Low-Voltage CMOS Quad 2-Input OR Gate

With 5 V-Tolerant Inputs

The MC74LCX32 is a high performance, quad 2–input OR gate operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A $V_{\rm I}$ specification of 5.5 V allows MC74LCX32 inputs to be safely driven from 5.0 V devices.

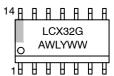
Current drive capability is 24 mA at the outputs.

Features

- Designed for 2.3 V to 3.6 V V_{CC} Operation
- 5.0 V Tolerant Inputs Interface Capability With 5.0 V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000 V

Machine Model >200 V

- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

SOIC-14 D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G

A = Assembly Location

L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

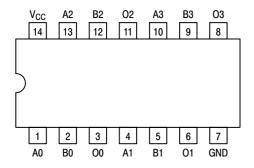


Figure 1. Pinout: 14-Lead (Top View)

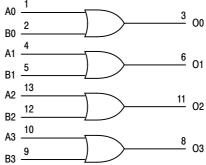


Figure 2. Logic Diagram

PIN NAMES

Pins	Function
An, Bn	Data Inputs
On	Outputs

TRUTH TABLE

Inputs		Outputs
An	Bn	On
L	L	L
L	Н	Н
Н	L	Н
Н	Н	Н

H = High Voltage Level L = Low Voltage Level

For $I_{\mbox{\footnotesize CC}}$ reasons, DO NOT FLOAT Inputs

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_{\parallel} \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_{O} \le V_{CC} + 0.5$	Output in HIGH or LOW State.(Note 1)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
Io	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. I_{O} absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Туре	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
Vo	Output Voltage (HIGH or LOW State) (3-State)	0		V _{CC}	V
Іон	$\begin{array}{l} \text{HIGH Level Output Current} \\ \text{$V_{CC} = 3.0 \text{ V} - 3.6 \text{ V}$} \\ \text{$V_{CC} = 2.7 \text{ V} - 3.0 \text{ V}$} \\ \text{$V_{CC} = 2.3 \text{ V} - 2.7 \text{ V}$} \end{array}$			-24 -12 -8	mA
I _{OL}	LOW Level Output Current $V_{CC} = 3.0 \text{ V} - 3.6 \text{ V}$ $V_{CC} = 2.7 \text{ V} - 3.0 \text{ V}$ $V_{CC} = 2.3 \text{ V} - 2.7 \text{ V}$			+24 +12 +8	mA
T _A	Operating Free-Air Temperature	-40		+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V, V_{CC} = 3.0 V	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

			T _A = -40°C	to +85°C	
Symbol	Characteristic	Condition	Min	Max	Units
V _{IH}	HIGH Level Input Voltage (Note 1.)	2.3 V ≤ V _{CC} ≤ 2.7 V	1.7		V
		2.7 V ≤ V _{CC} ≤ 3.6 V	2.0		1
V _{IL}	LOW Level Input Voltage (Note 1.)	2.3 V ≤ V _{CC} ≤ 2.7 V		0.7	V
		2.7 V ≤ V _{CC} ≤ 3.6 V		0.8	1
V _{OH}	HIGH Level Output Voltage	$2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{I}_{OH} = -100 \mu\text{A}$	V _{CC} - 0.2		V
		V _{CC} = 2.3 V; I _{OH} = -8 mA	1.8		1
		$V_{CC} = 2.7 \text{ V}; I_{OH} = -12 \text{ mA}$	2.2		1
		V _{CC} = 3.0 V; I _{OH} = -18 mA	2.4		1
		V _{CC} = 3.0 V; I _{OH} = -24 mA	2.2		1
V _{OL}	LOW Level Output Voltage	$2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; I_{OL} = 100 \mu\text{A}$		0.2	V
		V _{CC} = 2.3 V; I _{OL} = 8 mA		0.6	
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4	1
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	1
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	1
I _{OFF}	Power Off Leakage Current	V _{CC} = 0, V _{IN} = 5.5 V or V _{OUT} = 5.5 V		10	μΑ
I _{IN}	Input Leakage Current	V _{CC} = 3.6 V, V _{IN} = 5.5 V or GND		±5	μΑ
I _{CC}	Quiescent Supply Current	V _{CC} = 3.6 V, V _{IN} = 5.5 V or GND		10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \le V_{CC} \le 3.6 \text{ V}; V_{IH} = V_{CC} - 0.6 \text{ V}$		500	μΑ

^{1.} These values of V_{I} are used to test DC electrical characteristics only.

AC CHARACTERISTICS ($t_R = t_F = 2.5 \text{ ns}; R_L = 500 \Omega$)

				Limits					
				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$					
			V _{CC} = 3.3	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 2.7 \text{ V}$ $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$					
			C _L = 8	50 pF	C _L = \$	50 pF	C _L =	30 pF	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Units
t _{PLH} t _{PHL}	Propagation Delay Time Input to Output	1	1.5 1.5	5.5 5.5	1.5 1.5	6.2 6.2	1.5 1.5	6.6 6.6	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 2)			1.0 1.0					ns

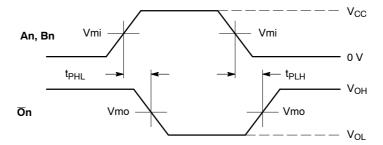
Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 3)	$\begin{array}{c} V_{CC} = 3.3 \text{ V, } C_L = 50 \text{ pF, } V_{IH} = 3.3 \text{ V, } V_{IL} = 0 \text{ V} \\ V_{CC} = 2.5 \text{ V, } C_L = 30 \text{ pF, } V_{IH} = 2.5 \text{ V, } V_{IL} = 0 \text{ V} \end{array}$		0.8 0.6		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 3)	$V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ $V_{CC} = 2.5 \text{ V}, C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$		-0.8 -0.6		V

^{3.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

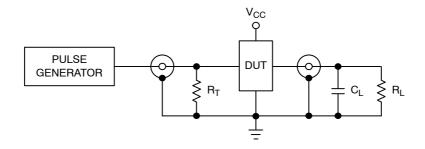

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V _{CC} = 3.3 V, V _I = 0 V or V _{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V _{CC} = 3.3 V, V _I = 0 V or V _{CC}	25	pF

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LCX32DR2G	SOIC-14 (Pb-Free)	2500 Tape & Reel
MC74LCX32DTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74LCX32DTR2G	TSSOP-14 (Pb-Free)	2500 Tape & Reel
NLV74LCX32DTR2G*	TSSOP-14 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.



WAVEFORM 1 - PROPAGATION DELAYS

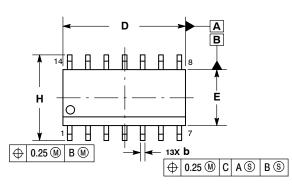
 $t_R = t_F = 2.5 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_W = 500 \text{ ns}$

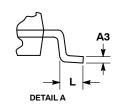
	Vcc				
Symbol	3.3 V <u>+</u> 0.3 V	2.7 V	2.5 V <u>+</u> 0.2 V		
Vmi	1.5 V	1.5 V	Vcc/2		
Vmo	1.5 V	1.5 V	Vcc/2		

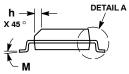
Figure 3. AC Waveforms

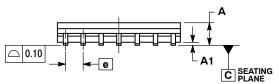
 C_L = 50 pF at V_{CC} = 3.3 \pm 0.3 V or equivalent (includes jig and probe capacitance) C_L = 30 pF at V_{CC} = 2.5 \pm 0.2 V or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

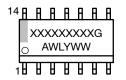

Figure 4. Test Circuit






SOIC-14 NB CASE 751A-03 ISSUE L

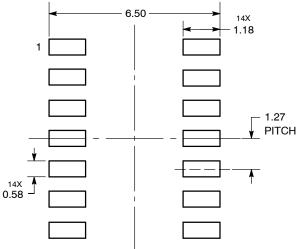
DATE 03 FEB 2016



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
- MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND E DO NOT INCLUDE
 MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
œ	1.27	BSC	0.050 BSC	
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7 °

GENERIC MARKING DIAGRAM*



XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

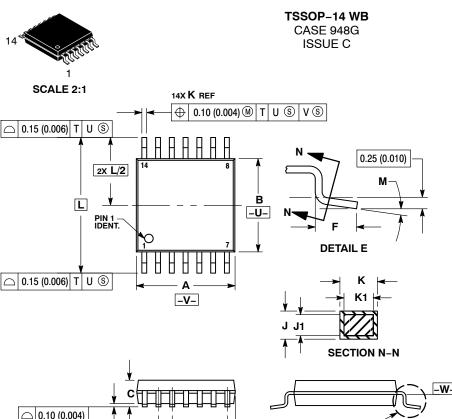
DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.


SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 17 FEB 2016

- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 TERMINAL NUMBERS ARE SHOWN FOR DEEEDENIC OMITY.
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	o o	ρ °	0 °	Q°

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot V = Year

W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

0.15 (0.006) T U S A	J J1 SECTION N
0.10 (0.004) —T— SEATING PLANE	H DETAIL E
SOLDERING	FOOTPRINT
7.0	06
	0.65 PITCH

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1

DIMENSIONS: MILLIMETERS

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

14X

1.26

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative