

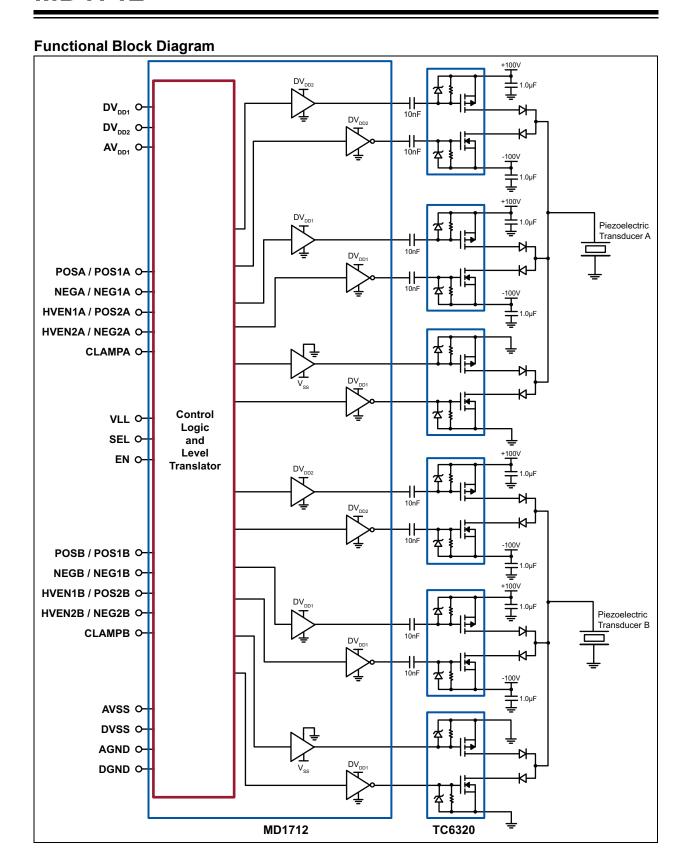
High-Speed Integrated Ultrasound Driver IC

Features

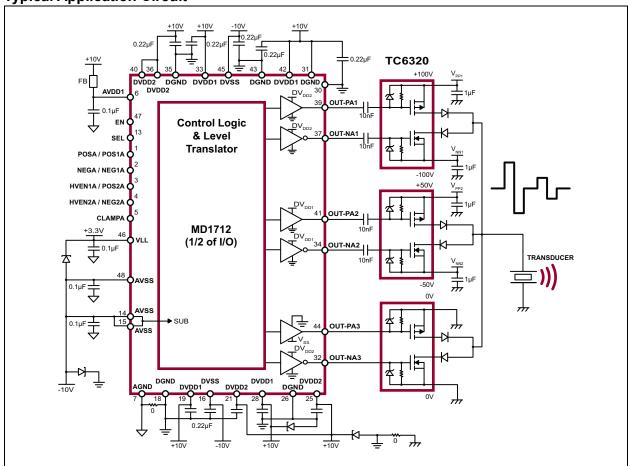
- · Drives Two Ultrasound Transducer Channels
- · Generates a Five-level Waveform
- · Drives 12 High-voltage MOSFETs
- · ±2A Source and Sink Peak Currents
- · Up to 20 MHz Output Frequency
- · 12 V/ns Slew Rate
- · ±3 ns Matched Delay Times
- Less than –40 dB Second Harmonic
- · Two Separate Gate Drive Voltages
- 1.8V to 3.3V CMOS Logic Interface

Applications


- · Medical Ultrasound Imaging
- · Piezoelectric Transducer Drivers
- Non-Destructive Testing (NDT)
- · Metal Flaw Detection
- Sonar Transmitter


General Description

The MD1712 is a 2-channel, five-level, high-voltage, and high-speed transmitter driver IC. It is designed for medical ultrasound imaging applications but can also be used for metal flaw detection, NDT, and driving piezoelectric transducers.


The MD1712 is a two-channel logic controller circuit with low-impedance MOSFET gate drivers. There are two sets of control logic inputs—one for Channel A and one for Channel B. Each channel consists of three pairs of MOSFET gate drivers. These drivers are designed to match the drive requirements of the TC6320. The MD1712 drives six TC6320s. Each pair consists of an N-channel and a P-channel MOSFET. They are designed to have the same impedance and can provide peak currents of over 2 amps.

Package Types

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Logic Supply Voltage, V _{LL}	
Positive Gate Drive Supply, AV _{DD1} , DV _{DD1} , DV _{DD2}	–0.5V to +15V
Negative Gate Drive Supply, AV _{SS} , DV _{SS}	–15V to +0.5V
Operating Junction Temperature, T ₁	0°C to +125°C
Storage Temperature, T _S	—65°C to +150°C
Power Dissipation:	
48-lead LQFP	1.2W
48-lead VQFN	1.2W

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

OPERATING SUPPLY VOLTAGES AND CURRENTS

Electrical Specifications: Over operating conditions unless otherwise specified, $AV_{DD1} = DV_{DD1} = DV_{DD2} = 10V$, $AV_{SS} = DV_{SS} = -10V$, $V_{LL} = 3.3V$, $T_A = 25$ °C.

35 35 37 EL 33 / A 33										
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions				
Logic Supply	V_{LL}	1.8	3.3	5	V					
Positive Drive Bias Supply	AV _{DD1}	8	10	12.6	V					
Positive Gate Drive Supply	DV _{DD1}	4.75	_	12.6	V					
Positive Gate Drive Supply	DV _{DD2}	4.75	_	12.6	V					
Negative Gate Drive and Bias Supply	AV _{SS} , DV _{SS}	-12	-10	-8	V					
Logic Supply Current	I _{VLL}	_	2	_	mA					
Positive Bias Current	I _{AVDD1}	_	5	_	mA	All channels on at E MLIZ				
Negative Drive and Bias Supply Currents	I _{AVSS} , I _{DVSS}	_	20	_	mA	All channels on at 5 MHz, no load				
Positive Drive Current 1	I _{DVDD1}	_	55	_	mA					
Positive Drive Current 2	I _{DVDD2}	_	13	_	mA	All channels on at 5 MHz, DV _{DD2} = 5, no load				
V _{AVDD1} Quiescent Current	I _{AVDD1Q}	_	2	_	mA					
V _{AVSS} Quiescent Current	I _{AVSSQ}	_	0.75	_	mA					
V _{DVDD1} Quiescent Current	I _{DVDD1Q}	_	_	10	μΑ	EN = low, all inputs low or high				
V _{DVDD2} Quiescent Current	I _{DVDD2Q}			10	μΑ	1"9"				
Logic Supply Current	I _{VLLQ}	_	1	_	mA					

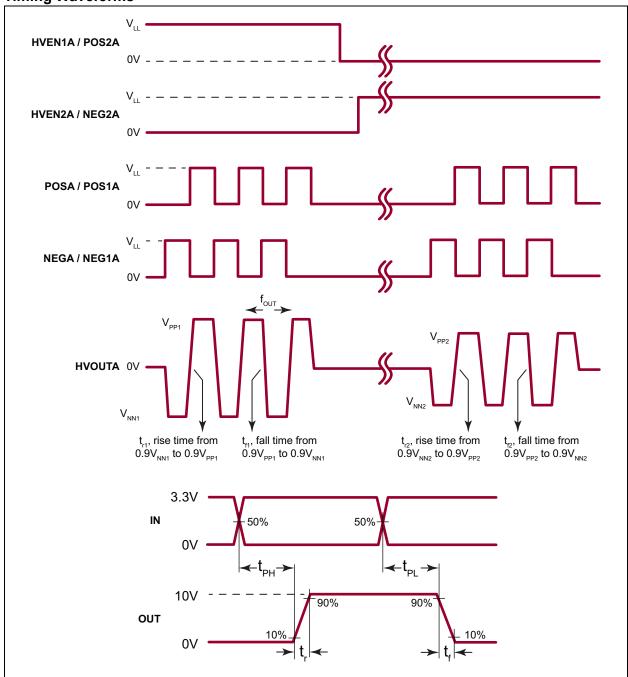
DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over operating conditions unless otherwise specified, $AV_{DD1} = DV_{DD1} = DV_{DD2} = 10V$, $AV_{SS} = DV_{SS} = -10V$, $V_{LL} = 3.3V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$.

Power day												
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions						
P-CHANNEL AND N-CHANNE	P-CHANNEL AND N-CHANNEL GATE DRIVER OUTPUTS											
Output Sink Posistance	P-Channel	D.	_		6	Ω	I _{SINK} = 100 mA					
Output Sink Resistance	N-Channel	R _{SINK}	_	_	10	Ω	I _{SINK} = 100 mA					
Output Source Resistance	P-Channel	D	_		6	Ω	I _{SOURCE} = 100 mA					
Output Source Nesistance	N-Channel	R _{SOURCE}	_	_	10	Ω	I _{SOURCE} = 100 mA					
Peak Output Sink Current	P-Channel		_	2	_	Α						
reak Output Sillk Cullent	N-Channel	I _{SINK}	_	1.5		Α						
Peak Output Source Current	P-Channel	1	_	2		Α						
Feak Output Source Current	N-Channel	ISOURCE	_	1.5		Α						
LOGIC INPUTS												
Input Logic High Voltage		V _{IH}	0.8 V _{LL}		V_{LL}	V						
Input Logic Low Voltage	V_{IL}	0		0.2 V _{LL}	V							
Input Logic High Current	I _{IH}	_		1	μΑ							
Input Logic Low Current	I _{IL}	-1	_	_	μΑ							

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over operating conditions unless otherwise specified, $AV_{DD1} = DV_{DD1} = DV_{DD2} = 10V$, $AV_{SS} = DV_{SS} = -10V$, $V_{LL} = 3.3V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$.


AV _{SS} - DV _{SS} 10V, V _{LL} - 3.3V, 1 _A - 0 C to 70 C.										
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions				
Output Frequency Range	f _{OUT}	_	_	20	MHz					
Propagation Delay when Output is from Low to High	t _{PH}	ı	19	ı	ns	No load (See Timing Waveforms .)				
Propagation Delay when Output is from High to Low	t _{PL}		19		ns	No load (See Timing Waveforms .)				
Output Rise Time	t _r	_	8	_	ns	1000 pF load (See Timing Waveforms .)				
Output Fall Time	t _f	_	8	_	ns	1000 pF load (See Timing Waveforms .)				
Delay Time Matching	Δt _{DM}			±3	ns	No load, from device to device				
Output Jitter	Δt _{DLAY}	_	30	_	ps	Standard deviation of t _D samples (1 kHz)				
Output Slew Rate	SR		12		V/ns	Measured at TC6320				
Second Harmonic Distortion	HD2		-40		dB	output with 100Ω load				

MD1712

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions				
TEMPERATURE RANGE										
Operating Junction Temperature	TJ	0	_	+125	°C					
Storage Temperature	T _S	-65	_	+150	°C					
PACKAGE THERMAL RESISTANCE	=									
48-lead LQFP	θ_{JA}	_	52	_	°C/W					
48-Lead VQFN	θ_{JA}	_	23	_	°C/W					

Timing Waveforms

2.0 PIN DESCRIPTION

The details on the pins of MD1712 are listed in Table 2-1. See **Package Types** for the location of pins.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	POSA/POS1A	Logic input control for Channel A. When SEL = L, the pin is POSA. When SEL = H, the pin is POS1A.
2	NEGA/NEG1A	Logic input control for Channel A. When SEL = L, the pin is NEGA. When SEL = H, the pin is NEG1A.
3	HVEN1A/POS2A	Logic input control for Channel A. When SEL = L, the pin is HVEN1A. When SEL = H, the pin is POS2A.
4	HVEN2A/NEG2A	Logic input control for Channel A. When SEL = L, the pin is HVEN2A. When SEL = H, the pin is NEG2A.
5	CLAMPA	Used with SEL = H. Logic input control for OUT–PA3 and OUT–NA3. Connect to ground when SEL = L.
6	AVDD1	Supplies analog circuitry portion of the gate driver. Should be at the same potential as DVDD1.
7	AGND	Analog Ground
8	CLAMPB	Used with SEL = H. Logic input control for OUT–PB3 and OUT–NB3. Connect to ground when SEL = L.
9	HVEN2B/NEG2B	Logic input control for Channel B. When SEL = L, the pin is HVEN2B. When SEL = H, the pin is NEG2B.
10	HVEN1B/POS2B	Logic input control for Channel B. When SEL = L, the pin is HVEN1B. When SEL = H, the pin is POS2B.
11	NEGB/NEG1B	Logic input control for Channel B. When SEL = L, the pin is NEGB. When SEL = H, the pin is NEG1B.
12	POSB/POS1B	Logic input control for Channel B. When SEL = L, the pin is POSB. When SEL = H, the pin is POS1B.
13	SEL	Logic input select. See Table 3-2 for SEL = L and Table 3-3 for SEL = H.
14		Negative driver supply for OUT-PA3, OUT-PB3, and bias circuits. They are also
15	AVSS	connected to the IC substrate. They are required to connect to the most negative potential of voltage supplies.
16	DVSS	Gate drive supply voltage for OUT–PA3 and OUT–PB3. Supplies digital circuitry portion and the main output stage. Should be at the same potential as AVSS.
17	OUT-PB3	Output P-channel gate driver for Channel B
18	DGND	Digital Ground
19	DVDD1	Gate drive supply voltage. Supplies digital circuitry portion of the gate driver and the main output stage for OUT–PA2, OUT–NA2, OUT–NA3, OUT–PB2, OUT–NB2, and OUT–NB3. Should be at the same potential as AVDD1.
20	OUT-PB2	Output P-channel gate driver for Channel B
21	DVDD2	Gate drive supply voltage. Supplies digital circuitry portion of the gate driver and the main output stage for OUT–PA1, OUT–NA1, OUT–PB1, and OUT–NB1. Can be at a different potential than DVDD1.
22	OUT-PB1	Output P-channel gate driver for Channel B
23	NC	No connection
24	OUT-NB1	Output N-channel gate driver for Channel B

TABLE 2-1: PIN FUNCTION TABLE

TABLE 2-1: Pin Number	PIN FUNCTION Pin Name	Description
Pili Nulliber	PIII Name	-
25	DVDD2	Gate drive supply voltage. Supplies digital circuitry portion of the gate driver and the main output stage for OUT–PA1, OUT–NA1, OUT–PB1, and OUT–NB1. Can be at a different potential than DVDD1.
26	DGND	Digital Ground
27	OUT-NB2	Output N-channel gate driver for Channel B
28	DVDD1	Gate drive supply voltage. Supplies digital circuitry portion of the gate driver and the main output stage for OUT–PA2, OUT–NA2, OUT–NA3, OUT–PB2, OUT–NB2, and OUT–NB3. Should be at the same potential as AVDD1.
29	OUT-NB3	Output N-channel gate driver for Channel B
30	DGND	Digital Ground
31	DVDD1	Gate drive supply voltage. Supplies digital circuitry portion of the gate driver and the main output stage for OUT–PA2, OUT–NA2, OUT–NA3, OUT–PB2, OUT–NB2, and OUT–NB3. Should be at the same potential as AVDD1.
32	OUT-NA3	Output N-channel gate drivers for Channel A
33	DVDD1	Gate drive supply voltage. Supplies digital circuitry portion of the gate driver and the main output stage for OUT–PA2, OUT–NA2, OUT–NA3, OUT–PB2, OUT–NB2, and OUT–NB3. Should be at the same potential as AVDD1.
34	OUT-NA2	Output N-Channel gate drivers for Channel A
35	DGND	Digital Ground
36	DVDD2	Gate drive supply voltage. Supplies digital circuitry portion of the gate driver and the main output stage for OUT–PA1, OUT–NA1, OUT–PB1, and OUT–NB1. Can be at a different potential than DVDD1.
37	OUT-NA1	Output N-channel gate drivers for Channel A
38	NC	No connection
39	OUT-PA1	Output P-channel gate drivers for Channel A
40	DVDD2	Gate drive supply voltage. Supplies digital circuitry portion of the gate driver and the main output stage for OUT–PA1, OUT–NA1, OUT–PB1, and OUT–NB1. Can be at a different potential than DVDD1.
41	OUT-PA2	Output P-channel gate drivers for Channel A
42	DVDD1	Gate drive supply voltage. Supplies digital circuitry portion of the gate driver and the main output stage for OUT–PA2, OUT–NA3, OUT–PB2, OUT–NB2, and OUT–NB3. Should be at the same potential as AVDD1.
43	DGND	Digital Ground
44	OUT-PA3	Output P-channel gate drivers for Channel A
45	DVSS	Gate drive supply voltage for OUT–PA3 and OUT–PB3. Supplies digital circuitry portion and the main output stage. Should be at the same potential as AVSS.
46	VLL	Logic supply voltage
47	EN	Logic input enable control. When EN = L, all P-channel output drivers are high and all N-channel output drivers are low.
48	AVSS	Negative driver supply for OUT–PA3, OUT–PB3 and bias circuits. They are also connected to the IC substrate. They are required to connect to the most negative potential of voltage supplies.
Center Pad	AVSS	For the QFN package, the center pad is at AVSS potential. It should be externally connected to AVSS.

3.0 FUNCTIONAL DESCRIPTION

TABLE 3-1: POWER-UP SEQUENCE

Step	Connection	Description					
1	AV _{SS} , DV _{SS}	Negative gate drive supply and substrate bias					
2	V_{LL} , AV_{DD1} , DV_{DD1} , and DV_{DD2}	Logic supply, positive gate drive supply and bias					

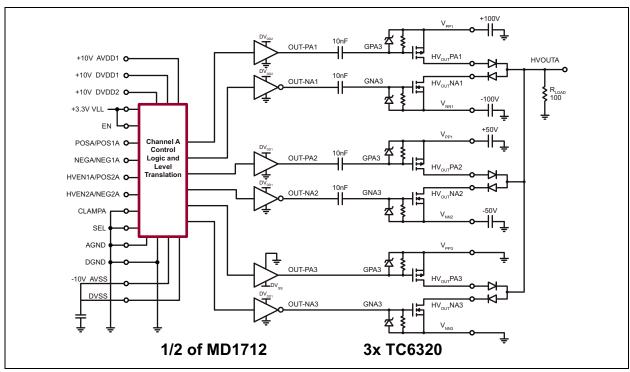
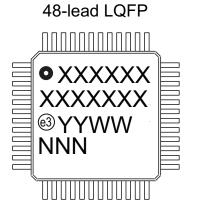
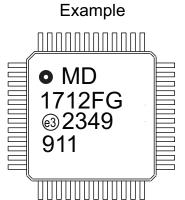


FIGURE 3-1: Test Circuit for Channel A.

TABLE 3-2: TRUTH FUNCTION TABLE FOR CHANNELS A AND B (FOR SEL = L)


	Logic Control Inputs						V _{PP1} to V _{NN1} Output		V _{PP2} to V _{NN2} Output		V _{PP3} to V _{NN3} Output			
SEL	EN	HVEN1/ POS2	HVEN2/ NEG2	Clamp	POS/ POS1	NEG/ NEG1	HV _{OUT} P1	HV _{OUT} N1	HV _{OUT} P2	HV _{OUT} N2	HV _{OUT} P3	HV _{OUT} N3		
0	1	0	0	0	0	0					ON	ON		
0	1	0	0	0	0	1		FF	OI	==	ON	ON		
0	1	0	0	0	1	0]	rr	O O		ON	ON		
0	1	0	0	0	1	1					OFF	OFF		
0	1	0	0	1	0	0						•		
0	1	0	0	1	0	1		FF	OI	==	0	=F		
0	1	0	0	1	1	0]	rr	O O	- [-				
0	1	0	0	1	1	1								
0	1	0	1	0	0	0			OFF	OFF	ON	ON		
0	1	0	1	0	0	1			OFF	ON	OFF	OFF		
0	1	0	1	0	1	0] 0	FF	ON	OFF	OFF	OFF		
0	1	0	1	0	1	1	1		OFF	OFF	OFF	OFF		
0	1	0	1	1	0	0				•				
0	1	0	1	1	0	1		OFF		OFF		OFF		
0	1	0	1	1	1	0]	rr	OFF					
0	1	0	1	1	1	1								
0	1	1	0	0	0	0	OFF	OFF			ON	ON		
0	1	1	0	0	0	1	OFF	ON			OFF	OFF		
0	1	1	0	0	1	0	ON	OFF			OFF	OFF		
0	1	1	0	0	1	1	OFF	OFF			OFF	OFF		
0	1	1	0	1	0	0								
0	1	1	0	1	0	1		FF	01	FF	0	FF		
0	1	1	0	1	1	0		ır		I-		I-		
0	1	1	0	1	1	1								
0	1	1	1	0	0	0								
0	1	1	1	0	0	1		FF		FF		FF		
0	1	1	1	0	1	0		ır		I-		I-		
0	1	1	1	0	1	1								
0	1	1	1	1	0	0								
0	1	1	1	1	0	1		FF	OI	=E	0	FF		
0	1	1	1	1	1	0		. 1		•		•		
0	1	1	1	1	1	1								
0	0	Х	Х	Х	Х	Х	0	FF	OI	FF	Ol	FF		


TABLE 3-3: TRUTH FUNCTION TABLE FOR CHANNELS A AND B (FOR SEL = H)

	Logic Control Inputs						o V _{NN1} tput	V _{PP2} to V _{NN2} Output		V _{PP3} to V _{NN3} Output		
SEL	EN	HVEN1/ POS2	HVEN2/ NEG2	Clamp	POS/ POS1	NEG/ NEG1	HV _{OUT} P1	HV _{OUT} N1	HV _{OUT} P2	HV _{OUT} N2	HV _{OUT} P3 HV _{OUT} N3	
1	1	0	0	0	0	0	OFF	OFF			OFF	
1	1	0	0	0	0	1	OFF	ON	OFF	OFF		
1	1	0	0	0	1	0	ON	OFF	OFF	OFF		
1	1	0	0	0	1	1	ON	ON				
1	1	0	0	1	0	0	OFF	OFF				
1	1	0	0	1	0	1	OFF	ON	OFF	ON	OFF	
1	1	0	0	1	1	0	ON	OFF	OFF	ON	OFF	
1	1	0	0	1	1	1	ON	ON				
1	1	0	1	0	0	0	OFF	OFF				
1	1	0	1	0	0	1	OFF	ON	ON	OFF	OFF	
1	1	0	1	0	1	0	ON	OFF	ON	OFF	OFF	
1	1	0	1	0	1	1	ON	ON				
1	1	0	1	1	0	0	OFF	OFF				
1	1	0	1	1	0	1	OFF	ON	ON	ON ON	OFF	
1	1	0	1	1	1	0	ON	OFF	ON			
1	1	0	1	1	1	1	ON	ON				
1	1	1	0	0	0	0	OFF	OFF			DFF ON	
1	1	1	0	0	0	1	OFF	ON	OFF	OFF		
1	1	1	0	0	1	0	ON	OFF	OFF OFF	OFF		
1	1	1	0	0	1	1	ON	ON				
1	1	1	0	1	0	0	OFF	OFF				
1	1	1	0	1	0	1	OFF	ON	OFF	ON	ON	
1	1	1	0	1	1	0	ON	OFF	OFF	ON		
1	1	1	0	1	1	1	ON	ON				
1	1	1	1	0	0	0	OFF	OFF				
1	1	1	1	0	0	1	OFF	ON	ON	OFF	ON	
1	1	1	1	0	1	0	ON	OFF	ON	OFF	ON	
1	1	1	1	0	1	1	ON	ON				
1	1	1	1	1	0	0	OFF	OFF				
1	1	1	1	1	0	1	OFF	ON	ONI	ONI	ON	
1	1	1	1	1	1	0	ON	OFF	ON	ON	ON	
1	1	1	1	1	1	1	ON	ON				
1	0	Х	Х	Х	Х	Х	OFF	OFF	OFF	OFF	OFF	

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

48-lead VQFN

Example

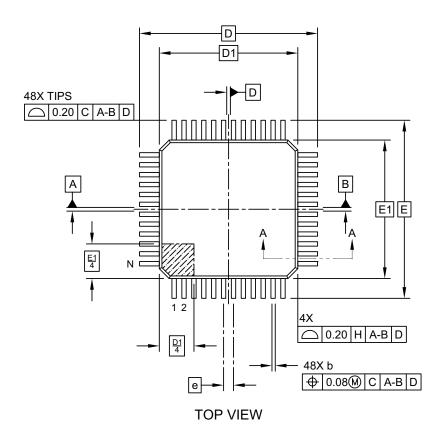
MD1712K6 @2316586

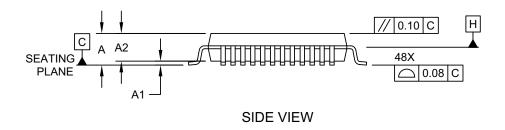
Legend: XX...X Product Code or Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

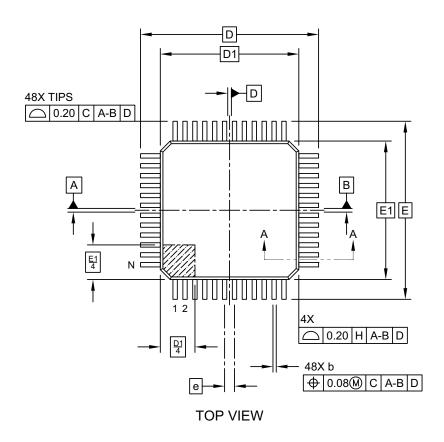
(e3) Pb-free JEDEC[®] designator for Matte Tin (Sn)

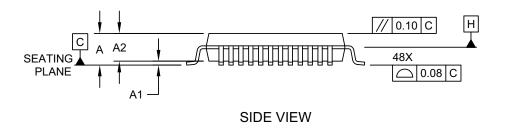

This package is Pb-free. The Pb-free JEDEC designator (e3)


can be found on the outer packaging for this package.

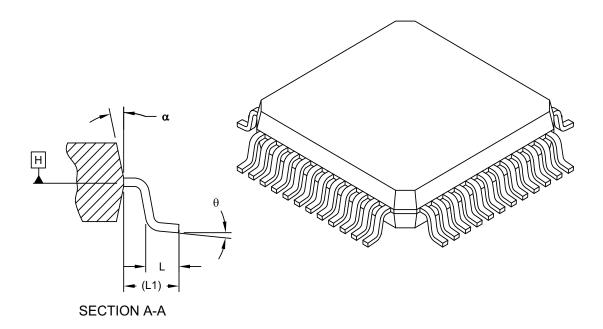
Note:

In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-278 Rev A Sheet 1 of 2


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-278 Rev A Sheet 1 of 2

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	N		48		
Lead Pitch	е		0.50 BSC		
Overall Height	Α	1.40	1.50	1.60	
Standoff	A1	0.05	0.10	0.15	
Molded Package Thickness	A2	1.35	1.40	1.45	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	θ	0°	3.5°	7°	
Overall Width	Е		9.00 BSC		
Overall Length	D		9.00 BSC		
Molded Package Width	E1		7.00 BSC		
Molded Package Length	D1		7.00 BSC		
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M $\,$

 ${\tt BSC: Basic\ Dimension.\ Theoretically\ exact\ value\ shown\ without\ tolerances.}$

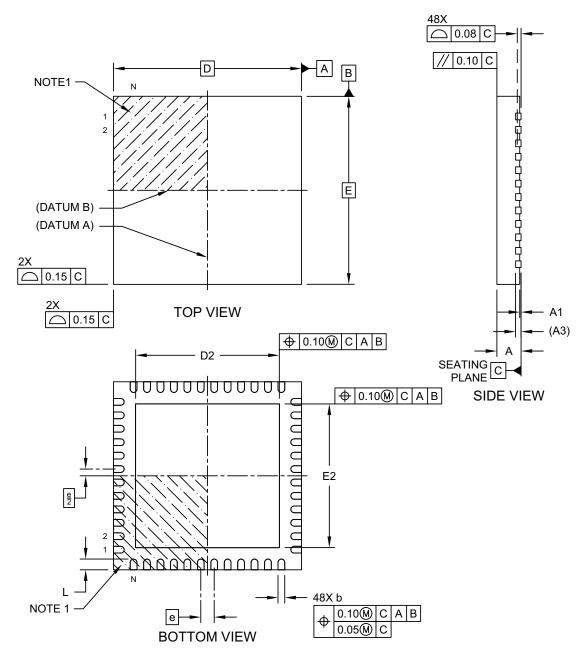
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-278 Rev A Sheet 2 of 2

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

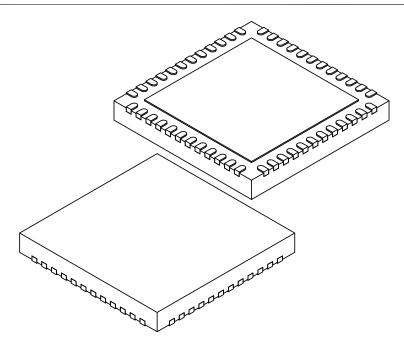
	N	IILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch		0.50 BSC		
Contact Pad Spacing	C1		8.40	
Contact Pad Spacing	C2		8.40	
Contact Pad Width (X48)	X1			0.30
Contact Pad Length (X48)	Y1			1.50
Contact Pad to Contact Pad (X44)	G	0.20		


Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2278 Rev A

48-Lead Very Thin Plastic Quad Flat, No Lead Package (Y6X) - 7x7x1.0 mm Body [VQFN] With 5.45 mm Exposed Pad; Supertex Legacy Package Code K6


bte: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-266-Y6X Rev A Sheet 1 of 2

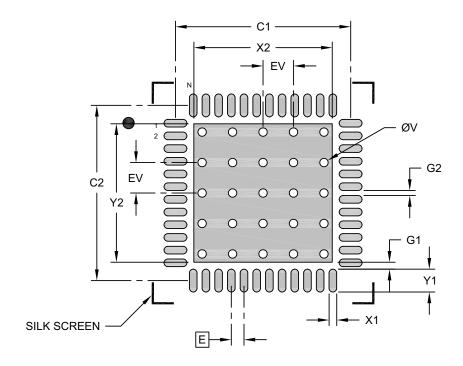
48-Lead Very Thin Plastic Quad Flat, No Lead Package (Y6X) - 7x7x1.0 mm Body [VQFN] With 5.45 mm Exposed Pad; Supertex Legacy Package Code K6

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX			
Number of Terminals	N	48					
Pitch	е	0.50 BSC					
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3	0.20 REF					
Overall Length	D	7.00.BSC					
Exposed Pad Length	D2	5.25	5.35	5.45			
Overall Width	E	7.00.BSC					
Exposed Pad Width	E2	5.25	5.35	5.45			
Terminal Width	b	0.18	0.25	0.30			
Terminal Length	Ĺ	0.30	0.40	0.50			

Notes

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-266-Y6X Rev A Sheet 2 of 2

48-Lead Very Thin Plastic Quad Flat, No Lead Package (Y6X) - 7x7x1.0 mm Body [VQFN] With 5.45 mm Exposed Pad; Supertex Legacy Package Code K6

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.50 BSC		
Center Pad Width	X2			5.45
Center Pad Length	Y2			5.45
Contact Pad Spacing	C1		6.90	
Contact Pad Spacing	C2		6.90	
Contact Pad Width (Xnn)	X1			0.30
Contact Pad Length (Xnn)	Y1			0.90
Contact Pad to Center Pad (Xnn)	G1	0.23		
Contact Pad to Contact Pad (Xnn)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2266-Y6X Rev A

APPENDIX A: REVISION HISTORY

Revision A (June 2023)

- Converted Supertex Doc# DSFP-MD1712 to Microchip DS20005917A
- · Changed package marking formats
- Removed the 48-lead LQFP FG M931 media type
- Removed the 48-lead VQFN K6 M933 media type
- Updated the quantity of the 48-lead VQFN K6 package from 250/Tray to 260/Tray to align packaging specifications with the actual BQM
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO	<u>. XX</u>		- <u>X</u> - <u>X</u>	Examples:	
Device	Packa Optio		Environmental Media Type	a) MD1712FG-G:	High-Speed Integrated Ultrasound Driver IC, 48-lead LQFP, 250/Tray
Device:	MD1712	=	High-Speed Integrated Ultrasound Driver IC	b) MD1712K6-G:	High-Speed Integrated Ultrasound Driver IC,
Packages:	FG	=	48-lead LQFP		48-lead VQFN, 260/Tray
	K6	=	48-lead VQFN		
Environmental:	G	=	Lead (Pb)-free/RoHS-compliant Package		
Media Types:	(blank)	=	250/Tray for an FG Package		
		=	260/Tray for a K6 Package		

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2528-5

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200 China - Suzhou

Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79 **Germany - Garching**

Germany - Haan Tel: 49-2129-3766400

Tel: 49-8931-9700

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820