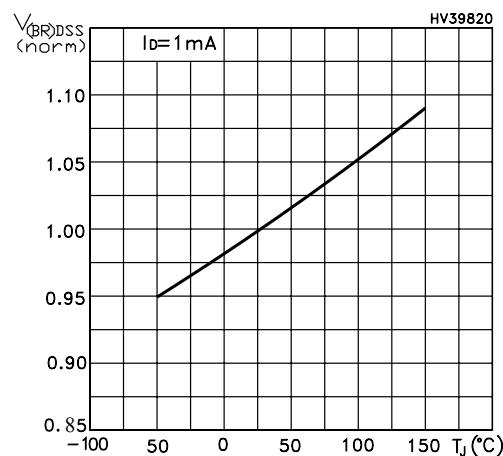
1. Specified by design, not tested in production.

Table 5. Dynamic

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
C_{iss}	Input capacitance	$V_{DS} = 50 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0 \text{ V}$	-	620	-	pF
C_{oss}	Output capacitance		-	460	-	pF
C_{rss}	Reverse transfer capacitance		-	15	-	pF
R_g	Gate input resistance	$f = 1 \text{ MHz}$ open drain	-	7	-	Ω
Q_g	Total gate charge	$V_{DD} = 640 \text{ V}, I_D = 6.5 \text{ A}, V_{GS} = 0 \text{ to } 10 \text{ V}$ (see Figure 13. Test circuit for gate charge behavior)	-	18	-	nC
Q_{gs}	Gate-source charge		-	4	-	nC
Q_{gd}	Gate-drain charge		-	11	-	nC

Table 6. Switching times







Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
$t_{\text{d}(\text{on})}$	Turn-on delay time	$V_{DD} = 400 \text{ V}, I_D = 3.25 \text{ A}, R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	20	-	ns
t_r	Rise time		-	8	-	ns
$t_{\text{d}(\text{off})}$	Turn-off delay time		-	35	-	ns
t_f	Fall time	(see Figure 12. Test circuit for resistive load switching times and Figure 17. Switching time waveform)	-	10	-	ns






Table 7. Source-drain diode

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
I_{SD}	Source-drain current		-		6.5	A
$I_{SDM}^{(1)}$	Source-drain current (pulsed)		-		26	A
$V_{SD}^{(2)}$	Forward on voltage	$I_{SD} = 6.5 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.3	V
t_{rr}	Reverse recovery time	$I_{SD} = 6.5 \text{ A}, dI/dt = 100 \text{ V}$	-	460		ns
Q_{rr}	Reverse recovery charge	$V_{DD} = 50 \text{ V}$ (see Figure 14. Test circuit for inductive load switching and diode recovery times)	-	4		μC
I_{RRM}	Reverse recovery current	$I_{SD} = 6.5 \text{ A}, dI/dt = 100 \text{ A}/\mu\text{s}$	-	17		A
t_{rr}	Reverse recovery time	$V_{DD} = 50 \text{ V}$ (see Figure 14. Test circuit for inductive load switching and diode recovery times)	-	680		ns
Q_{rr}	Reverse recovery charge		-	6		μC
I_{RRM}	Reverse recovery current		-	17		A

1. Pulse width limited by safe operating area.
2. Pulsed: pulse duration = 300 μs , duty cycle 1.5%.

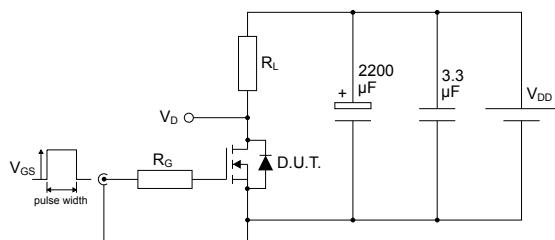

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

Figure 3. Output characteristics

Figure 4. Transfer characteristics

Figure 5. Static drain-source on-resistance

Figure 6. Gate charge vs gate-source voltage

Figure 7. Capacitance variations

Figure 8. Normalized gate threshold voltage vs temperature

Figure 9. Normalized on-resistance vs temperature

Figure 10. Source-drain diode forward characteristics

Figure 11. Normalized $V_{(BR)DSS}$ vs temperature

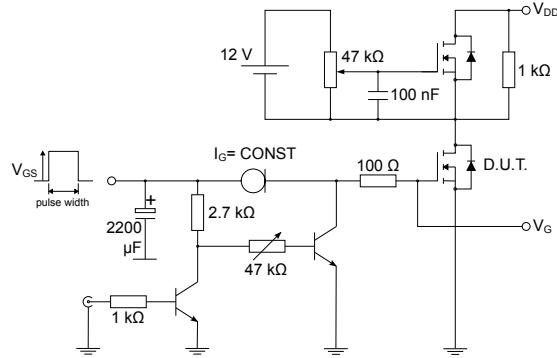

3 Test circuits

Figure 12. Test circuit for resistive load switching times

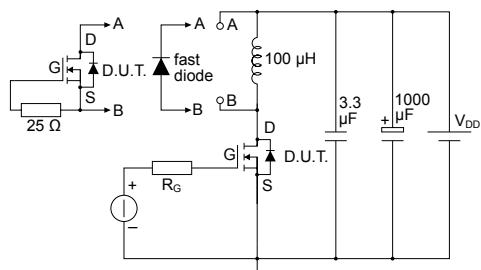

AM01468v1

Figure 13. Test circuit for gate charge behavior

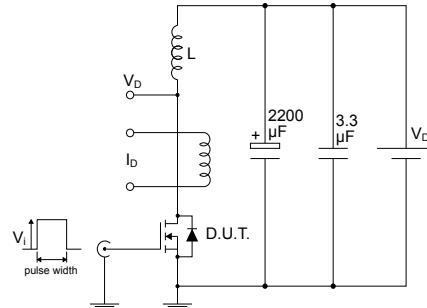

AM01469v1

Figure 14. Test circuit for inductive load switching and diode recovery times

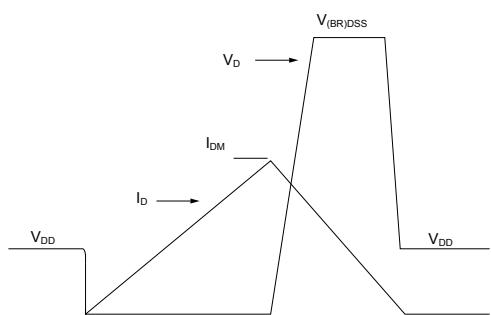

AM01470v1

Figure 15. Unclamped inductive load test circuit

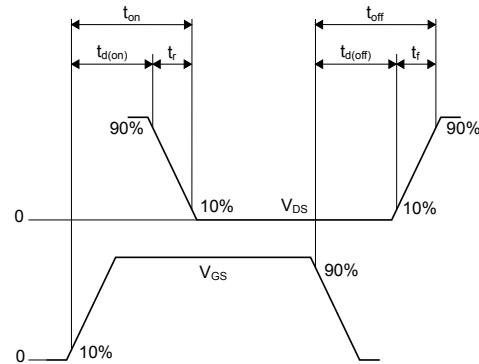
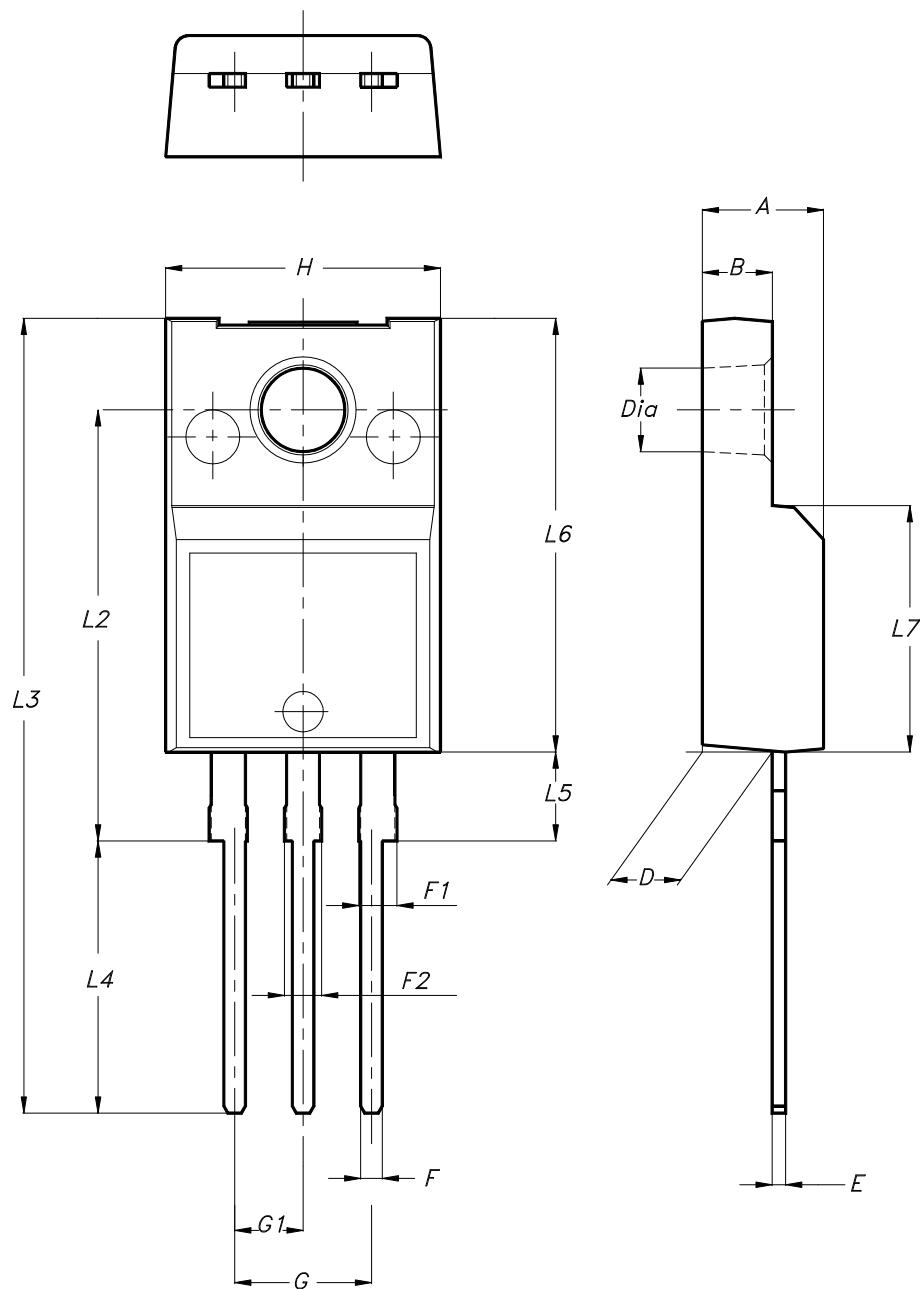

AM01471v1

Figure 16. Unclamped inductive waveform

AM01472v1

Figure 17. Switching time waveform


AM01473v1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-220FP type B package information

Figure 18. TO-220FP type B package outline

Table 8. TO-220FP type B package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
B	2.50		2.70
D	2.50		2.75
E	0.45		0.70
F	0.75		1.00
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.20
G1	2.40		2.70
H	10.00		10.40
L2		16.00	
L3	28.60		30.60
L4	9.80		10.60
L5	2.90		3.60
L6	15.90		16.40
L7	9.00		9.30
Dia	3.00		3.20

Revision history

Table 9. Document revision history

Date	Revision	Changes
30-May-2023	1	First release. The part number STF7NM80 was previously inserted in the DS4854.

Contents

1	Electrical ratings	2
2	Electrical characteristics	3
2.1	Electrical characteristics (curves)	5
3	Test circuits	7
4	Package information	8
4.1	TO-220FP type B package information	8
	Revision history	10

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved