

2.4-GHz RF Front End, 14-dBm output power

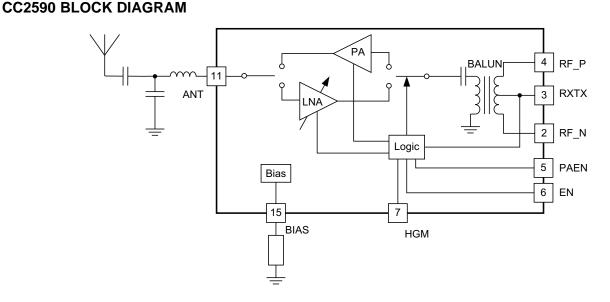
FEATURES

- Seamless Interface to 2.4-GHz Low Power RF **Devices from Texas Instruments**
- Up to +14-dBm (25mW) Output Power
- 6-dB Typical Improved Sensitivity on CC24xx and CC2500, CC2510, and CC2511
- **Few External Components**
 - Integrated Switches
 - Integrated Matching Network
 - Integrated Balun
 - **Integrated Inductors**
 - Integrated PA
 - Integrated LNA
- Digital Control of LNA Gain by HGM Pin
- 100-nA in Power Down (EN = PAEN = 0)
- Low Transmit Current Consumption
 - 22-mA at 3-V for +12-dBm, PAE = 23%
- Low Receive Current Consumption
 - 3.4-mA for High Gain Mode
 - 1.8-mA for Low Gain Mode
- 4.6-dB LNA Noise Figure, including T/R Switch and external antenna match
- RoHS Compliant 4×4-mm QFN-16 Package
- 2.0-V to 3.6-V Operation

APPLICATIONS

- All 2.4-GHz ISM Band Systems •
- Wireless Sensor Networks
- Wireless Industrial Systems
- IEEE 802.15.4 and ZigBee Systems •
- Wireless Consumer Systems
- Wireless Audio Systems

DESCRIPTION


CC2590 is a cost-effective and high performance RF Front End for low-power and low-voltage 2.4-GHz wireless applications.

CC2590 is a range extender for all existing and future 2.4-GHz low-power RF transceivers, transmitters and System-on-Chip products from Texas Instruments.

CC2590 increases the link budget by providing a power amplifier for increased output power, and an LNA with low noise figure for improved receiver sensitivity.

CC2590 provides a small size, high output power RF design with its 4x4-mm QFN-16 package.

CC2590 contains PA, LNA, switches, RF-matching, and balun for simple design of high performance wireless applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

CC2590

SWRS080-SEPTEMBER 2008

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS

Under no circumstances must the absolute maximum ratings be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

	PARAMETER	VALUE	UNIT
Supply voltage	All supply pins must have the same voltage	-0.3 to 3.6	V
Voltage on any digital pin		-0.3 to V _{DD} + 0.3, max 3.6	V
Input RF level		+10	dBm
Storage temperature range		-50 to 150	°C
Reflow soldering temperature	According to IPC/JEDEC J-STD-020	260	°C
	Human Body Model, all pins except pin 10	2000	V
ESD	Human Body Model, pin 10	1900	V
	Charged Device Model	1000	V

RECOMMENDED OPERATING CONDITIONS

The operating conditions for CC2590 are listed below.

PARA	MIN	MAX	UNIT	
Ambient temperature range		-40	85	°C
Operating supply voltage		2.0	3.6	V
Operating frequency range		2400	2483.5	MHz

ELECTRICAL CHARACTERISTICS

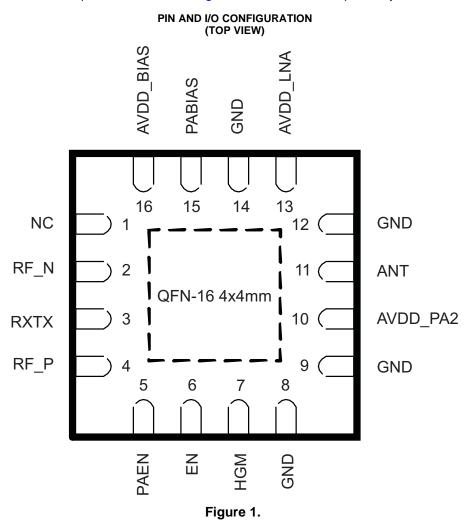
 $T_{C} = 25^{\circ}C$, $V_{DD} = 3.0V$, $f_{RF} = 2440MHz$ (unless otherwise noted). Measured on CC2590EM reference design including external matching components.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Receive current, High Gain Mode	HGM = 1		3.4	4.0	mA
Receive current, Low Gain Mode	HGM = 0		1.8	2.0	mA
Transmit current	P _{IN} = 0.5 dBm, P _{OUT} = 12.2 dBm		22.1		mA
Transmit current	P _{IN} = -3.5 dBm, P _{OUT} = 10.0 dBm		16.8		mA
Transmit current	No input signal		8.0	10.0	mA
Power down current	EN = PAEN = 0		0.1	0.3	μΑ
High input level (control pins)	EN, PAEN, HGM, RXTX	1.3		V_{DD}	V
Low input level (control pins)	EN, PAEN, HGM, RXTX			0.3	V
Power down - Receive mode switching time			1.4		μs
Power down - Transmit mode switching time			0.8		μs
RF Receive					
Gain, High Gain Mode	HGM = 1		11.4		dB
Gain, Low Gain Mode	HGM = 0		0		dB
Gain variation, 2400 – 2483.5 MHz, High Gain Mode	HGM = 1		1.2		dB
Gain variation, 2.0V – 3.6V, High Gain Mode	HGM = 1		1.7		dB
Noise figure, High Gain Mode	HGM = 1, including internal T/R switch and external antenna match		4.6		dB
Input 1 dB compression, High Gain Mode	HGM = 1		-21		dBm

Submit Documentation Feedback

ELECTRICAL CHARACTERISTICS (continued)

 $T_{c} = 25^{\circ}C$, $V_{DD} = 3.0V$, $f_{RF} = 2440MHz$ (unless otherwise noted). Measured on CC2590EM reference design including external matching components.


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input IP3, High Gain Mode	HGM = 1		-9		dBm
Input reflection coefficient, S11	HGM = 1, measured at antenna port		-19		dB
RF Transmit					
Gain			14.1		dB
	P _{IN} = 4.5 dBm		13.8		dBm
Output power, P _{OUT}	$P_{IN} = 0.5 \text{ dBm}$		12.2		dBm
	P _{IN} = -3.5 dBm		10.0		dBm
Power Added Efficiency, PAE	P _{IN} = 0.5 dBm		23.5		%
Output 1 dB compression			10.4		dBm
Output IP3			23		dBm
Output power variation over frequency	2400 – 2483.5 MHz, P _{IN} = 0.5 dBm		0.3		dB
Output power variation over power supply	2.0V – 3.6V , P _{IN} = 0.5 dBm		3.2		dB
Output power variation over temperature	-40°C – 85°C, P _{IN} = 0.5 dBm		1.1		dB
2nd harmonic power	The 2nd harmonic can be reduced to below regulatory limits by using an external LC filter and antenna. See application note AN032 for regulatory requirements.		-14		dBm
3rd harmonic power	The 3rd harmonic can be reduced to below regulatory limits by using an external LC filter and antenna. See application note AN032 for regulatory requirements.		-28		dBm

SWRS080-SEPTEMBER 2008

DEVICE INFORMATION

The CC2590 pinout and description are shown in Figure 1 and Table 1, respectively.

NOTE:

The exposed die attach pad **must** be connected to a solid ground plane as this is the primary ground connection for the chip. Inductance in vias to the pad should be minimized. It is highly recommended to follow the reference layout. Changes will alter the performance. Also see the PCB landpattern information in this data sheet.

For best performance, minimize the length of the ground vias, by using a 4-layer PCB with ground plane as layer 2 when CC2590 is mounted onto layer 1.

www.ti.com

Table 1. PIN FUNCTIONS

	IN		
P	IN	TYPE	DESCRIPTION
NO.	NAME		
_	GND	Ground	The exposed die attach pad must be connected to a solid ground plane. See CC2590EM reference design for recommended layout.
1	NC		Not Connected
2	RF_N	RF	RF interface towards CC24xx or CC25xx device.
3	RXTX	Analog/Control	RXTX switching voltage when connected to CC24xx devices. See Table 3, Table 4, and Table 5 for details.
4	RF_P	RF	RF interface towards CC24xx or CC25xx device
5	PAEN	Digital Input	Digital control pin. See Table 3, Table 4, and Table 5 for details.
6	EN	Digital Input	Digital control pin. See Table 3, Table 4, and Table 5 for details.
7	HGM	Digital Input	Digital control pin. HGM=1 \rightarrow Device in High Gain Mode HGM=0 \rightarrow Device in Low Gain Mode (RX only)
8, 9, 12, 14	GND	Ground	Secondary ground connections. Should be shorted to the die attach pad on the top PCB layer.
10	AVDD_PA2	Power	2.0-V – 3.6-V Power. PCB trace to this pin serves as inductive load to PA. See CC2590EM reference design for recommended layout.
11	ANT	RF	Antenna interface.
13	AVDD_LNA	Power	2.0-V – 3.6-V Power. PCB trace to this pin serves as inductive load to LNA. See CC2590EM reference design for recommended layout.
15	BIAS	Analog	Biasing input. Resistor between this node and ground sets bias current to PAs.
16	AVDD_BIAS	Power	2.0-V – 3.6-V Power.
	1	1	

Texas Instruments

www.ti.com

SWRS080-SEPTEMBER 2008

CC2590EM Evaluation Module

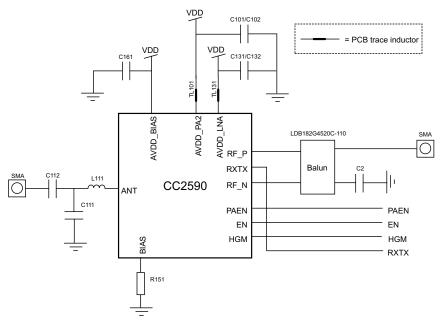


Figure 2. CC2590EM Evaluation Module

	•	•
DEVICE	FUNCTION	VALUE
L112	Part of antenna match.	1.5 nH: LQW15AN1N5B00 from Murata
C111	Part of antenna match.	0.5 pF, GRM1555C1HR50BZ01 from Murata
C112	DC block.	47 pF, GRM1555C1H470JZ01 from Murata
C161	Decoupling capacitor.	1 nF: GRM1555C1H102JA01 from Murata
C101/C102	Decoupling. Will affect PA resonance. See CC2590EM reference design for placement.	27 pF 1 nF. The smallest cap closest to CC2590. 27 pF: GRM1555C1H270JZ01 from Murata 1 nF: GRM1555C1H102JA01 from Murata
C131/C132	Decoupling. Will affect LNA resonance. See CC2590EM reference design for placement.	18 pF 1 nF. The smallest cap closest to CC2590. 18 pF: GRM1555C1H180JZ01 from Murata 1 nF: GRM1555C1H102JA01 from Murata
C2	Decoupling of external balun	1 nF: LWQ15AN1N5B00 from Murata
TL101 ⁽¹⁾	Transmission line. Will affect PA resonance. (simulated inductance: 0.87nH)	See CC2590EM reference design. Transmission line: Length ≈ 40 mil, Width = 8 mil
TL131	Transmission line. Will affect LNA resonance. (simulated inductance: 1.64nH)	See CC2590EM reference design. Transmission line: Length ≈ 100 mil, Width = 8 mil
R151	Bias resistor	4.3 kΩ: RK73H1ETTP4301F from Koa

(1) Transmission lines are measured from edge of pad of the CC2590 footprint to edge of pad of DC coupling capacitor. The length of the transmission lines depend on the distance to the ground plane. If another PCB stack up is chosen the length of the transmission lines needs to be adjusted.

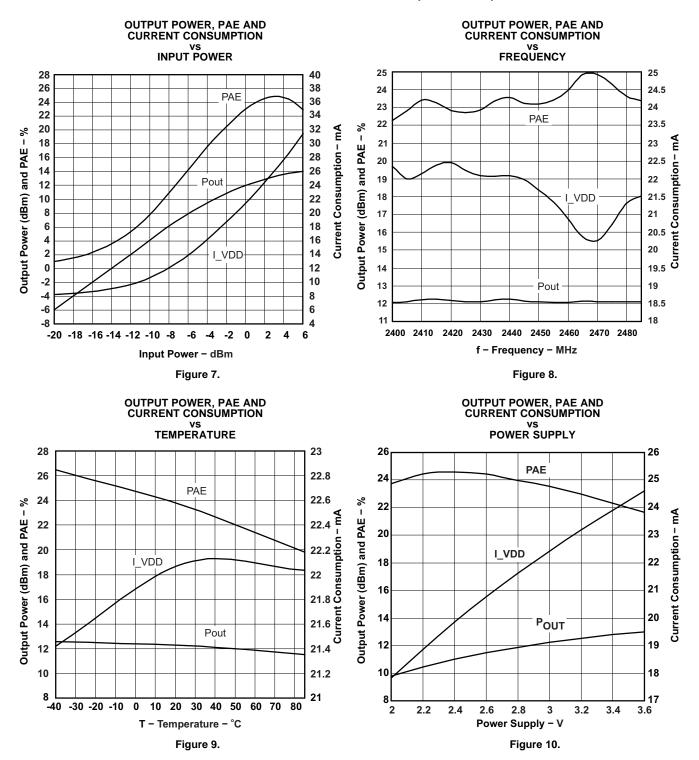
PCB description: 4 layer PCB 1.6mm

Copper 1: 35 μ m Dielectric 1-2: 0.35 mm (e.g. 2x Prepreg 7628 AT05 47% Resin) Copper 2: 18 μ m Dielectric 2-3: 0.76 mm (4 x 7628M 43% Resin) Copper 3: 18 μ m Dielectric 3-4: 0.35 mm (e.g. 2x Prepreg 7628 AT05 47% Resin) Copper 4: 35 μ m

DE104iML or equivalent substrate (Resin contents around 45%, which gives Er=4.42 at 2.4GHz, TanD=0.016)

80

www.ti.com


TYPICAL CHARACTERISTICS LNA GAIN AND NOISE FIGURE LNA GAIN vs FREQUENCY vs TEMPERATURE 13 5.4 14 13 12 Gain HGM 5.3 HGM 12 5.2 11 11 10 5.1 10 5 9 9 Noise Figure – dB 8 4.9 8 Gain – dB 7 4.8 Gain - dB 7 6 4.7 6 Noise Figure HGM 4.6 5 5 4 4 4.5 3 4.4 3 2 4.3 2 1 LGM 1 4.2 0 Gain LGM 0 4.1 -1 -2 4 -1 -3 3.9 -2 2400 2410 2420 2430 2440 2450 2460 2470 2480 -40 -20 0 20 40 60 f - Frequency - MHz T – Temperature – °C Figure 3. Figure 4. LNA GAIN vs POWER SUPPLY 13 12 m1 11 freq=2.440GHz S(1,1)=0.129*1*-31.279 impedance = 61.723 - j8.383 10 HGM 9 8 7 Gain – dB 6 5 4 S(1,1) 3 2 1 LGM 0 -1 -2 -3 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 Power Supply - V freq (2.400GHz to 2.485GHz) Figure 5. Figure 6. Input Impedance of LNA Measured from Antenna Port on CC2590EM

Copyright © 2008, Texas Instruments Incorporated

www.ti.com

TYPICAL CHARACTERISTICS (continued)

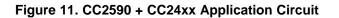
Controlling the Output Power from CC2590

The output power of CC2590 is controlled by controlling the input power. The CC2590 PA is designed to work in compression (class AB), and the best efficiency is reached when a strong input signal is applied.

Input Levels on Control Pins

The four digital control pins (PAEN, EN, HGM, RXTX) have built-in level-shifting functionality, meaning that if the CC2590 is operating from a 3.6-V supply voltage, the control pins will still sense 1.6-V - 1.8-V signals as logical '1'.

An example of the above would be that RXTX is connected directly to the RXTX pin on CC24xx, but the global supply voltage is 3.6-V. The RXTX pin on CC24xx will switch between 0-V (RX) and 1.8-V(TX), which is still a high enough voltage to control the mode of CC2590.


The input voltages should however not have logical '1' level that is higher than the supply.

Connecting CC2590 to a CC24xx Device

PAEN = EN	RXTX	HGM	MODE OF OPERATION						
0	Х	Х	Power Down						
1	0	0	RX Low Gain Mode						
1	0	1	RX High Gain Mode						
1	1	Х	ТХ						

Table 3. Control Logic for Connecting CC2590 to a CC24xx Device

VDD C101/C102 = PCB trace inductor VDD VDD C131/C132 C161 TL 101 TL 13, CC24xx BIAS PUD_LUA PA2 AVDD AVDD RF P L21 RXTX TXRX SWITCH C112 1 111 CC2590 RF N RF N ANT PAEN L112 C113 C111 RREG_OUT (CC243x, CC2480), VREGOUT (CC2420), GIO1 (CC2400) ΕN P1 1 (CC243x), GPIO1 (CC2480), BIAS HGM GIO6 (CC2400) Alternatively to R151 VDD/GND/MCU Alternatively (CC2420) from MCU

Copyright © 2008, Texas Instruments Incorporated

Connecting CC2590 to the CC2500, CC2510, or CC2511 Device

Table 4. Control Logic for Connecting CC2590 to a CC2500/10/11 Devices

PAEN	EN	RXTX	HGM	MODE OF OPERATION		
0	0	NC	Х	Power Down		
0	1	NC	0	RX Low Gain Mode		
0	1	NC	1 RX High Gain Mode			
1	0	NC	Х	ТХ		
1	1	NC	Х	Not allowed		

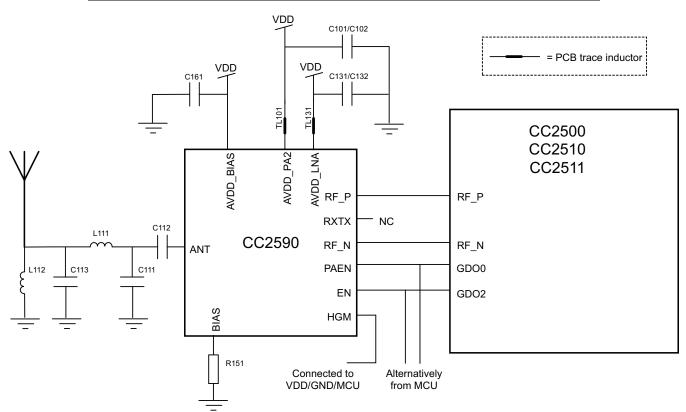


Figure 12. CC2590 + CC2500/10/11 Device Application Circuit

www.ti.com

Connecting CC2590 to a CC2520 Device

PAEN	EN	RXTX	HGM	MODE OF OPERATION						
0	0	NC	Х	Power Down						
0	1	NC	0	RX Low Gain Mode						
0	1	NC	1	RX High Gain Mode						
1	0	NC	Х	ТХ						
1	1	NC	Х	Not allowed						

Table 5. Control Logic for Connecting CC2590 to a CC2520 Device

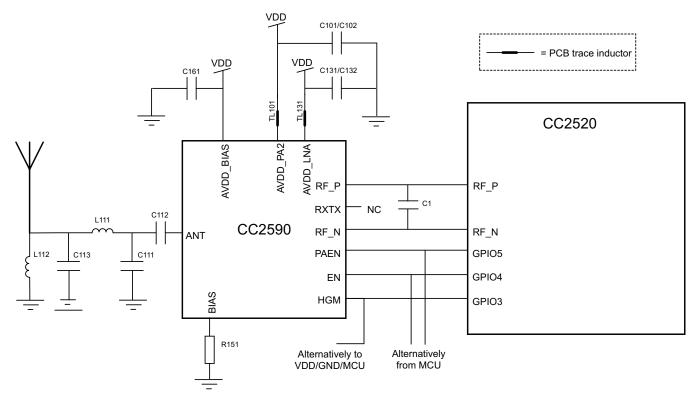


Figure 13. CC2590 + CC2520 Application Circuit

PCB Layout Guidelines

The exposed die attach pad must be connected to a solid ground plane as this is the primary ground connection for the chip. Inductance in vias to the pad should be minimized. It is highly recommended to follow the reference layout. Changes will alter the performance. Also see the PCB landpattern information in this data sheet. For best performance, minimize the length of the ground vias, by using a 4-layer PCB with ground plane as layer 2 when CC2590 is mounted onto layer 1.

PCB trace inductors are used to be able to optimize the inductance value, and they are too small to be replaced by discrete inductors. The placement of the power supply decoupling capacitors C101/C102 and C131/C132 are important to set the PCB trace inductance values accurately.

15-May-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CC2590RGVR	ACTIVE	VQFN	RGV	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CC2590	Samples
CC2590RGVRG4	ACTIVE	VQFN	RGV	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CC2590	Samples
CC2590RGVT	ACTIVE	VQFN	RGV	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU Call TI	Level-2-260C-1 YEAR	-40 to 85	CC2590	Samples
CC2590RGVTG4	ACTIVE	VQFN	RGV	16	250	Green (RoHS & no Sb/Br)	Call TI	Level-2-260C-1 YEAR	-40 to 85	CC2590	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

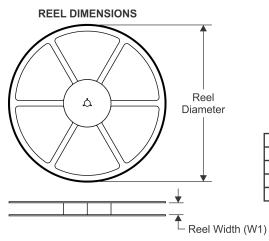
(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

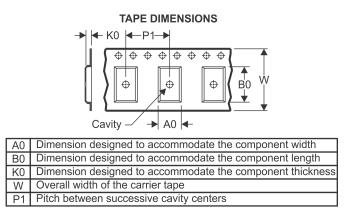
15-May-2015

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

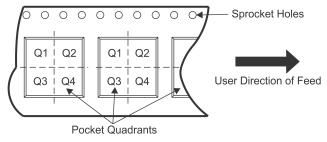
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



PACKAGE MATERIALS INFORMATION

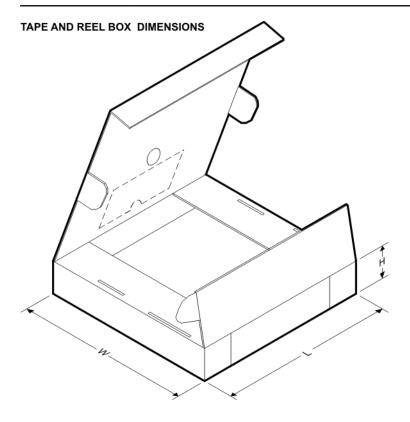

www.ti.com

Texas Instruments


TAPE AND REEL INFORMATION

*All dimensions are nominal

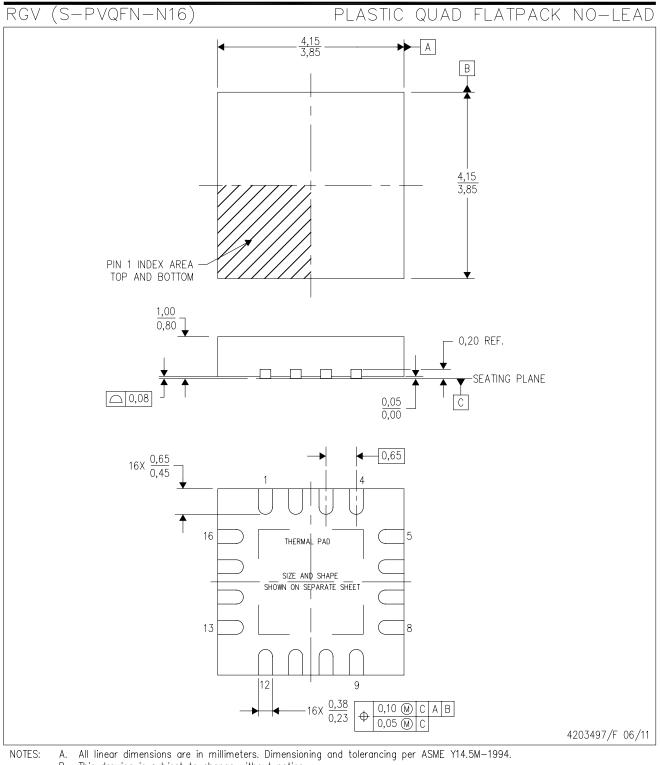
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CC2590RGVR	VQFN	RGV	16	2500	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q2
CC2590RGVT	VQFN	RGV	16	250	180.0	12.4	4.3	4.3	1.5	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


3-Aug-2017

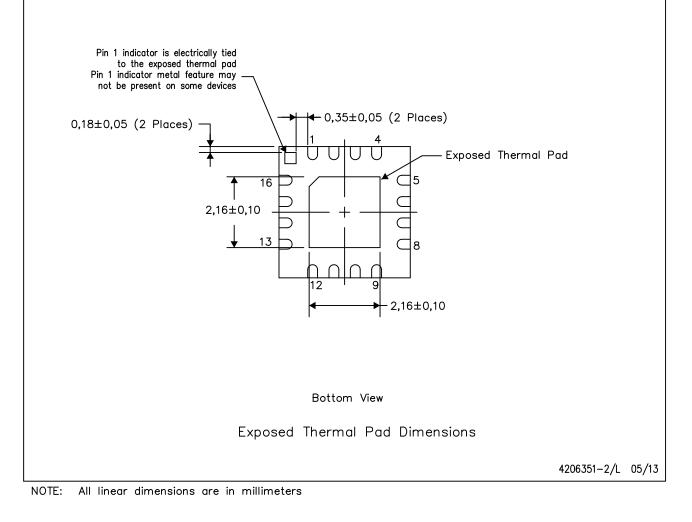
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CC2590RGVR	VQFN	RGV	16	2500	336.6	336.6	28.6
CC2590RGVT	VQFN	RGV	16	250	210.0	185.0	35.0

MECHANICAL DATA

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. F. Falls within JEDEC MO-220.

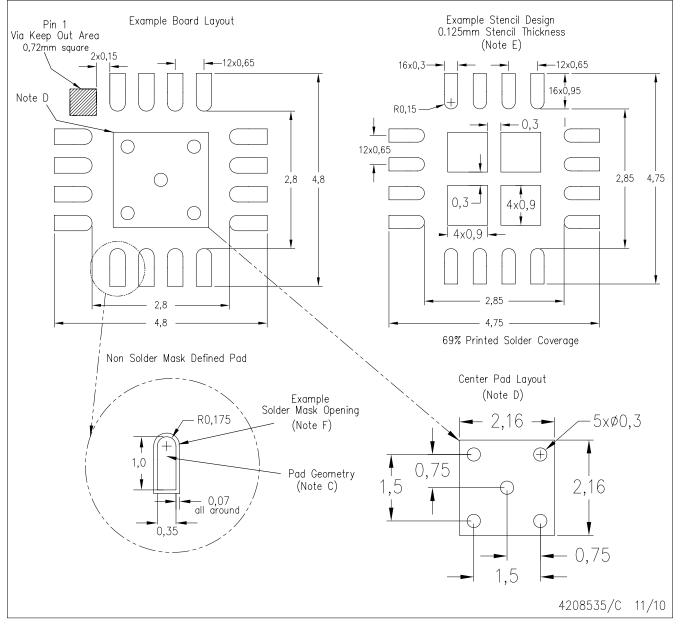
RGV (S-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.

RGV (S-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.

E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.

F. Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated