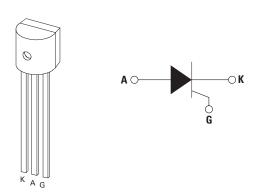

S8X5ECSx EV Series


0.5 A Sensitive SCRs

Pinout Diagram

TO-92

A: Anode; G: Gate; K: Cathode

Description

The S8X5ECSx series offers a high static dv/dt with a low turn off (t_q) time. It is specifically designed for Ground Fault Circuit Interrupter (GFCI), Arc-Fault Circuit Interrupter (AFCI), Residual Current Device (RCD), and Residual Current Circuit Breaker with Overload Protection (RCBO) applications. All SCR junctions are glass-passivated to ensure long term reliability and parametric stability.

Features

- RoHS compliant and halogen-free
- Through-hole package
- Blocking voltage (V_{DRM} / V_{RRM}) capability up to 800 V
- Surge current capability< 20 A
- Sensitive gate for direct microprocessor interface

- High dv/dt noise immunity
- Improved turn-off time (t_a)
- Non-repetitive direct surge peak off-state voltage (V_{DSM}) up to 1250 V
- Non-repetitive reverse surge peak off-state voltage (V_{RSM}) up to 900 V

Applications

- Ground Fault Circuit Interuppter (GFCI) applications
- Arc-Fault Circuit Interrupter (AFCI) applications
- Residual Current Device (RCD) applications
- Residual Current Circuit Breaker with Overload Protection (RCBO) applications

Product Summary

Characteristic	Value	Unit
I _{T(RMS)}	0.5	А
V_{DRM}/V_{RRM}	800	V
V_{DSM} (t _p = 50 µs)	1250	V
V_{RSM} (t _p = 50 µs)	900	V
I _{GT}	1 to 100	μΑ

Maximum Ratings

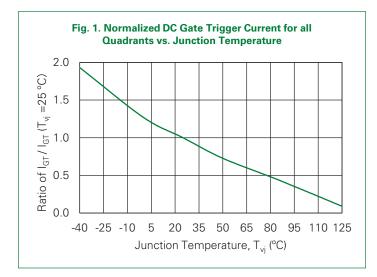
Symbol	Characteristics	Conditions			Value	Units	
I _{T(RMS)}	RMS On-state Current	T _C =85 °C			0.5	А	
I _{T(AV)}	Average On-state Current		$T_C =$	85 °C		0.3	А
1	Half-sine f = 50 Hz		T ::::::::::::::::::::::::::::::::::::	10	^		
I _{TSM}	Non-repetitive Surge On-state Current	wave	f = 60 H	Z	T_{v_j} initial = 25 °C	12	Α
l ² t	I²t Value	$t_p = 10 \text{ ms}$		f = 50 Hz		0.5	A ² s
di/dt _(cr)	Critical Rate of Rise of On-state Current	I _G = 10 mA		T _{vj} = 125 °C		80	A/µs
I _{GM}	Peak Gate Current	t _p = 20 μs		0.5	А		
$P_{G(AV)}$	Average Gate Power Dissipation	T _{vj} = 125 °C			0.2	W	
T _{stg}	Storage Temperature Range	-			-40 to 150	°C	
T_{vj}	Virtual Junction Temperature Range			_		-40 to 125	°C

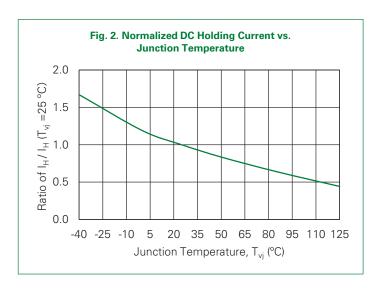
Electrical Characteristics ($T_{vj} = 25$ °C, unless otherwise specified)

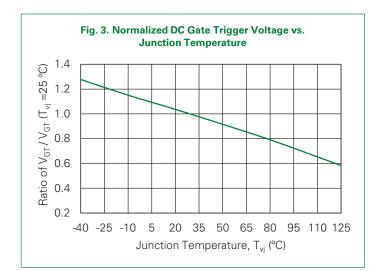
Symbol	Characteristics	Conditions	Conditions S8X5ECS1		S1	S8X5ECS2		S2	S8X5ECS		Units	
Syllibol	Citalacteristics	Conditions		Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Oilits
I_{GT}	Gate Trigger Current	$V_D = 6 V$, $R_L = 100 \Omega$	1	_	30	20	_	50	20	_	100	μΑ
V_{GT}	Gate Trigger Voltage	$V_D = 6 \text{ V}, R_L = 100 \Omega$	_	_	0.8	_	_	0.8	_	_	0.8	V
V_{RGM}	Peak Reverse Gate Voltage	$I_{RG} = 10 \mu A$	8	_	_	8	_	_	8	_	_	V
$V_{\sf GD}$	Gate Non-trigger Voltage	$V_D = \frac{1}{2} V_{DRM}, R_{GK} = 1 \text{ k}\Omega,$ $T_{vj} = 125 \text{ °C}$	0.2	_	_	0.2	_	_	0.2	_	_	V
I _H	Holding Current	$R_{GK} = 1 k\Omega$, Initial current = 20 mA	_	_	3	_	_	3	-	_	3	mA
dv/dt _(cr)	Critical Rate-of-rise of Off-stage Voltage	$T_{vj} = 125$ °C, $V_D = {}^2\!/_3 V_{DRM}$, Exp. Waveform, $R_{GK} = 1$ k Ω	60	_	_	100	_	_	200	_	_	V/µs
t _q	Turn-off Time	I _T = 0.5 A	_	40	_	_	40	_	-	40	-	μs
t _{gt}	Turn-on Time	$I_G = 10 \text{ mA}, t_p = 15 \mu\text{s},$ $I_T = 1.6 A_{pk}$	_	2.3	_	_	2.3	-	_	2.3	-	μs

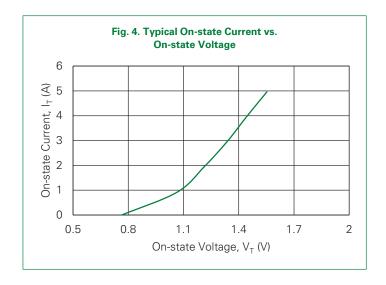
Static Characteristics ($T_{vj} = 25$ °C, unless otherwise specified)

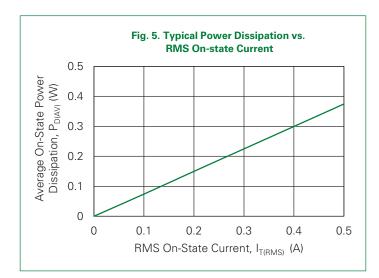
Symbol	Characteristics	Conditions	Maximum Value	Units	
V_{TM}	Peak Sinusoidal On-state Voltage	$0.5 \text{ A device, I}_{TM} = 4 \text{ A, t}_{p} = 380 \mu\text{s}$	1.8	V	
V_{T0}	Threshold Voltage	-	1.03	V	
r _T	Slope Resistance	-	140	mΩ	
1 //	Repetitive Peak Off-state Current	T _{vj} = 25 °C	3		
I _{DRM} /I _{RRM}		T _{vj} = 125 °C	500	μΑ	

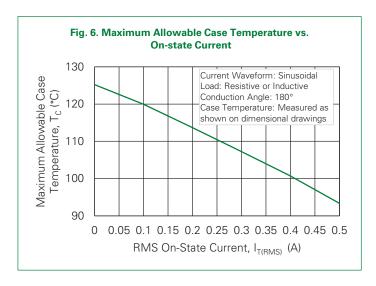

Thermal Characteristics

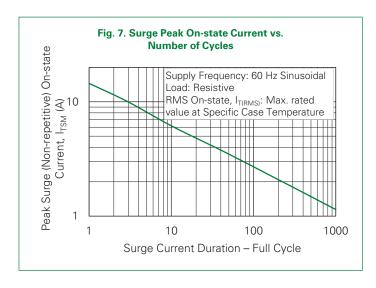

Symbol	Characteristics	Conditions	Value	Units
R _{th(j-c)}	Thermal Resistance, Junction to Case (AC)	$I_T = 0.8 A_{(RMS)}^{1}$	35	K/W
R _{th(j-a)}	Thermal Resistance, Junction to Ambient	$I_T = 0.8 A_{(RMS)}^{1}$	150	K/W


Note 1: 60 Hz AC resistive load condition, 100% conduction

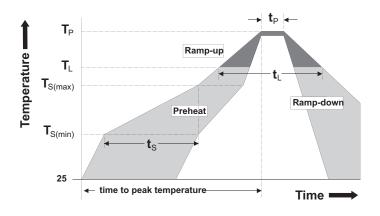



Characteristic Curves





Notes:


- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Soldering Parameters

Reflow ConditionPb – Free asTemperature Min $(T_{s(min)})$ 150 °CPre-heatTemperature Max $(T_{s(max)})$ 200 °C	ssembly
Pre-heat Temperature Max (T _{s(max)}) 200 °C	
Time (min to may) (t)	
Time (min to max) (t_s) 60 – 120 sec	cs
Average ramp up rate (Liquidus Temp)(T _L) to peak 3 °C/second	l max
$T_{S(max)}$ to T_L - Ramp-up Rate 3 °C/second	l max
Temperature (T _L) (Liquidus) 217 °C	
Time (t _L) 60 – 150 sec	conds
Peak Temperature (T _P) 260+0/-5 °C	
Time within 5°C of actual peak Temperature (t _p) 30 seconds	max.
Ramp-down Rate 6 °C/second	l max.
Time 25°C to peak Temperature (T _P) 8 minutes m	nax.
Do Not Exceed 260 °C	

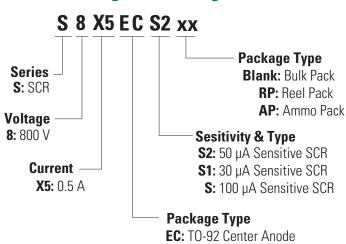
Environmental Specifications

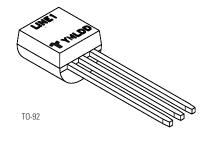
Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125 °C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051,1000 cycles; –55 °C to +150 °C; 15-min dwell-time
Temperature/Humidity	EIA / JEDEC, JESD22-A101, 1008 hours; 320 V - DC: 85 °C; 85 % relative humidity
UHAST	JESD22-A118, 96 hours, 130 °C, 85 %RH
High-temperature Storage	MIL-STD-750, M-1031, 1008 hours; 150 °C
Low-temperature Storage	1008 hours; –40 °C
Resistance to Solder Heat	MIL-STD-750: Method 2031
Solderability	ANSI/J-STD-002: category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Physical Specifications

Characteristic	Value
Terminal Finish	100% Matte Tin-plated
Body Material	UL Recognized compound meeting flammability rating V-0
Lead Material	Copper Alloy

Design Considerations

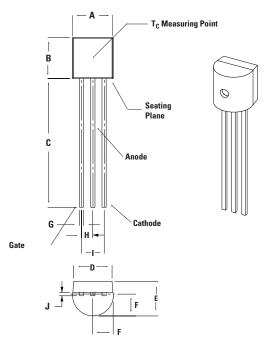

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.



Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
S8X5ECS1	S8X5ECS1	0.217 g	Bulk	2500
S8X5ECS1RP	S8X5ECS1	0.217 g	Tape & Reel	2000
S8X5ECS1AP	S8X5ECS1	0.217 g	Ammo Pack	2000
S8X5ECS2	S8X5ECS2	0.217 g	Bulk	2500
S8X5ECS2RP	S8X5ECS2	0.217 g	Tape & Reel	2000
S8X5ECS2AP	S8X5ECS2	0.217 g	Ammo Pack	2000
S8X5ECS	S8X5ECS	0.217 g	Bulk	2500
S8X5ECSRP	S8X5ECS	0.217 g	Tape & Reel	2000
S8X5ECSAP	S8X5ECS	0.217 g	Ammo Pack	2000

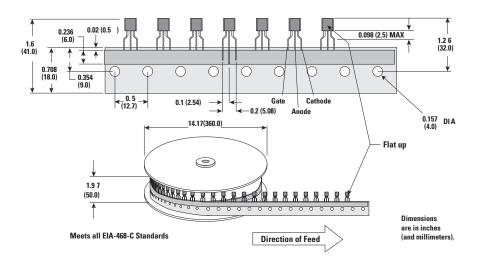
Part Numbering and Marking



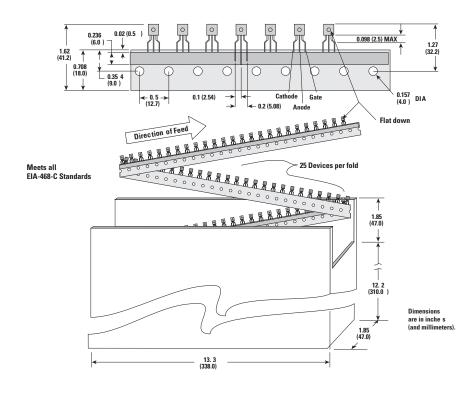
Line1 = Littelfuse Part Number Y = Last Digit of Calendar Year M = Letter Month Code (A-L for Jan-Dec) L = Location Code

 $\mathsf{DD} = \mathsf{Calendar} \; \mathsf{Date}$

Package Dimensions TO-92



Cumbal	Millim	neters	Inches		
Symbol	Min.	Max.	Min.	Max	
А	4.450	5.200	0.175	0.205	
В	4.320	5.330	0.170	0.210	
С	12.70	-	0.500	_	
D	3.430	-	0.135	_	
Е	3.180	4.190	0.125	0.165	
F	2.040	2.660	0.080	0.105	
G	0.407	0.533	0.016	0.021	
Н	1.150	1.390	0.045	0.055	
1	2.420	2.660	0.095	0.105	
J	0.380	0.500	0.015	0.020	


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-C Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-C Standards

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.

Read complete Disclaimer Notice at https://www.littelfuse.com/disclaimer-electronics.

Part of:

