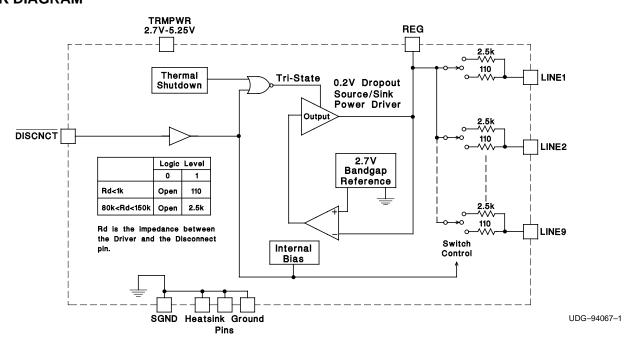


SLUS347A - MAY 1995 - REVISED APRIL 2003

9-LINE 3 TO 5 VOLT SCSI ACTIVE TERMINATOR, REVERSE DISCONNECT

FEATURES

- Complies with SCSI, SCSI-2 and SPI-2 Standards
- 2.7-V to 5.25-V Operation
- 1.8-pF Channel Capacitance during Disconnect
- 0.5-μA Supply Current in Disconnect Mode
- 110-Ω/2.5-kΩ Programmable Termination
- Completely Meets SCSI Hot Plugging
- -400-mA Sourcing Current for Termination
- +400-mA Sinking Current for Active Negation Drivers
- Trimmed Termination Current to 4%
- Trimmed Impedance to 7%
- Current Limit and Thermal Shutdown Protection


DESCRIPTION

The UCC5606 provides 9 lines of active termination for a small computer systems interface (SCSI) parallel bus. The SCSI standard recommends active termination at both ends of the cable segment.

The UCC5606 is ideal for high performance 3.3-V SCSI systems. The key features contributing to such low operating voltage are the 0.1-V drop out regulator and the 2.7-V reference. During disconnect the supply current is typically only 0.5 μ A, which makes the device attractive for battery powered systems.

The UCC5606 is designed with an ultra-low channel capacitance of 1.8 pF, which eliminates effects on signal integrity from disconnected terminators at interim points on the bus.

BLOCK DIAGRAM

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

TEXAS INSTRUMENTS

Copyright © 2003, Texas Instruments Incorporated

DESCRIPTION (CONTINUED)

The UCC5606 can be programmed for either a 110- Ω or 2.5-k Ω termination. The 110- Ω termination is used for standard SCSI bus lengths and the 2.5-k Ω termination is typically used in short bus applications. When driving the TTL compatible $\overline{\text{DISCNCT}}$ pin directly, the 110- Ω termination is connected when the $\overline{\text{DISCNCT}}$ pin is driven high, and disconnected when low. When the $\overline{\text{DISCNCT}}$ pin is driven through an impedance between 80 k Ω and 150 k Ω , the 2.5-k Ω termination is connected when the $\overline{\text{DISCNCT}}$ pin is driven high, and disconnected when driven low.

The power amplifier output stage allows the UCC5606 to source full termination current and sink active negation current when all termination lines are actively negated.

The UCC5606 is pin-for-pin compatible with Unitrode's other 9-line single-ended SCSI terminators, except that $\overline{\text{DISCNCT}}$ is now active low, allowing lower capacitance and lower voltage upgrades to existing systems. The UCC5606 is completely hot pluggable and appears as high impedance at the terminating channels with $V_{\text{TRMPWR}} = 0 \text{ V}$ or open.

Internal circuit trimming is utilized, first to trim the 110- Ω termination impedance to a 7% tolerance, and then most importantly, to trim the output current to a 4% tolerance, as close to the maximum SCSI specification as possible, which maximizes noise margin in fast SCSI operation.

Other features include thermal shutdown and current limit.

This device is offered in low thermal resistance versions of the industry standard 16-pin narrow body SOIC, 16-pin N and 24-pin TSSOP.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted†‡

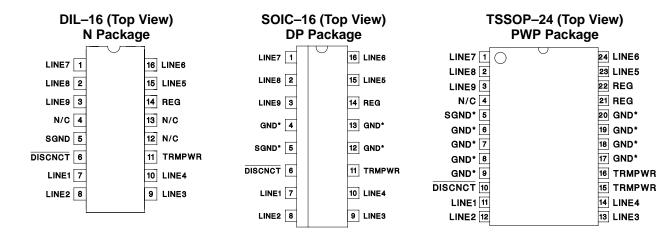
	UCC5606	UNIT
TRMPWR voltage	7	.,
Signal line voltage	0 to 7	7 V
Regulator output current	0.6	А
Storage temperature, T _{Stg}	-65 to 150	
Operating junction temperature, T _J	-55 to 150	°C
Lead temperature (soldering, 10 sec.)	300	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to GND. Currents are positive into and negative out of, the specified terminal.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM MAX	UNIT
TRMPWR voltage	2.7	5.25	٧
Signal line voltage	0	5	V
Disconnect input voltage	0	TRMPWR	°C

ORDERING INFORMATION


_	DISCONNECT	PACKAGED DEVICE†					
IA.	STATUS	DIL-16 (N)	SOIC-16 (DP)	TSSOP-24 (PWP)			
0°C to 70°C		UCC5606N	UCC5606DP	UCC5606PWP			

[†] The LQFP packages are available taped and reeled. Add TR suffix to device type (e.g. UCC5606PWPTR) to order quantities of 2,500 devices per reel.

[‡]Currents are positive into, negative out of the specified terminal. Consult Packaging Section of Databook for thermal limitations and considerations of packages. All voltages are referenced to GND.

CONNECTION DIAGRAM

NOTE: GND* serves as a heat sink ground which must be tied to a large copper area or the grounding plate.

ELECTRICAL CHARACTERISTICS

 $T_A = 0$ °C to 70°C, TRMPWR = 3.3 V, $\overline{DISCNCT} = 3.3$ V, $R_{DISCNCT} = 0$ Ω , $T_A = T_J$, (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current Section					
T	All termination lines = open		1	2	4
Termpwr supply current	All termination lines = 0.2 V		210	218	mA
Power down mode	DISCNCT = 0 V		0.5	5.0	μΑ
Output Section (110 ohms – Terminator Li	nes)				
Terminator impedance		102.3	110.0	117.7	Ohms
Output high voltage	TRMPWR = $3 V (1)$	2.5	2.7	3.0	V
	$V_{LINE} = 0.2 \text{ V}, \qquad T_{J} = 25^{\circ}\text{C}$	-22.1	-23.0	-24.0	
	V _{LINE} = 0.2 V	-21	-23	-24	
Max output current	$V_{LINE} = 0.2 \text{ V},$ TRMPWR = 3 V, T _J = 25°C (1)	-20.2	-23.0	-24.0	mA
	$V_{LINE} = 0.2 \text{ V}, \qquad TRMPWR = 3 \text{ V} (1)$	-19	-23	-24	
	V _{LINE} = 0.5 V			-22.4	
Output leakage	DISCNCT = 0 V, TRMPWR = 0 V to 5.25 V		10	400	nA
Output capacitance	DISCNCT = 0 V, DP package (2)		1.8	2.5	pF
Output Section (2.5 k Ω – Terminator Lines	s) (RDISCNCT = 80 kΩ)				
Terminator impedance		2.0	2.5	3.0	kΩ
Output high voltage	TRMPWR = $3 \lor (1)$	2.5	2.7	3.0	V
Man autout autout	V _{LINE} = 0.2 V	-0.7	-1.0	-1.4	^
Max output current	$V_{LINE} = 0.2 \text{ V}, \qquad TRMPWR = 3 \text{ V} (1)$	-0.6	-1.0	-1.5	mA
Output leakage	DISCNCT = 0 V, TRMPWR = 0 to 5.25 V		10	400	nA
Output capacitance	DISCNCT = 0 V, DP package (2)		1.8	2.5	pF

ELECTRICAL CHARACTERISTICS $T_A = 0^{\circ}C$ to 70°C, TRMPWR = 3.3 V, $\overline{DISCNCT} = 3.3$ V, $R_{DISCNCT} = 0$ Ω , $T_A = T_J$, (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Regulator Section					
Regulator output voltage	5.25 V > TRMPWR > 3 V	2.5	2.7	3.0	V
Drop-out voltage	All termination lines = 0.2 V		0.1	0.2	
Short circuit current	V _{REG} = 0 V	-200	-400	-800	mA
Sinking current capability	V _{REG} = 3 V	200	400	800	
Thermal shutdown	(2)		170		°C
Thermal shutdown hysteresis	(2)		10		
Disconnect Section					
Disconnect threshold	RDISCNCT = $0 \text{ k}\Omega \text{ to } 80 \text{ k}\Omega$	0.8	1.5	2.0	V
Input current	DISCNCT = 3.3 V		30	50	μΑ

NOTES: 1. Measuring each termination line while other eight are low (0.2 V).

2. Ensured by design. Not production tested.

TERMINAL FUNCTIONS

TERMINAL			PECODINE
NAME	NO.	1/0	DESCRIPTION
DISCNCT	7	I	Taking this pin low causes the 9 channels to become high impedance and the chip to go into low power mode. In short laptop buses an 80 -k Ω to 150 -k Ω resister to TERPWR terminates the bus at 2.5 k Ω . Less than 110 Ω to TERPWR enables the terminator.
GND	9		Ground reference for the device
LINE1 TO LINE9	4	I	110- Ω termination channels
REG	9	I	Output of the internal 2.7-V regulator
TRMPWR	4		Power for the device
GND*			Heat sink ground, must be tied to a large copper area or the grounding plate.

APPLICATION INFORMATION

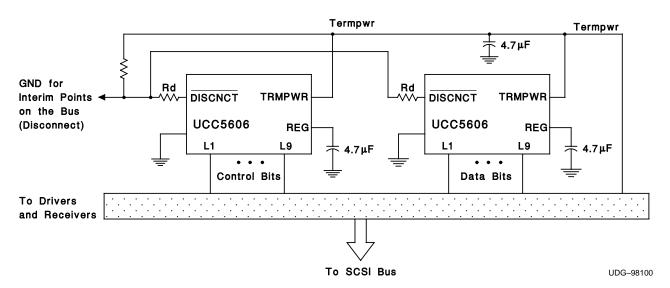


Figure 1. Typical SCSI Bus Configurations Utilizing two UCC5606 Devices

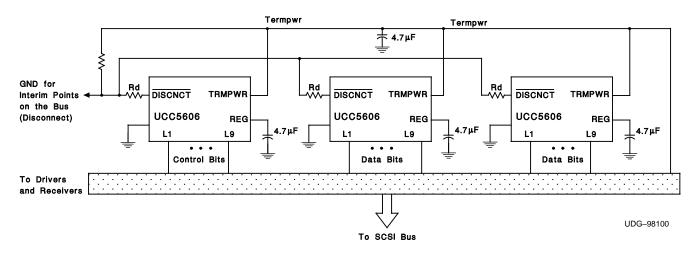


Figure 2. Typical Wide SCSI Bus Configurations Utilizing three UCC5606 Devices

PACKAGE OPTION ADDENDUM

26-Mar-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
UCC5606DP	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70	UCC5606DP	
UCC5606DPTR	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70	UCC5606DP	
UCC5606DPTRG4	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70	UCC5606DP	
UCC5606J	OBSOLETE		UTR	16		TBD	Call TI	Call TI	0 to 70		
UCC5606N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
UCC5606PWP	OBSOLETE	TSSOP	PW	24		TBD	Call TI	Call TI	0 to 70	UCC5606PWP	
UCC5606PWPTR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UCC5606PWP	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

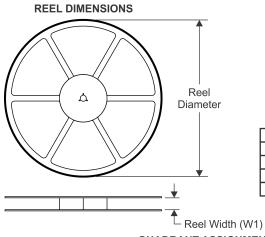
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

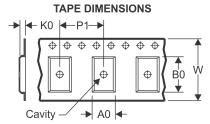
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

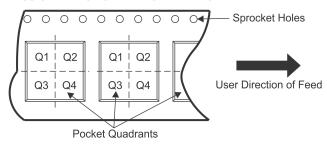
26-Mar-2015


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

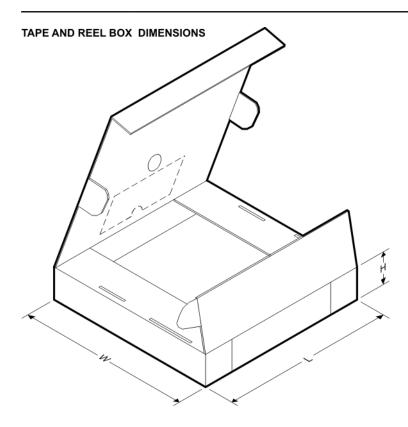
PACKAGE MATERIALS INFORMATION

www.ti.com 7-Aug-2014


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

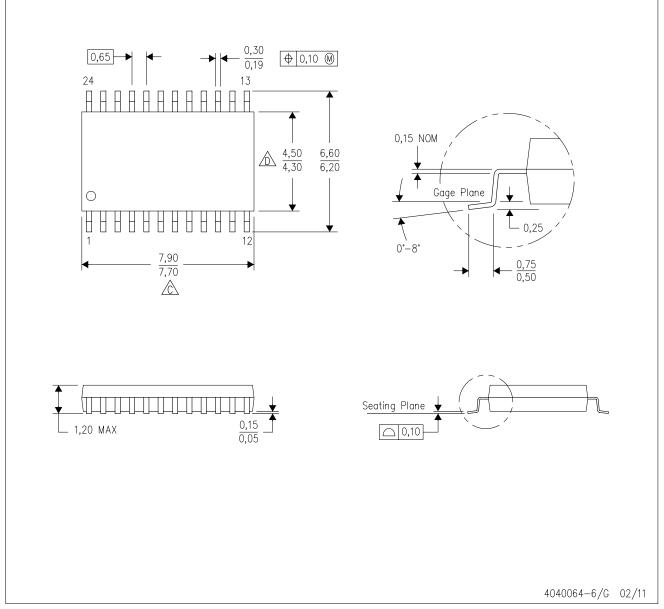
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UCC5606PWPTR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 7-Aug-2014



*All dimensions are nominal

Device	Package Type	Package Drawing	SPQ	Length (mm)	Width (mm)	Height (mm)	
UCC5606PWPTR	TSSOP	PW	24	2000	367.0	367.0	38.0

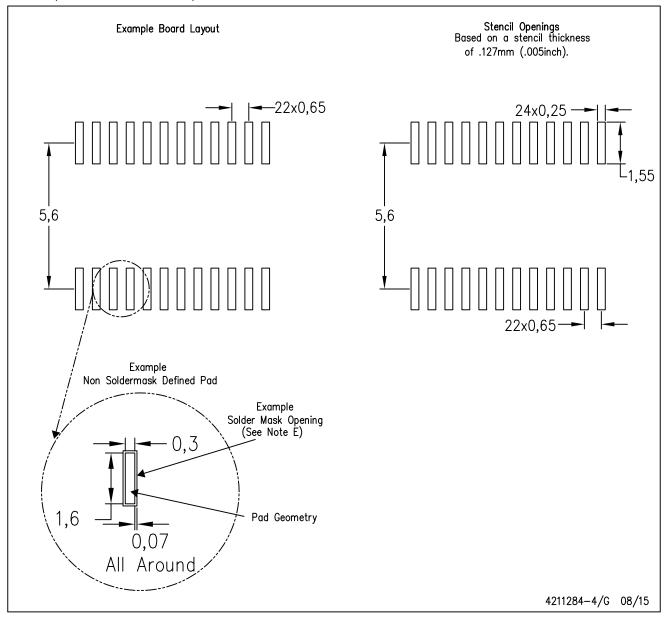
PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.


Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated