

**Application Specific Discretes
A.S.D.™****LOW POWER
FIRE LIGHTER CIRCUIT****FEATURES**

- DEDICATED THYRISTOR STRUCTURE FOR CAPACITIVE DISCHARGE IGNITION OPERATION
- HIGH PULSE CURRENT CAPABILITY $I_{FRM} = 90A$ @ $t_p = 10\mu\text{s}$
- AC OR DC OPERATION CAPABILITY WITH SUPPLY FROM THE AC MAINS OR A DC BATTERY
- FAST TURN-ON OPERATION
- DESIGNED FOR HIGH AMBIENT TEMPERATURE (up to 120°C)

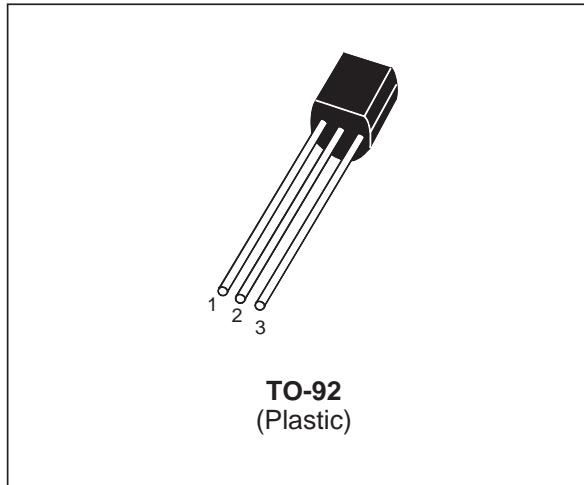
BENEFITS

- SPACE SAVING THANKS TO MONOLITHIC FUNCTION INTEGRATION
- HIGH RELIABILITY WITH PLANAR TECHNOLOGY

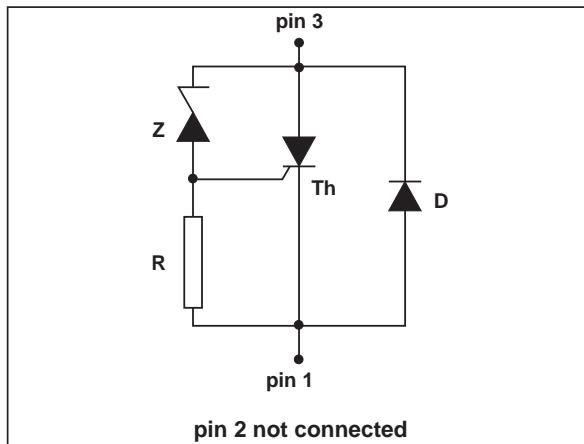
DESCRIPTION

The FLC21-135A has been especially developed for capacitance discharge operation. The main applications are: fuel ignitors, fuel or gas heaters, gas ranges, cooker tops, barbecues, water heaters, HVACs, portable ignitors, insect killers.

Based on ST's ASD™ technology, it provides a fully integrated function, with high performance and reliability levels, adapted to severe and hot temperature environment.


The typical supply of the FLC21-135A fire lighter circuit is a DC battery or the AC mains.

Th: Thyristor for the switching operation.

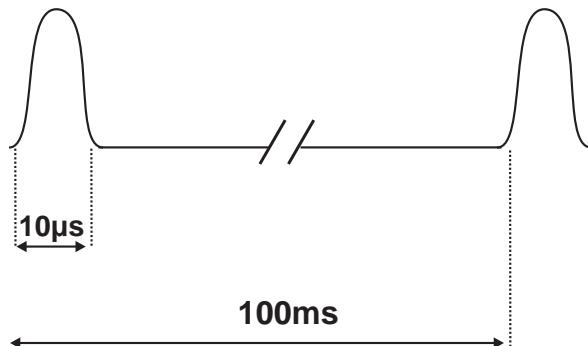

Z: Zener diode to set the igniting threshold voltage.

D: Diode for the reverse conduction.

R: 2 kΩ resistor.

TO-92
(Plastic)

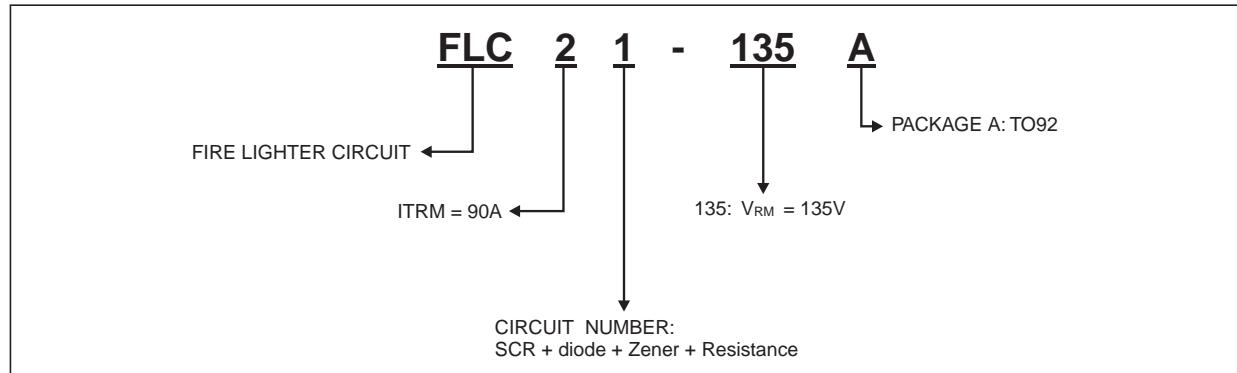
FUNCTIONAL DIAGRAM


DEVICE TYPE	APPLICATION	MODE
FLC21-135A	BATTERY OPERATION	Ignition

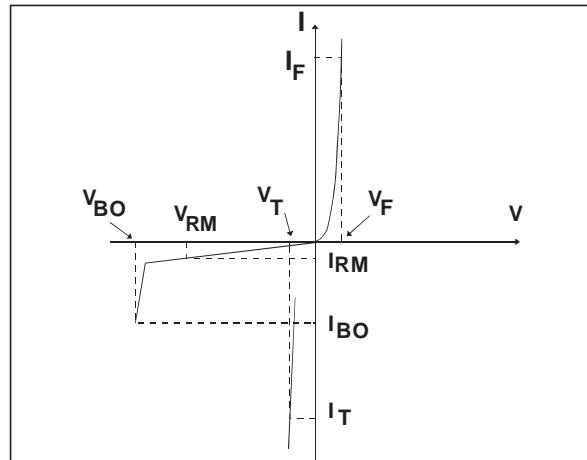
FLC21-135A

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit
I_{TRM}	Repetitive surge peak on state current for thyristor $-30^{\circ}\text{C} \leq \text{Tamb} \leq 120^{\circ}\text{C}$	90	A
I_{FRM}	Repetitive surge peak on state current for diode $-30^{\circ}\text{C} \leq \text{Tamb} \leq 120^{\circ}\text{C}$		
di/dt	Critical rate of rise on state current $-30^{\circ}\text{C} \leq \text{Tamb} \leq 120^{\circ}\text{C}$	50	$\text{A}/\mu\text{s}$
T_{stg} T_j	Storage junction temperature range Maximum junction temperature	- 40 to + 150 125	$^{\circ}\text{C}$
Tamb	Operating temperature range	- 30 to + 120	$^{\circ}\text{C}$
T_L	Maximum lead temperature for soldering during 10s	260	$^{\circ}\text{C}$


Note 1 : Test current waveform

THERMAL RESISTANCE


Symbol	Parameter	Value	Unit
$R_{th(j-a)}$	Junction to ambient	150	$^{\circ}\text{C}/\text{W}$

ORDERING INFORMATION

ELECTRICAL CHARACTERISTICS

Symbol	Parameters
V_{RM}	Stand-off voltage
V_{BO}	Breakover voltage
V_T	On-state voltage
V_F	Diode forward voltage drop
I_{BO}	Breakover current
I_{RM}	Leakage current
α_T	Temperature coefficient for V_{BO}

DIODE (D) PARAMETER

Symbol	Test Conditions	Value	Unit
V_F	$I_F = 1A$ $t_p \leq 500\mu s$	1.7	V

THYRISTOR (Th) and ZENER (Z) PARAMETERS

Symbol	Test conditions	Value			Unit	
		FLC21-135A				
		Min.	Typ.	Max.		
I_{RM}	$V_{RM} = 135V$	$T_j = 25^\circ C$		1	μA	
		$T_j = 125^\circ C$		10	μA	
V_{BO}	at I_{BO}	$T_j = 25^\circ C$	140	160	V	
I_{BO}	at V_{BO}	$T_j = 25^\circ C$		500	μA	
V_T	$I_T = 2A$ $t_p \leq 500\mu s$	$T_j = 25^\circ C$		1.7	V	
α_T			0.16		$V/^\circ C$	

Fig. 1: Relative variation of breakdown current versus junction temperature.

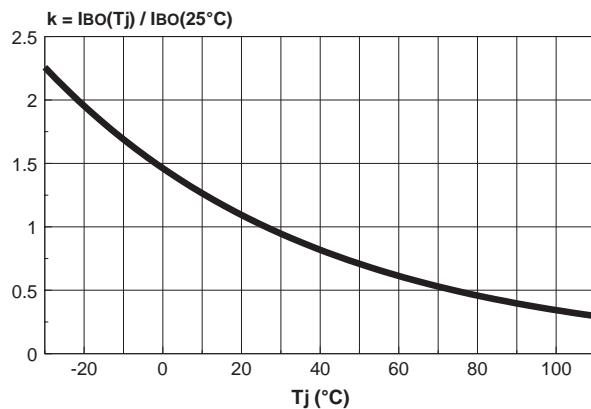


Fig. 2: BASIC AC MAINS APPLICATION.

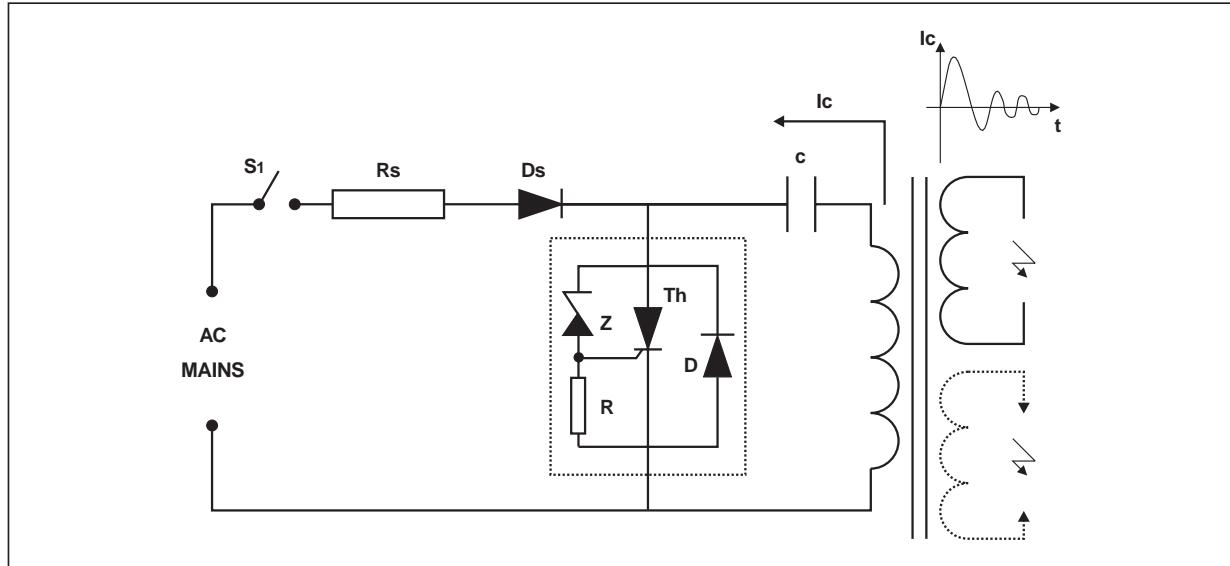
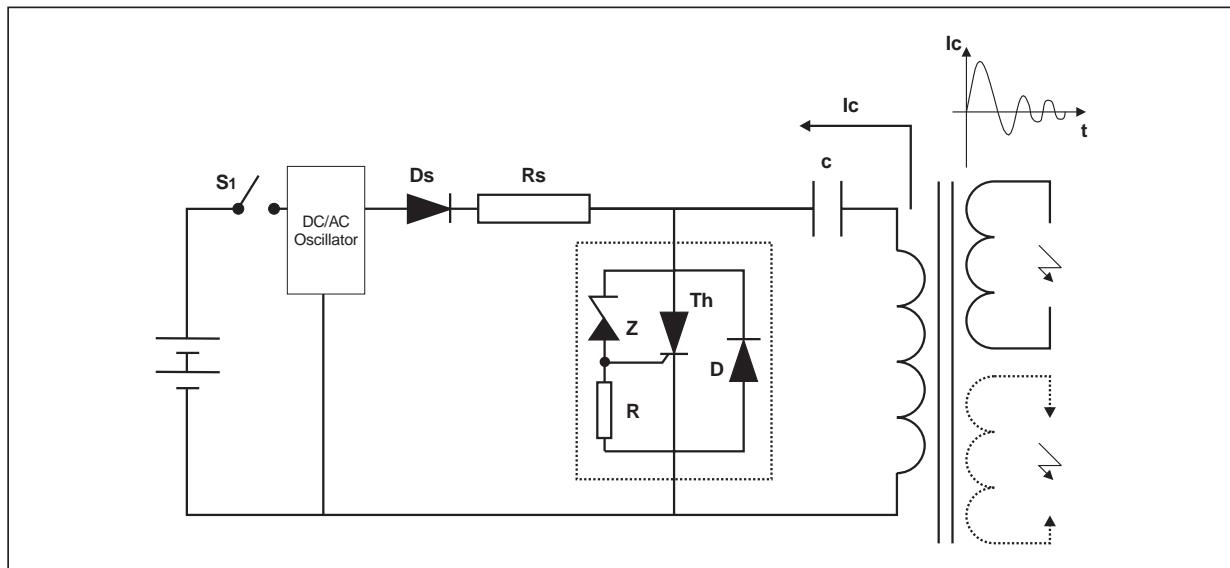



Fig. 3: BASIC DC APPLICATION.

1/ IGNITION MODE

PHASE 1

The AC voltage is rectified by the diode Ds. The ignition energy is supplied by the mains and stored into the capacitor C.

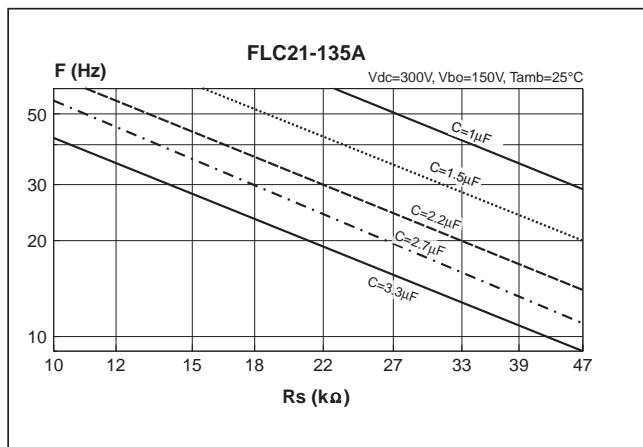
PHASE 2

At the end of the phase 1, the voltage across the capacitor C reaches the avalanche threshold of the Zener diode Z. Then, a current flows through this Zener diode into the gate of the thyristor Th which is triggered.

The thyristor turn-on generates an alternating current through the capacitor C. Its positive parts flow through the capacitor C, the primary of the HV transformer and the thyristor Th. Its negative parts of the current flow through C, D and the primary of the H.V transformer.

RS RESISTANCE CALCULATION

The Rs resistance allows, in addition with the capacitance C, the spark frequency to be adjusted and the current supplied by the mains to be limited. This resistance allows the thyristor triggering in


any requested cases. In the worst case scenario, the system must fire when the a.c. line voltage is minimum while the breakdown voltage V_{BO} and the current I_{BO} of the FLC are maximum.

The maximum Rs value is equal to:

$$Rs_{max} = \frac{(V_{AC} \min. \sqrt{2}) - [V_{BO} \max .(1 + \alpha T .(T_{amb} - 25))]}{k \cdot I_{BO}} *$$

* : see fig 1

Fig. 4: Spark frequency versus Rs and C.

The couple Rs/C can be chosen with the previous curve. Keep in mind the Rs maximum limit for which the system would not work when the AC mains is minimum.

FLC21-135A

PACKAGE MECHANICAL DATA

TO-92 (Plastic)

REF.	DIMENSIONS					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A		1.35			0.053	
B			4.70			0.185
C		2.54			0.100	
D	4.40			0.173		
E	12.70			0.500		
F			3.70			0.146
a			0.45			0.017

OTHER INFORMATION

Type	Marking	Package	Weight	Base qty	Delivery mode
FLC21-135A	FLC21-135A	TO-92	0.20 g	2500	Bulk

- Epoxy meets UL94, VO at 1/8"

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.

<http://www.st.com>