

NTGS3130N, NVGS3130N

MOSFET – Single, N-Channel, TSOP-6 20 V, 5.6 A, 24 mΩ

Features

- Leading Edge Trench Technology for Low On Resistance
- Low Gate Charge for Fast Switching
- Small Size (3 x 2.75 mm) TSOP-6 Package
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- This is a Pb-Free Device

Applications

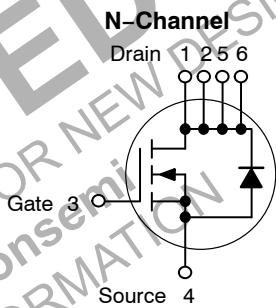
- DC-DC Converters
- Lithium Ion Battery Applications
- Load/Power Switching

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

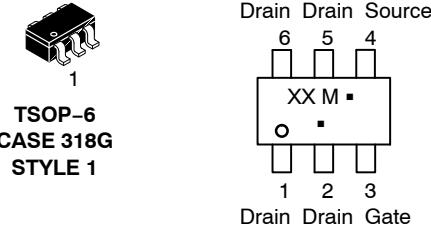
Rating			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	20	V
Gate-to-Source Voltage			V _{GS}	±8	V
Continuous Drain Current (Note 1)	Steady State	T _A = 25°C	I _D	5.6	A
		T _A = 85°C		4.1	
	t ≤ 10 s	T _A = 25°C		6.2	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.1	W
		t ≤ 10 s		1.4	
Continuous Drain Current (Note 2)	Steady State	T _A = 25°C	I _D	4.2	A
		T _A = 85°C		3.0	
	Power Dissipation (Note 2)	T _A = 25°C	P _D	0.6	W
Pulsed Drain Current	t _p ≤ 10 s	I _{DM}		19	A
Operating and Storage Temperature Range			T _J , T _{stg}	-55 to 150	°C
Source Current (Body Diode)			I _S	1.0	A
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 1)	R _{θJA}	110	°C/W
Junction-to-Ambient – t ≤ 10 s (Note 1)		90	
Junction-to-Ambient – Steady State (Note 2)		200	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 in sq pad size
(Cu area = 1.127 in sq [1 oz] including traces)
2. Surface-mounted on FR4 board using the minimum recommended pad size


ON Semiconductor®

<http://onsemi.com>

V _{(BR)DSS}	R _{DS(on)} mAX	I _D Max
20 V	24 mΩ @ 4.5 V	5.6 A
	32 mΩ @ 2.5 V	4.9 A

MARKING DIAGRAM & PIN ASSIGNMENT

XX = Specific Device Code

M = Date Code*

■ = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

NTGS3130N, NVGS3130N

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$V_{\text{GS}} = 0 \text{ V}; I_D = 250 \mu\text{A}$	20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(\text{BR})\text{DSS}}/T_J$			9.8		$\text{mV}/^\circ\text{C}$
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{GS}} = 0 \text{ V}; V_{\text{DS}} = 16 \text{ V}, T_J = 25^\circ\text{C}$			1.0	μA
Gate-to-Source Leakage Current	I_{GSS}	$V_{\text{DS}} = 0, V_{\text{GS}} = \pm 8 \text{ V}$			100	nA
ON CHARACTERISTICS (Note 3)						
Gate Threshold Voltage	$V_{\text{GS}(\text{TH})}$	$V_{\text{GS}} = V_{\text{DS}}, I_D = 250 \mu\text{A}$	0.4	0.6	1.4	V
Negative Temperature Coefficient	$V_{\text{GS}(\text{TH})}/T_J$			3.4		$\text{mV}/^\circ\text{C}$
Drain-to-Source On-Resistance	$R_{\text{DS}(\text{on})}$	$V_{\text{GS}} = 4.5 \text{ V}, I_D = 5.6 \text{ A}$		19	24	$\text{m}\Omega$
		$V_{\text{GS}} = 2.5 \text{ V}, I_D = 4.9 \text{ A}$		25	32	
Forward Transconductance	g_{FS}	$V_{\text{DS}} = 10 \text{ V}, I_D = 5.6 \text{ A}$		8.2		S
CHARGES, CAPACITANCE, & GATE RESISTANCE						
Input Capacitance	C_{ISS}	$V_{\text{GS}} = 0 \text{ V}, f = 1 \text{ MHz}, V_{\text{DS}} = 16 \text{ V}$		935		pF
Output Capacitance	C_{OSS}			169		
Reverse Transfer Capacitance	C_{RSS}			104		
Input Capacitance	C_{ISS}			965		
Output Capacitance	C_{OSS}			198		
Reverse Transfer Capacitance	C_{RSS}			110		
Total Gate Charge	$Q_{\text{G}(\text{TOT})}$	$V_{\text{GS}} = 4.5 \text{ V}, V_{\text{DS}} = 16 \text{ V}, I_D = 5.6 \text{ A}$		13.2	20.3	nC
Threshold Gate Charge	$Q_{\text{G}(\text{TH})}$			0.60		
Gate-to-Source Charge	Q_{GS}			1.5		
Gate-to-Drain Charge	Q_{GD}			4.2		
Total Gate Charge	$Q_{\text{G}(\text{TOT})}$	$V_{\text{GS}} = 4.5 \text{ V}, V_{\text{DS}} = 5.0 \text{ V}, I_D = 6.2 \text{ A}$		11.8	18.0	
Threshold Gate Charge	$Q_{\text{G}(\text{TH})}$			0.6		
Gate-to-Source Charge	Q_{GS}			1.4		
Gate-to-Drain Charge	Q_{GD}			2.7		

SWITCHING CHARACTERISTICS, $V_{\text{GS}} = 4.5 \text{ V}$ (Note 4)

Turn-On Delay Time	$t_{\text{d}(\text{ON})}$	$V_{\text{GS}} = 4.5 \text{ V}, V_{\text{DD}} = 16 \text{ V}, I_D = 1 \text{ A}, R_G = 3 \Omega$		6.3	12.6	ns
Rise Time	t_r			7.3	13.5	
Turn-Off Delay Time	$t_{\text{d}(\text{OFF})}$			21.7	35.1	
Fall Time	t_f			9.7	17.6	

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V_{SD}	$V_{\text{GS}} = 0 \text{ V}, I_S = 1.0 \text{ A}$	$T_J = 25^\circ\text{C}$		0.7	1.2	V
Reverse Recovery Time	t_{RR}	$V_{\text{GS}} = 0 \text{ Vdc}, \frac{dI_{\text{SD}}}{dt} = 100 \text{ A}/\mu\text{s}, I_S = 1.0 \text{ A}$			20.4		ns
Charge Time	t_a				8.1		
Discharge Time	t_b				11.6		
Reverse Recovery Charge	Q_{RR}				8.8		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width $\leq 300 \mu\text{s}$, Duty Cycle $\leq 2\%$.

4. Switching characteristics are independent of operating junction temperature.

TYPICAL CHARACTERISTICS



Figure 1. On-Region Characteristics

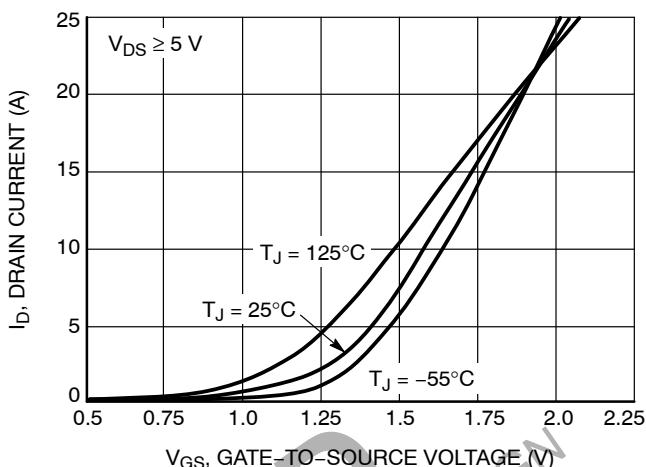


Figure 2. Transfer Characteristics

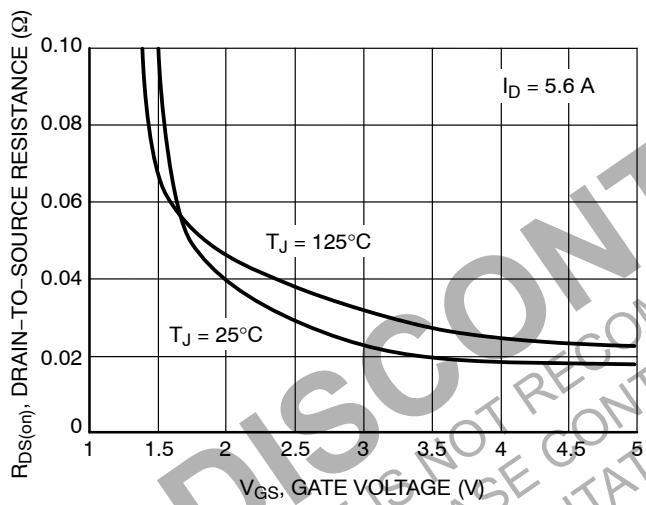


Figure 3. On-Resistance vs. Gate-to-Source Voltage

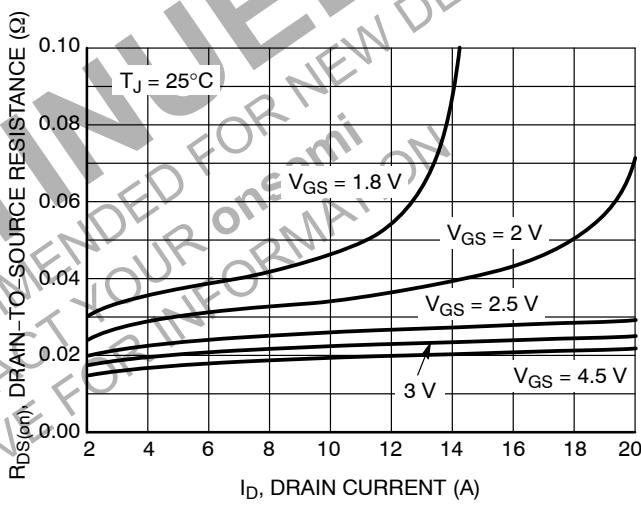


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

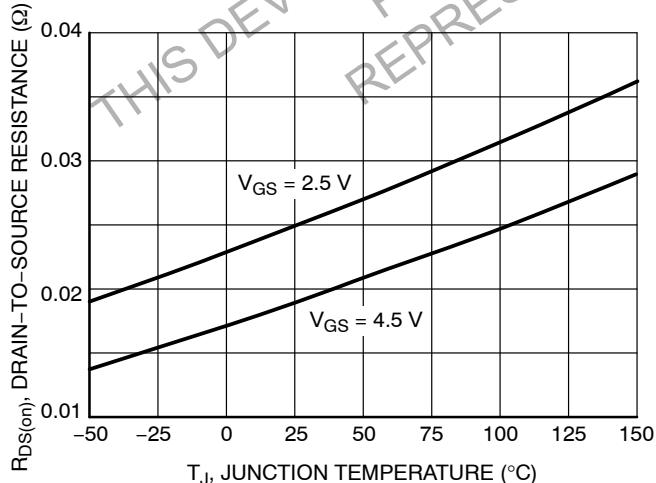


Figure 5. On-Resistance Variation with Temperature

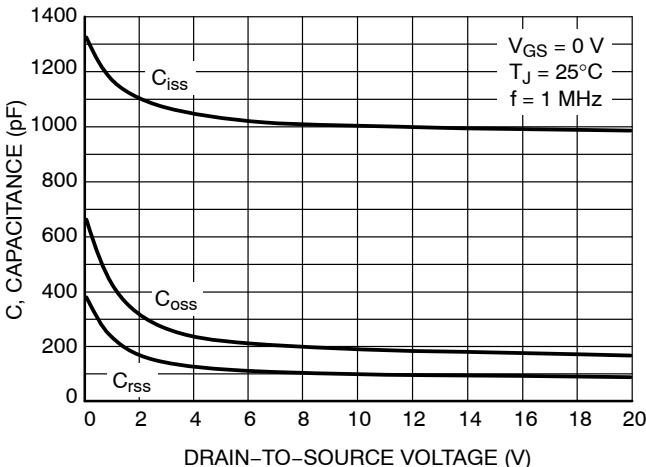


Figure 6. Capacitance Variation

TYPICAL CHARACTERISTICS

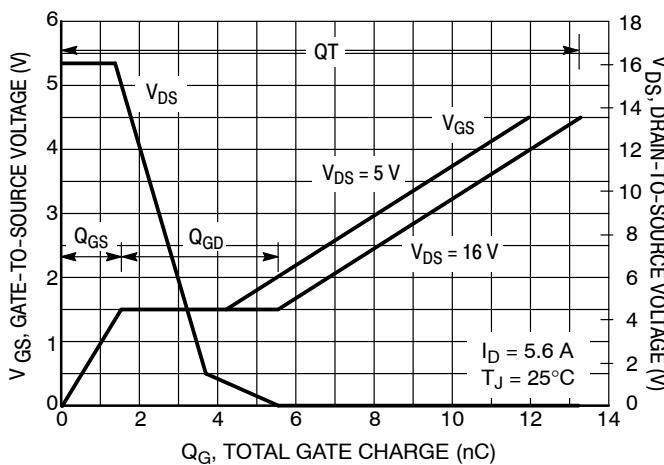


Figure 7. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

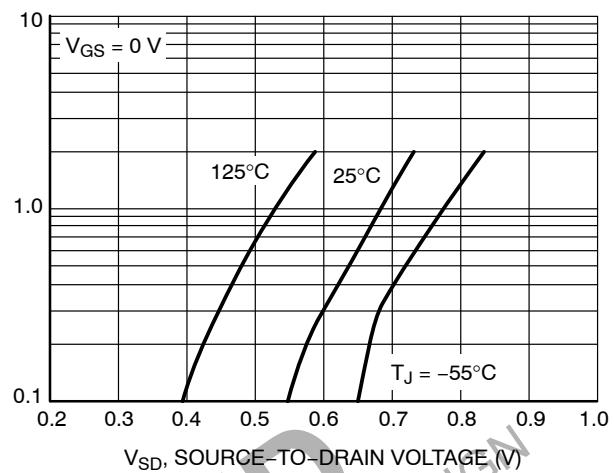


Figure 8. Diode Forward Voltage vs. Current

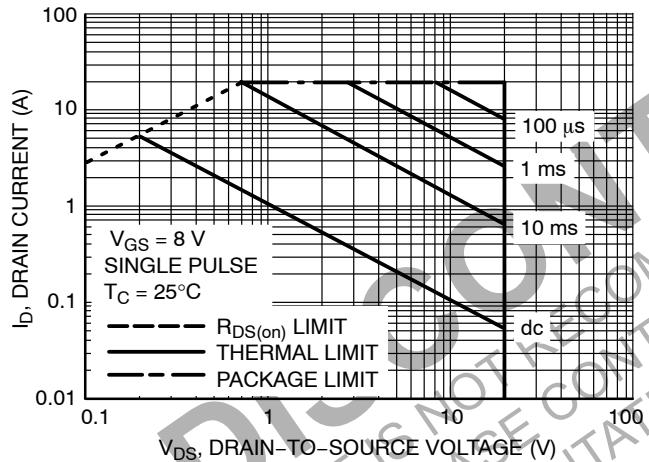


Figure 9. Maximum Rated Forward Biased Safe Operating Area

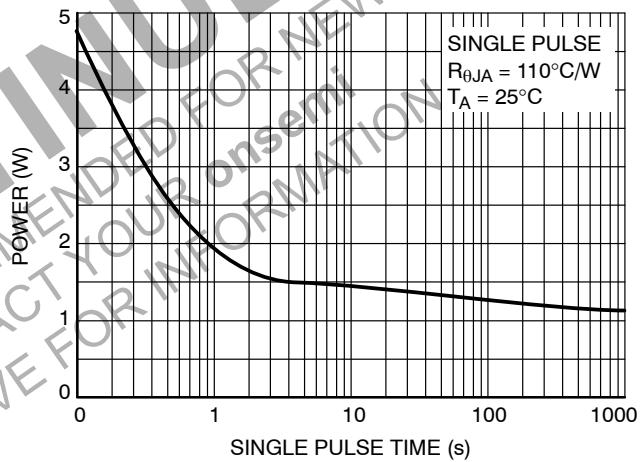


Figure 10. Single Pulse Maximum Power Dissipation

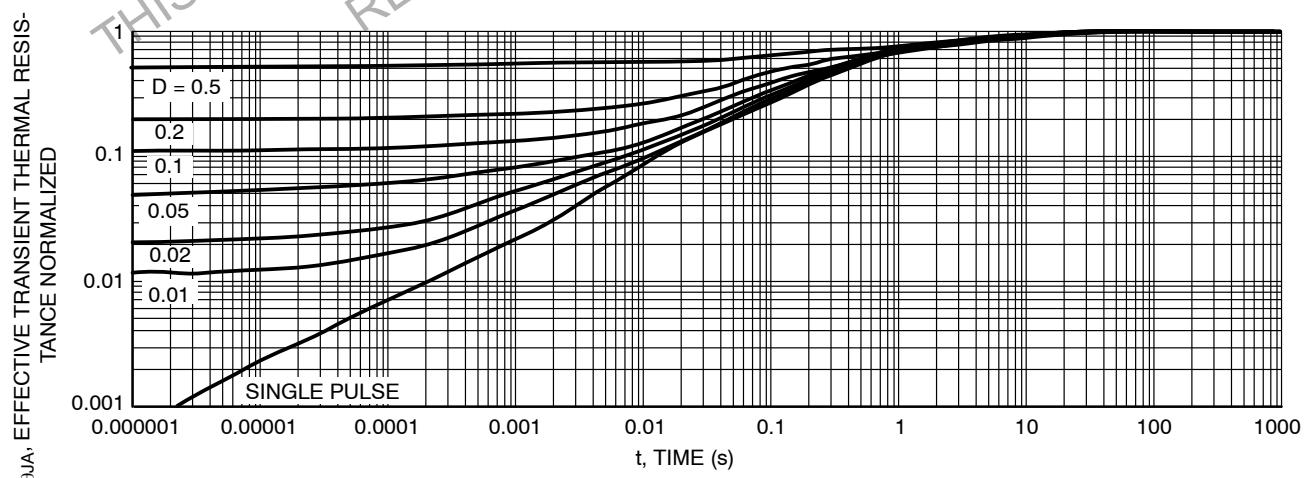
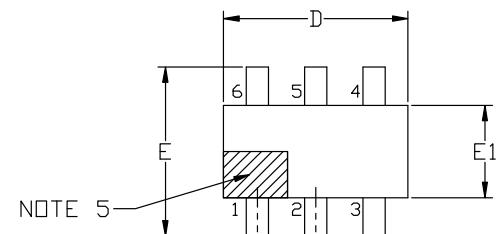


Figure 11. Thermal Response

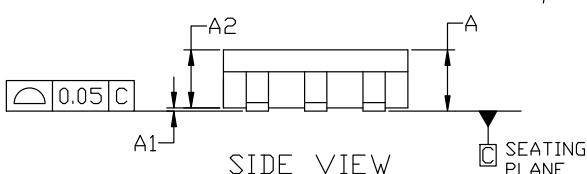
NTGS3130N, NVGS3130N

Table 1. ORDERING INFORMATION

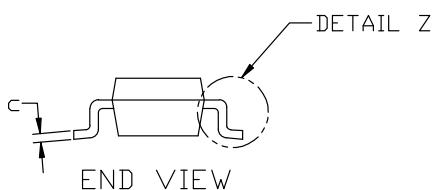
Part Number	Marking (XX)	Package	Shipping [†]
NTGS3130NT1G	S9	TSOP-6 (Pb-Free)	3000 / Tape & Reel
NVGS3130NT1G	VS9	TSOP-6 (Pb-Free)	3000 / Tape & Reel

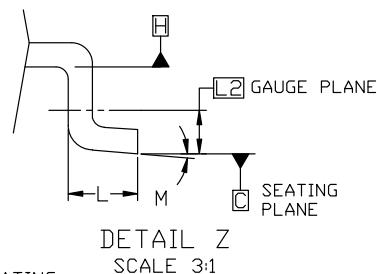

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DISCONTINUED
THIS DEVICE IS NOT RECOMMENDED FOR NEW DESIGN
PLEASE CONTACT YOUR **onsemi**
REPRESENTATIVE FOR INFORMATION



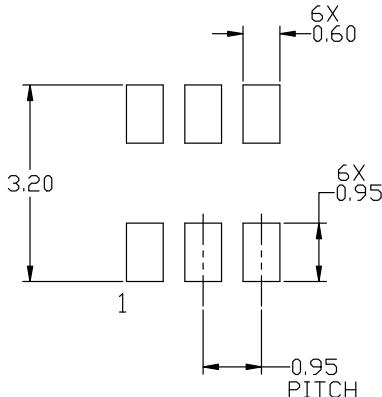
TSOP-6 3.00x1.50x0.90, 0.95P
CASE 318G
ISSUE W


DATE 26 FEB 2024


TOP VIEW

SIDE VIEW

END VIEW



DETAIL Z
SCALE 3:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
5. PIN 1 INDICATOR MUST BE LOCATED IN THE INDICATED ZONE

MILLIMETERS			
DIM	MIN	NOM	MAX
A	0.90	1.00	1.10
A1	0.01	0.06	0.10
A2	0.80	0.90	1.00
b	0.25	0.38	0.50
c	0.10	0.18	0.26
D	2.90	3.00	3.10
E	2.50	2.75	3.00
E1	1.30	1.50	1.70
e	0.85	0.95	1.05
L	0.20	0.40	0.60
L2	0.25 BSC		
M	0°	---	10°

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference manual, SOLDERMM/D.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P	PAGE 1 OF 2

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSOP-6 3.00x1.50x0.90, 0.95P

CASE 318G

ISSUE W

DATE 26 FEB 2024

**GENERIC
MARKING DIAGRAM***

IC

XXX = Specific Device Code
 A = Assembly Location
 Y = Year
 W = Work Week
 ▪ = Pb-Free Package

STANDARD

XXX = Specific Device Code
 M = Date Code
 ▪ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "▪", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:
 PIN 1. DRAIN
 2. DRAIN
 3. GATE
 4. SOURCE
 5. DRAIN
 6. DRAIN

STYLE 2:
 PIN 1. Emitter 2
 2. Base 1
 3. Collector 1
 4. Emitter 1
 5. Base 2
 6. Collector 2

STYLE 3:
 PIN 1. ENABLE
 2. N/C
 3. R BOOST
 4. Vz
 5. Vin
 6. Vout

STYLE 4:
 PIN 1. N/C
 2. Vin
 3. NOT USED
 4. GROUND
 5. ENABLE
 6. LOAD

STYLE 5:
 PIN 1. Emitter 2
 2. Base 2
 3. Collector 1
 4. Emitter 1
 5. Base 1
 6. Collector 2

STYLE 6:
 PIN 1. COLLECTOR
 2. COLLECTOR
 3. BASE
 4. Emitter
 5. COLLECTOR
 6. COLLECTOR

STYLE 7:
 PIN 1. COLLECTOR
 2. COLLECTOR
 3. BASE
 4. N/C
 5. COLLECTOR
 6. Emitter

STYLE 8:
 PIN 1. Vbus
 2. D(in)
 3. D(in)+
 4. D(out)+
 5. D(out)
 6. GND

STYLE 9:
 PIN 1. LOW VOLTAGE GATE
 2. DRAIN
 3. SOURCE
 4. DRAIN
 5. DRAIN
 6. HIGH VOLTAGE GATE

STYLE 10:
 PIN 1. D(OUT)+
 2. GND
 3. D(OUT)-
 4. D(IN)-
 5. VBUS
 6. D(IN)+

STYLE 11:
 PIN 1. SOURCE 1
 2. DRAIN 2
 3. DRAIN 2
 4. SOURCE 2
 5. GATE 1
 6. DRAIN 1/GATE 2

STYLE 12:
 PIN 1. I/O
 2. GROUND
 3. I/O
 4. I/O
 5. VCC
 6. I/O

STYLE 13:
 PIN 1. GATE 1
 2. SOURCE 2
 3. GATE 2
 4. DRAIN 2
 5. SOURCE 1
 6. DRAIN 1

STYLE 14:
 PIN 1. ANODE
 2. SOURCE
 3. GATE
 4. CATHODE/DRAIN
 5. CATHODE/DRAIN
 6. CATHODE/DRAIN

STYLE 15:
 PIN 1. ANODE
 2. SOURCE
 3. GATE
 4. DRAIN
 5. N/C
 6. CATHODE

STYLE 16:
 PIN 1. ANODE/CATHODE
 2. BASE
 3. Emitter
 4. COLLECTOR
 5. ANODE
 6. CATHODE

STYLE 17:
 PIN 1. Emitter
 2. BASE
 3. ANODE/CATHODE
 4. ANODE
 5. CATHODE
 6. COLLECTOR

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P	PAGE 2 OF 2

onsemi and **ONSEMI** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

