Ultra Series[™] Crystal Oscillator Si544 Data Sheet # Ultra Low Jitter I2C Programmable XO (150 fs), 0.2 to 1500 MHz The Si544 Ultra Series[™] oscillator utilizes Skyworks Solutions' advanced 4th generation DSPLL® technology to provide an ultra-low jitter, low phase noise clock at any output frequency. The device is user-programmed via simple I2C commands to provide any frequency from 0.2 to 1500 MHz with <1 ppb resolution and maintains exceptionally low jitter for both integer and fractional frequencies across its operating range. The Si544 offers excellent reliability and frequency stability as well as guaranteed aging performance. On-chip power supply filtering provides industry-leading power supply noise rejection, simplifying the task of generating low jitter clocks in noisy systems that use switched-mode power supplies. The Si544 has a dramatically simplified supply chain that enables Skyworks to ship custom frequency samples 1-2 weeks after receipt of order. Unlike a traditional XO, where a different crystal is required for each output frequency, the Si544 uses one simple crystal and a DSPLL IC-based approach to provide the desired output frequency. The Si544 is factory-configurable for a wide variety of user specifications, including startup frequency, I2C address, output format, and OE pin location/polarity. Specific configurations are factory-programmed at time of shipment, eliminating the long lead times associated with custom oscillators. # Si544 5 x 7mm and 3.2 x 5 mm 2.5 x # OE/FS NC/OE Pin Assignments #### Pin# **Descriptions** 1.2 Selectable via ordering option OE = Output enable; FS = Frequency Select; NC = No connect 3 GND = Ground 4 CLK+ = Clock output 5 CLK- = Complementary clock output. Not used for CMOS. 6 VDD = Power supply 7 SDA = I2C Serial Data 8 SCL = I2C Serial Clock #### **KEY FEATURES** - I2C programmable to any frequency from 0.2 to 1500 MHz with < 1 ppb resolution - Very low jitter: 150 fs Typ RMS (12 kHz 20 MHz) - · Configure up to 4 pin-selectable startup frequencies - I2C interface supports 100 kbps, 400 kbps, and 1 Mbps (Fast Mode Plus) - Excellent PSNR and supply noise immunity: –80 dBc Typ - 3.3 V, 2.5 V and 1.8 V $\ensuremath{\text{V}_{\text{DD}}}$ supply operation from the same part number - LVPECL, LVDS, CML, HCSL, CMOS, and Dual CMOS output options - 2.5x3.2, 3.2x5, 5x7 mm package options - Samples available with 1-2 week lead times #### **APPLICATIONS** - 100G/200G/400G OTN, coherent optics, PAM4 - · 10G/40G/100G optical ethernet - 3G-SDI/12G-SDI/24G-SDI broadcast video - · Servers, switches, storage, search acceleration - · Test and measurement - FPGA/ASIC clocking # 1. Ordering Guide The Si544 XO supports a variety of options including startup frequency, output format, and OE pin location/polarity, as shown in the chart below. Specific device configurations are programmed into the part at time of shipment, and samples are available in 1-2 weeks. Skyworks Solutions provides an online part number configuration utility to simplify this process. Refer to https://www.skyworksinc.com/en/Products/Timing-Oscillators to access this tool and for further ordering instructions. # Notes: - 1. Contact Skyworks for non-standard configurations. - 2. Total stability includes temp stability, initial accuracy, load pulling, VDD variation, and 20 year aging at 70 °C. - 3. Create custom part numbers at https://www.skyworksinc.com/en/Application-Pages/Timing-Lookup-Customize. # 1.1 Technical Support | Oscillator Phase Noise Lookup Utility | https://www.skyworksinc.com/tools/oscillator-phase-noise | |---------------------------------------|--| | Quality and Reliability | www.skyworksinc.com/quality | | Development Kits | https://www.skyworksinc.com/en/Products/Timing | # 2. Electrical Specifications **Table 2.1. Electrical Specifications** V_{DD} = 1.8 V, 2.5 or 3.3 V ± 5%, T_A = -40 to 85 °C | Parameter | Symbol | Test Condition/Comment | Min | Тур | Max | Unit | |--|--------------------------------|--|-----------------------|----------|-----------------------|------| | Temperature Range | T _A | | -40 | _ | 85 | °C | | Frequency Range | F _{CLK} | LVPECL, LVDS, CML | 0.2 | _ | 1500 | MHz | | | | HCSL | 0.2 | _ | 400 | MHz | | | | CMOS, Dual CMOS | 0.2 | _ | 250 | MHz | | Supply Voltage | V _{DD} | 3.3 V | 3.135 | 3.3 | 3.465 | V | | | | 2.5 V | 2.375 | 2.5 | 2.625 | V | | | | 1.8 V | 1.71 | 1.8 | 1.89 | V | | Supply Current | I _{DD} | LVPECL (output enabled) | _ | 100 | 145 | mA | | | | LVDS/CML (output enabled) | _ | 75 | 111 | mA | | | | HCSL (output enabled) | _ | 80 | 125 | mA | | | | HCSL-Fast (output enabled) | _ | 88 | 137 | mA | | | | CMOS (output enabled) | _ | 74 | 108 | mA | | | | Dual CMOS (output enabled) | _ | 80 | 125 | mA | | | | Tristate Hi-Z (output disabled) | _ | 64 | 100 | mA | | Temperature Stability | | Frequency stability Grade A | -20 | _ | 20 | ppm | | remperature Stability | | Frequency stability Grade B | -10 | _ | 10 | ppm | | | | Frequency stability Grade C | -7 | _ | 7 | ppm | | Total Stability ¹ | F _{STAB} | Frequency stability Grade A | -50 | _ | 50 | ppm | | | | Frequency stability Grade B | -25 | _ | 25 | ppm | | | | Frequency stability Grade C | -20 | _ | 20 | ppm | | Rise/Fall Time | T _R /T _F | LVPECL/LVDS/CML | _ | _ | 350 | ps | | (20% to 80% V _{PP}) | | CMOS / Dual CMOS
(C _L = 5 pF) | _ | 0.5 | 1.5 | ns | | | | HCSL, F _{CLK} >50 MHz | _ | _ | 550 | ps | | | | HCSL-Fast, F _{CLK} >50 MHz | _ | _ | 275 | ps | | Duty Cycle | D _C | All formats | 45 | _ | 55 | % | | Output Enable (OE), | V _{IH} | | 0.7 × V _{DD} | _ | _ | V | | Frequency Select (FS0, FS1) ² | V _{IL} | | _ | _ | 0.3 × V _{DD} | V | | | T _D | Output Disable Time, F _{CLK} >10 MHz | _ | _ | 3 | μs | | | TE | Output Enable Time, F _{CLK} >10 MHz | _ | _ | 20 | μs | | | T _{FS} | Settling Time after FS Change | _ | _ | 10 | ms | | Powerup Time | t _{OSC} | Time from 0.9 × V _{DD} until output frequency (F _{CLK}) within spec | _ | <u> </u> | 10 | ms | | Parameter | Symbol | Test Condition/Comment | Min | Тур | Max | Unit | |--------------------------------------|---|---|------------------------|------|------------------------|----------| | Powerup VDD Ramp Rate | V_{RAMP} | Fastest VDD ramp rate allowed on startup | _ | _ | 100 | V/ms | | LVPECL Output Option ³ | V _{OC} | Mid-level | V _{DD} – 1.42 | _ | V _{DD} – 1.25 | V | | | Vo | Swing (diff) | 1.1 | _ | 1.9 | V_{PP} | | LVDS Output Option ⁴ | Voc | Mid-level (2.5 V, 3.3 V VDD) | 1.125 | 1.20 | 1.275 | V | | | | Mid-level (1.8 V VDD) | 0.8 | 0.9 | 1.0 | V | | | V _O Swing (F _{CLK} ≤ 1.4 GHz) | | 0.6 | 0.7 | 0.9 | V_{PP} | | | | Swing (F _{CLK} > 1.4 GHz) | 0.5 | 0.7 | 0.9 | V_{PP} | | HCSL Output Option ⁵ | V _{OH} | Output voltage high | 660 | 750 | 850 | mV | | HCSL-Fast Output Option ⁵ | V _{OL} | Output voltage low | -150 | 0 | 150 | mV | | | V _C | Crossing voltage | 250 | 350 | 550 | mV | | CML Output Option (AC-Coupled) | Vo | Swing (diff) | 0.6 | 0.8 | 1.0 | V_{PP} | | CMOS Output Option | V _{OH} | I _{OH} = 8/6/4 mA for 3.3/2.5/1.8V VDD | 0.85 × V _{DD} | _ | _ | V | | | V _{OL} | I _{OL} = 8/6/4 mA for 3.3/2.5/1.8V VDD | _ | _ | 0.15 × V _{DD} | V | # Notes: - 1. Total Stability includes temperature stability, initial accuracy, load pulling, VDD variation, and aging for 20 yrs at 70 °C. - 2. OE includes a 50 k Ω pull-up to VDD for OE active high. Includes a 50 k Ω pull-down to GND for OE active low. FS0 and FS1 pins each include a 50 k Ω pull-up to VDD. NC (No Connect) pins include a 50 k Ω pull-down to GND. - 3. 50 Ω to V_{DD} 2.0 V. Additional DC current from the output driver will flow through the 50 Ω resistors, resulting in a shift in common mode voltage. The measurements in this table have accounted for this. - 4. R_{term} = 100 Ω (differential). - 5.50Ω to GND. Table 2.2. I2C Characteristics V_{DD} = 1.8, 2.5, or 3.3 V ± 5%, T_A = -40 to 85 °C | Parameter | Symbol | Test Condition/Comment | Min | Тур | Max | Unit | |---|------------------|---------------------------------------|---------------------------|-------|---------------------------|------| | SDA, SCL Input Voltage High | V _{IH} | | 0.70 x
V _{DD} | _ | _ | V | | SDA, SCL Input Voltage Low | V _{IL} | | _ | _ | 0.30 x
V _{DD} | V | | Frequency Reprogramming Resolution | M _{RES} | | _ | 0.026 | _ | ppb | | Frequency Range for Small Frequency Change (Continuous Glitchless Output) | | From center frequency | -950 | _ | +950 | ppm | | Settling Time for Small Frequency Change | | < ±950 ppm from center frequency | _ | _ | 100 | μs | | Settling Time for Large Frequency Change (Output Squelched during Frequency Transition). Includes 30ms for internal VCO calibration to new frequency (FCAL). See Table 5.6. | | > ±950 ppm from center fre-
quency | _ | _ | 40 | ms | Note: For best performance, place the Si544 on a dedicated I2C bus, or isolate it via an I2C bus multiplexer to minimize noise. Table 2.3. Clock Output Phase Jitter and PSNR V_{DD} = 1.8, 2.5, or 3.3 V ± 5%, T_A = –40 to 85 °C | Parameter | Symbol | Test Condition/Comment | Min | Тур | Max | Unit | |--|--------|------------------------|-----|-----|-----|------| | Phase Jitter (RMS, 12kHz - 20MHz) ¹ | фл | LVPECL, HCSL, CML | _ | 150 | 200 | fs | | F _{CLK} ≥ 100 MHz | | LVDS | _ | 150 | 220 | fs | | | | CMOS, Dual CMOS | _ | 200 | _ | fs | | Spurs Induced by External Power Supply | PSNR | 100 kHz sine wave | _ | -83 | _
| | | Noise, 50 mVpp Ripple. LVDS 156.25 MHz
Output | | 200 kHz sine wave | _ | -83 | _ | dBc | | | | 500 kHz sine wave | _ | -82 | _ | ubc | | | | 1 MHz sine wave | _ | -85 | _ | | # Note: Table 2.4. 3.2x5 Clock Output Phase Noise (Typical, 50ppm Total Stability Option) | Offset Frequency (f) | 156.25 MHz LVDS | 200 MHz LVDS | 644.53125 MHz LVDS | Unit | |----------------------|----------------------|-------------------|-------------------------|--------| | 100 Hz | -108 | -106 | – 97 | | | 1 kHz | -124 | –123 | –111 | | | 10 kHz | -132 | -130 | -120 | | | 100 kHz | –137 | –135 | –125 | dBc/Hz | | 1 MHz | –146 | -144 | -133 | | | 10 MHz | -160 | – 161 | -154 | | | 20 MHz | – 161 | -162 | –156 | | | Offset Frequency (f) | 156.25 MHz
LVPECL | 200 MHz
LVPECL | 644.53125 MHz
LVPECL | Unit | | 100 Hz | -105 | -105 | - 95 | | | 1 kHz | –122 | –122 | –113 | | | 10 kHz | – 132 | –131 | -120 | | | 100 kHz | –136 | –135 | –125 | dBc/Hz | | 1 MHz | –145 | -144 | -134 | | | 10 MHz | -160 | –163 | –155 | | | 20 MHz | -161 | -164 | -156 | | ^{1.} Guaranteed by characterization. Jitter inclusive of any spurs, I2C lines not active. Figure 2.1. Phase Jitter vs. Output Frequency Phase jitter measured with Agilent E5052 using a differential-to-single ended converter (balun or buffer). Measurements collected for >700 commonly used frequencies. Phase noise plots for specific frequencies are available using our free, online Oscillator Phase Noise Lookup Tool at https://www.skyworksinc.com/Products/Timing-Oscillators. Table 2.5. Environmental Compliance and Package Information | Parameter | Test Condition | | | |---|---|--|--| | Mechanical Shock | MIL-STD-883, Method 2002 | | | | Mechanical Vibration | MIL-STD-883, Method 2007 | | | | Solderability | MIL-STD-883, Method 2003 | | | | Gross and Fine Leak | MIL-STD-883, Method 1014 | | | | Resistance to Solder Heat | MIL-STD-883, Method 2036 | | | | Moisture Sensitivity Level (MSL): 3.2 x 5, 5 x 7 packages | 1 | | | | Moisture Sensitivity Level (MSL): 2.5 x 3.2 package | 2 | | | | Contact Pads: 3.2x5, 5x7 packages | Au/Ni (0.3 - 1.0 μm / 1.27 - 8.89 μm) | | | | Contact Pads: 2.5x3.2 packages | Au/Pd/Ni (0.03 - 0.12 μm / 0.1 - 0.2 μm / 3.0 - 8.0 μm) | | | | | | | | ## Note: For additional product information not listed in the data sheet (e.g. RoHS Certifications, MDDS data, qualification data, REACH Declarations, ECCN codes, etc.), refer to our "Corporate Request For Information" portal found here: www.skyworksinc.com/quality. **Table 2.6. Thermal Conditions** Max Junction Temperature = 125 °C | Package | Parameter | Symbol | Test Condition | Value | Unit | |---------------------------|--|-----------------|------------------|-------|------| | | Thermal Resistance Junction to Ambient | Θ_{JA} | Still Air, 85 °C | 80 | °C/W | | 2.5 x 3.2 mm
8-pin DFN | Thermal Parameter Junction to Board | Ψ_{JB} | Still Air, 85 °C | 39 | °C/W | | <u>-</u> | Thermal Parameter Junction to Top Center | Ψ_{JT} | Still Air, 85 °C | 17 | °C/W | | | Thermal Resistance Junction to Ambient | Θ _{JA} | Still Air, 85 °C | 55 | °C/W | | 3.2 × 5 mm
8-pin CLCC | Thermal Parameter Junction to Board | Ψ_{JB} | Still Air, 85 °C | 20 | °C/W | | 8-pin CLCC | Thermal Parameter Junction to Top Center | Ψ_{JT} | Still Air, 85 °C | 20 | °C/W | | | Thermal Resistance Junction to Ambient | Θ _{JA} | Still Air, 85 °C | 53 | °C/W | | 5 × 7 mm
8-pin CLCC | Thermal Parameter Junction to Board | Ψ_{JB} | Still Air, 85 °C | 26 | °C/W | | · | Thermal Parameter Junction to Top Center | Ψ_{JT} | Still Air, 85 °C | 26 | °C/W | ## Note: 1. Based on PCB Dimensions: 4.5" x 7", PCB Thickness: 1.6 mm, Number of Cu Layers: 4. Table 2.7. Absolute Maximum Ratings¹ | Parameter | Symbol | Rating | Unit | |---|-------------------|-------------------------------|------| | Maximum Operating Temperature | T _{AMAX} | 95 | °C | | Storage Temperature | T _S | T _S –55 to 125 | | | Supply Voltage | V _{DD} | -0.5 to 3.8 | °C | | Input Voltage | V _{IN} | -0.5 to V _{DD} + 0.3 | V | | ESD HBM (JESD22-A114) | НВМ | 2.0 | kV | | Solder Temperature ² | T _{PEAK} | 260 | °C | | Solder Time at T _{PEAK} ² | T _P | 20–40 | | #### Notes: - 1. Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability. - 2. The device is compliant with JEDEC J-STD-020. # 3. Dual CMOS Buffer Dual CMOS output format ordering options support either complementary or in-phase signals for two identical frequency outputs. This feature enables replacement of multiple XOs with a single Si544 device. Figure 3.1. Integrated 1:2 CMOS Buffer Supports Complementary or In-Phase Outputs # 4. Recommended Output Terminations The output drivers support both AC-coupled and DC-coupled terminations as shown in figures below. Figure 4.1. LVPECL Output Terminations | | AC Coupled LVPECL Termination Resistor Values Termination Resistor Values | | | | | | |-------|--|-------|-------|-------|-------|--------| | VDD | R1 | R2 | Rp | VDD | R1 | R2 | | 3.3 V | 82.5 Ω | 127 Ω | 130 Ω | 3.3 V | 127 Ω | 82.5 Ω | | 2.5 V | 62.5 Ω | 250 Ω | 90 Ω | 2.5 V | 250 Ω | 62.5 Ω | Figure 4.2. LVDS and HCSL Output Terminations Figure 4.3. CML and CMOS Output Terminations # 5. Configuring Si544 Output Frequency via I2C The Si544 oscillator device contains a fixed frequency crystal and frequency synthesis IC using Skyworks patented DSPLL™ technology, all enclosed in a standard hermetically sealed crystal oscillator (XO) package. The internal crystal provides the reference frequency used by the DSPLL frequency synthesis IC. The output frequency of the Si544 oscillator device can be dynamically set via I2C register settings in the DSPLL frequency synthesis IC. DSPLL technology provides unmatched frequency flexibility with superior output jitter/phase noise performance and part per trillion frequency accuracy. This document describes how to calculate the required Si544 register values used to set device output frequency, and how to load these values into the Si544 device. Figure 5.1. Si544 Block Diagram The figure above is a simplified high-level block diagram of the Si544 oscillator device. The output frequency is set by a combination of three divider blocks highlighted in the above block diagram. - 1. FBDIV DSPLLTM Feedback Divider used to set Digital VCO frequency - 2. HSDIV High-Speed Output Divider - 3. LSDIV Low-Speed Output Divider The final device output frequency is based on the digital VCO frequency divided by the product of HSDIV and LSDIV divider settings. The limits of each of these internal blocks (both digital VCO and dividers) determines the valid operating frequency range of the device. The FBDIV divider, is a fractional fixed-point divider with a total length of 43 bits consisting of an 11-bit integer field (FBINT) and a 32 bit fractional field (FBFRAC) where total FBDIV = [FBINT].[FBFRAC] with an implied decimal point as shown. This bit format is known as an 11.32 fixed point format where the integer portion is 11 bits and fractional portion is 32 bits, for a total of 43 bits. The HSDIV divider is an integer divider, 11 bits in length, containing a binary divider value. One noteworthy feature of the HSDIV divider is a special duty cycle correction circuit that allows **odd** divide ratios of lower divider values (5-33 only) with 50% duty cycle output. This feature is useful when LSDIV divide ratio is set to 1. The LSDIV divider performs power-of-2 divides ranging from divide by 1 (20) to divide by 32 (25). The register controlling the LSDIV divider is 3 bits in length, holding the power-of-2 divide ratio (divider exponent). For example, if LSDIV register = 3 the LSDIV divide ratio is 23 = 8. Values greater than 5 (i.e. LSDIV register = 6 or 7) still map into a divide by 32. The tables below summarize the divider limits for LSDIV, HSDIV, FBDIV. These limits and restrictions **must** be observed when deriving divider register values, as will be explained in later sections. Divider Upper Limit Lower Limit HSDIV[10:0] (unsigned) 2046 5 LSDIV[2:0]¹ (unsigned) 32 (2^5) 1 (2^0) FBDIV[42:0] hex (unsigned) 7FDFFFFFFFF 03C00000000 FBDIV[42:0] int.frac (unsigned) 2045.99999999976 60.0 Table 5.1. Si544 Divider Range Limits # Note: 1. LSDIV is power of 2 divider. See LSDIV table below for actual divide ratio based on LSDIV register value. Table 5.2. Additional LSDIV and HSDIV Divider Restrictions | LSDIV | Divide Ratio | HSDIV Value Restrictions | |----------------|--------------|--| | Register Value | | | | 0 | 1 | | | 1 | 2 | | | 2 | 4 | | | 3 | 8 | 5-33 even or odd values ¹ , | | 4 | 16 | 34-2046 even values only | | 5 | 32 | | | 6 | 32 | | | 7 | 32 | | #### Note: Note that all divider values (FBDIV, HSDIV, LSDIV) are unsigned and contain only positive values. The Si544 high-performance oscillator family has three different speed grade offerings, each covering a specific frequency range. The table below outlines the output frequency range coverage by each speed grade, the corresponding min and max VCO frequency for that speed grade, and the nominal crystal frequency. The information in the table below is needed when calculating divider settings for a given device, speed grade, and output frequency. Table 5.3. Si544 Speed Grades, Crystal Frequency, and VCO Range Limits | Device | Speed Grade | Xtal freq (MHz) | Min
Output Freq
(MHz) | Max Output
Freq (MHz) | Min Fvco (GHz) | Max Fvco (GHz) | |--------|-------------|-----------------|--------------------------|--------------------------|----------------|----------------| | Si544 | Α | 55.05 | 0.2 | 1500 | 10.8 | 12.550082103 | | | В | 55.05 | 0.2 | 800 | 10.8 | 12.109728345 | | | С | 55.05 | 0.2 | 325 | 10.8 | 12.109728345 | ^{1.} HSDIV can implement low value (5-33) **odd** divide ratios while providing a 50% duty cycle output due to special duty cycle correction circuit. # 5.1 Output Frequency Equations The basic equations used to derive the output frequency are given below and can be easily inferred from the device block diagram in Figure 5.2 Si544 Frequency Definition Block Diagram on page 14. Equation 1 is the relationship between the output frequency (Fout), and the VCO frequency (Fvco) and total output divider ratio (HSDIV * LSDIV). Equation 2 is the relationship between the VCO frequency (Fvco), the fixed crystal oscillator frequency (Fosc), and the feedback divider (FBDIV). Fout = Fvco / (HSDIV x LSDIV) # **Equation 1** Fvco = (Fosc x FBDIV) # **Equation 2** Figure 5.2. Si544 Frequency Definition Block Diagram Equation 3a is a rearranged Equation 1 to solve for the total output divider (HSDIV *LSDIV) given Fout and Fvco. Equation 3b is rearranged again solving for Fvco given Fout and (HSDIV *LSDIV). (HSDIV x LSDIV) = Fvco / Fout # Equation 3a Fvco = Fout x (HSDIV x LSDIV) # **Equation 3b** Equation 4 is a rearranged Equation 2 to now solve for FBDIV given Fvco and Fosc. FBDIV = Fvco / Fosc #### **Equation 4** Equations 3a, 3b, and 4 will be used in the process of deriving the required divider values to provide a desired output frequency. The basic process is outlined below. # 5.2 General Process Steps for Divider Calculation - 1. Estimate a theoretical total output divider value (HSDIV * LSDIV) based on desired Fout while targeting the minimum valid Fvco frequency using Eqn. 3a and Table 5.3 Si544 Speed Grades, Crystal Frequency, and VCO Range Limits on page 13. Use floating point calculations for this step. - · Result: Floating point value of total (HSDIV * LSDIV). - 2. Derive a valid LSDIV divider value based on LSDIV and HSDIV divider limitations using the lowest possible value for LSDIV. For example, if (HSDIV * LSDIV) = 8.22, use LSDIV = 1 and HSDIV = 8.22 versus LSDIV = 2 and HSDIV = 4.11. - · Result: Valid LSDIV value. - 3. Using LSDIV value from #2 above, find nearest valid **integer** HSDIV divider value resulting in Fvco being **equal to or greater than Fvco min**, which observing all HSDIV limitations. Use Eqns. 3a/3b as necessary. - · Result: Valid HSDIV value. - 4. With valid integer HSDIV and LSDIV values, calculate the required Fvco frequency with Eqn. 3b. (Fvco must remain in valid range per Table 5.3 Si544 Speed Grades, Crystal Frequency, and VCO Range Limits on page 13.) - · Result: Valid VCO frequency. - 5. With the derived valid Fvco frequency, use Eqn 4 to calculate required FBDIV based on device specific Fosc frequency from Table 5.3 Si544 Speed Grades, Crystal Frequency, and VCO Range Limits on page 13. - · Result: Valid FBDIV value - 6. At this point all FBDIV, HSDIV and LSDIV values required to generate the desired output frequency have been calculated. These three divider values must be now be appropriately formatted to fit the register format expected by the device. This is described in a later section. # 5.3 Example: Deriving Si544 Divider Settings for 156.75 MHz Output The general process of deriving divider values for a specific output frequency is outlined in the previous section and now will be used in this example. To reiterate, all calculations must be done while observing divider limits and valid VCO frequency range limits for your device. In this example, the device is Si544 and with a desired output frequency of 156.75 MHz, the speed grade required will be "C" or better. (One important note: All divider and register settings derived for any speed grade will work without modification for all **faster** speed grades on the same base part number device.) Example VB code that implements the following divider calculation process is given in 5.8 Si544 Frequency Planner VB Code and can be used for implementing any supported output frequency. **Step 1:** Find the valid theoretical lower limit of the total output divider (HSDIV*LSDIV) based on the desired output frequency and lowest valid VCO frequency. This will bias the divider solution to the lowest possible VCO frequency since this will provide the best performance solution. Given the valid Si544 VCO range is 10.8000 GHz to 12.1097 GHz, the minimum theoretical values for (HSDIV * LSDIV) for the example 156.75 MHz output frequency are given in Equation 3: Minimum (HSDIV*LSDIV) = (10.8000 GHz / 156.75 MHz) = 68.89952... **Step 2:** Find valid LSDIV divisor value given minimum (HSDIV*LSDIV) from step 1. For best performance, preference should be given to implementation of the total output divider (HSDIV*LSDIV) using HSDIV with LSDIV divide ratio = 1, if possible. Use LSDIV divide ratios > 1 only if HSDIV alone cannot implement the required output divider. Since the total (HSDIV*LSDIV) value of 68.8995... is less than the HSDIV maximum divider value of 2046, the LSDIV divide **ratio** value will be 1, which corresponds to a LSDIV register setting of 0, since the LSDIV divider can only be a power of 2 value (see Table 5.2 Additional LSDIV and HSDIV Divider Restrictions on page 13 for valid LSDIV settings). LSDIV divide ratio = 1, therefore LSDIV register value = 0 **Step 3:** Find HSDIV divisor value. Given LSDIV = 1, HSDIV must implement 68.8995... or greater. Since HSDIV is an integer divider, the next greatest integer is 69. But, checking valid HSDIV values when LSDIV divide ratio = 1, we see 69 is NOT valid since it is greater than 33 and an odd value. This means the next greater integer value must be used, which is 70 (now even value). Note that 68 would **not** be valid since 68 is less than 68.8995... and would result in a VCO frequency below the lower VCO frequency limit. HSDIV divide ratio = 70, which gives HSDIV register value = 70 decimal (or hex value = 0x46) **Step 4:** Calculate a valid VCO frequency and corresponding floating point FBDIV value. Given the calculated output divider value (HSDIV*LSDIV) = 70, the VCO frequency must be set to (156.75 MHz * 70) = **10.9725 GHz**. Note that 10.9725 GHz is indeed within the valid VCO frequency range per Table 5.3 Si544 Speed Grades, Crystal Frequency, and VCO Range Limits on page 13. Fvco = **10.9725 GHz** **Step 5:** Calculate the FBDIV value necessary to provide a 10.9725 GHz Fvco using a 55.05 MHz crystal as reference (Si544 device). The floating point FBDIV value required to attain 10.9725 GHz with a 55.05 MHz crystal reference can be calculated as follows: FBDIV (float) = 10.9725 GHz / 55.05 MHz = 199.318801089918 **Step 6:** Format each divider value into the required register format. LSDIV and HSDIV are simply binary values and can be directly used. FBDIV must first be put into 11.32 fixed point format. Converting the floating point FBDIV value into the 11.32 fixed point hex value required by the Si544 is done as follows: Integer value = 199 decimal. Convert 199 to 11 bit hex = 0x0C7. This is FBINT. **Fractional** value = 0.318801089918. Multiply fractional value by $2^32 = 1369240255.12805$. Now extract only the **integer** part of the result which is 1369240255. Convert 1369240255 to 32 bit hex = 0x519CF2BF. This is FBFRAC. The resulting 11.32 fixed point hex number is therefore: At this point we have calculated all the required divider values. The table below summarizes the resulting divider values for implementing a 156.75 MHz output clock on the Si544. Table 5.4. Divider Register Values for Si544 Configured for 156.75 MHz Output Clock | Divider Register | Decimal Value | Hex Value | Reg Length (bits) | |------------------|------------------|---------------|-------------------| | LSDIV | 0 | 0x0 | 3 | | HSDIV | 70 | 0x046 | 11 | | FBDIV | 199.318801089918 | 0x0C7519CF2BF | 43 (11+32) | # 5.4 Mapping Divider Settings into Register Values For the previous 156.75 MHz example, the divider value to register mapping is shown in the table below. Note that Register 24 is a packed register and contains bits from both LSDIV and HSDIV registers as follows: LSDIV[2:0] maps into Reg24[6:4] and HSDIV[10:8] maps into Reg24[2:0]. Note that bits Reg24[7] and Reg24[3] are not used and indicated with 'x' in the RegName field below. See also the Register Map Reference section for specific bit positioning within registers. Table 5.5. Si544 Divider Register Values for 156.75 MHz Output Clock Configuration | Register (Decimal) | Hex Value | Reg Name | |--------------------|-----------|----------------------------| | 23 | 46 | HSDIV[7:0] | | 24 | 00 | x:LSDIV[2:0]:x:HSDIV[10:8] | | | | | | 26 | BF | FBDIV[7:0] | | 27 | F2 | FBDIV[15:8] | | 28 | 9C | FBDIV[23:16] | | 29 | 51 | FBDIV[31:24] | | 30 | C7 | FBDIV[39:32] | | 31 | 00 | FBDIV[42:40] | # 5.5 I2C Register Write Procedure to Set Output Frequency After the frequency setting registers (Reg 23-Reg31) are calculated, there is a procedure that must be followed involving other specific control registers for the device to properly use the new frequency setting registers. Simply writing Reg23-Reg31 is not enough. The following procedure must be performed as shown to properly configure the Si544 for the desired output frequency. In other words, all the following register writes must be done, and **in the exact sequence shown**. This programming sequence consists of three distinct phases. - 1. Writing to specific registers to get the device ready to be updated. - 2. Writing the calculated frequency (divider) settings for the desired output frequency. - Writing to specific registers necessary to start-up the device after divider registers have been updated. The new output frequency will
appear on output. The divider values shown in the table below are for the previously described Si544 example for an output frequency of 156.75 MHz (for other frequencies, replace the divider values in registers 23-31 with values specific to your frequency requirements). Table 5.6. Si544 Register Write Sequence to Set Output Frequency | Register (decimal) | Write Data (hex) | Description | Purpose | |--------------------|------------------|--|-----------------------------| | 255 | 0x00 | Set page register to point to page 0 | Get Device Ready for Update | | 69 | 0x00 | Disable FCAL override (to allow FCAL for this Freq Update) | | | 17 | 0x00 | Synchronously disable output | | | 23 | 0x46 | HSDIV[7:0] | | | 24 | 0x00 | LSDIV[2:0]:HSDIV[10:8] | | | 26 | 0xBF | FBDIV[7:0] | | | 27 | 0xF2 | FBDIV[15:8] | Undata Dividara | | 28 | 0x9C | FBDIV[23:16] | Update Dividers | | 29 | 0x51 | FBDIV[31:24] | | | 30 | 0xC7 | FBDIV[39:32] | | | 31 | 0x00 | FBDIV[42:40] | | | 7 | 0x08 | Start FCAL using new divider values | Startup Device | | _ | _ | Internal FCAL VCO calibration (30 ms delay) | | | 17 | 0x01 | Synchronously enable output | | #### 5.6 Digitally Controlled Oscillator - ADPLL: Small, Fast Frequency Changes The Si544 can make small, fast frequency adjustments over a range of +/- 950 ppm (parts-per-million) around the device output frequency (set as described in previous sections). This mode is typically used in applications requiring a digitally controlled oscillator (DCO) for digital PLL or other types of frequency control loops. We refer to this type of application as an all-digital PLL or ADPLL. For ADPLL applications and superior ADPLL performance, Skyworks recommends the Si548 I2C oscillator. The Si548 is a 6-pin device that features lower jitter than the Si544 while I2C lines are active, due to the different physical location of the SDA/SCL pins on the package. The ADPLL mode uses a single 24 bit register, ADPLL_DELTA_M[23:0], to add an offset to the VCO frequency to affect the small frequency change. This offset is added in a synchronous fashion to prevent frequency discontinuities and can be updated as fast as the max I2C bus speed of 1 MHz will allow. The frequency offset can be positive or negative over a range of -950 ppm to +950 ppm with 0.0001164 ppm resolution. The equation for this frequency change is simply, ``` ADPLL DELTA M[23:0] = \Delta FoutPPM / 0.0001164 ``` Where Δ Fout_{PPM} is the desired ppm change in output frequency, ADPLL_DELTA_M[23:0] is a two's complement 24 bit value, and 0.0001164 is a constant per-bit ppm value. The 24 bit ADPLL_DELTA_M[23:0] value is written into three sequential 8 bit registers in LSByte to MSByte order via I2C. Upon writing the MSByte, the frequency change takes effect. Below is an example VB to implement this feature. (Note that writing ADPLL_DELTA_M[23:0] = 0x000 will result in no frequency offset and return to the nominal output frequency.) VB Code example for ADPLL (small frequency change) calculation and operation: ``` nAddr = Device I2C address PPM_Delta = desired PPM frequency shift Function Set_ADPLL(ByVal nAddr As UInteger, ByVal PPM_Delta As Double) As Integer Dim ADPLL_PPM_StepSize As Double = 0.0001164 Dim ADPLL_Delta_M As Integer Dim Reg231 As UInteger = 0 Dim Reg232 As UInteger = 0 Dim Reg233 As UInteger = 0 Dim ReturnCode As Integer = 0 '1=OK, -1 PPM requested is out of bounds If (PPM_Delta \le 950 \text{ And } PPM_Delta \ge -950) Then ADPLL_Delta_M = (PPM_Delta / ADPLL_PPM_StepSize) Reg231 = (ADPLL_Delta_M And &HFF) Reg232 = (ADPLL_Delta_M >> 8) And &HFF Reg233 = (ADPLL_Delta_M >> 16) And &HFF I2C_Write(nAddr, 0, 231, Reg231) 'write "Reg231" value to register 231 at nAddr, page 0 (LSByte) I2C_Write(nAddr, 0, 232, Reg232) 'write "Reg232" value to register 232 at nAddr, page 0 I2C_Write(nAddr, 0, 233, Reg233) 'write "Reg233" value to register 233 at nAddr, page 0 (MSByte) ReturnCode = 1 Else ReturnCode = -1 Return (ReturnCode) End Function ``` # 5.7 Register Map Reference Table 5.7. Register Map Reference Summary | Register | | | | Regis | ter Bit | | | | Туре | Reset Val- | |-----------|----------------------|--|-----------------------|-------------------|-------------------|---|-------------|--------|------|------------| | (decimal) | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | ue | | | 0 | | | | DEVICE_ | TYPE[7:0] | | | | R | 0x2C | | 7 | RESET | <re< td=""><td>served> = 3'</td><td>0000</td><td>MS_ICAL
2</td><td><re< td=""><td>served> = 3</td><td>'b000</td><td>R/W</td><td>0x00</td></re<></td></re<> | served> = 3' | 0000 | MS_ICAL
2 | <re< td=""><td>served> = 3</td><td>'b000</td><td>R/W</td><td>0x00</td></re<> | served> = 3 | 'b000 | R/W | 0x00 | | 17 | | | | <unused></unused> | | | | ODC_OE | R/W | 0x01 | | 23 | | | | HSDI | V[7:0] | | | • | R/W | 0x54 | | 24 | <unused></unused> | | LSDIV[2:0] | | <unused></unused> | | HSDIV[10:8 |] | R/W | 0x00 | | 26 | | | | FBDI | V[7:0] | ı | | | R/W | 0x00 | | 27 | FBDIV[15:8] | | | | | | | R/W | 0x00 | | | 28 | FBDIV[23:16] | | | | | | | R/W | 0x00 | | | 29 | | | | FBDIV | [31:24] | | | | R/W | 0x00 | | 30 | | | | FBDIV | [39:32] | | | | R/W | 0x64 | | 31 | | | <unused></unused> | | | 1 | FBDIV[42:40 |)] | R/W | 0x00 | | 69 | FCAL_OV | | | | | | R/W | 0x01 | | | | 231 | ADPLL_DELTA_M[7:0] | | | | | | | R/W | 0x00 | | | 232 | ADPLL_DELTA_M[15:8] | | | | | | | R/W | 0x00 | | | 233 | ADPLL_DELTA_M[23:16] | | | | | | | R/W | 0x00 | | | 255 | | | <reserved></reserved> | = 6'b000000 |) | | PAG | E[1:0] | R/W | 0x00 | Table 5.8. Register Bit Field Summary | Register Bit Field Name | Bit Field (#bits) | Register | Description | |-------------------------|-------------------|----------|--| | DEVICE_TYPE[7:0] | 8 | 0 | Read only value of 44 (dec) which represents the device type (Si544). | | RESET | 1 | 7 | Set to 1 to reset device. Self clearing. | | MS_ICAL2 | 1 | 7 | Set to 1 to initiate FCAL. Self clearing. | | ODC_OE | 1 | 17 | Set to 0 to disable the output clock, and remove output enable/disable control from the external OE or OEB pin. Set to 1 to return enable/disable control back to the OE or OEB pin. | | HSDIV[10:0] | 11 | 23-24 | HSDIV is High-speed output divider value in unsigned 11-bit binary format. Valid divide values are from 5 to 2046, with values of 5-33 even or odd, and values 34-2046 restricted to even values only. | | Register Bit Field Name | Bit Field (#bits) | Register | Description | |-------------------------|-------------------|----------|---| | LSDIV[2:0] | 3 | 24 | LSDIV sets a power-of-2 output divider. Values of 0,1,2,3,4,5,6,7 result in divide ratio of 1,2,4,8,16,32,32,32 respectively. Note that a value of 0 (divide-by-1) essentially bypasses this divider. | | FBDIV[42:0] | 43 | 26-31 | The main DSPLL system feedback divide (FBDIV) value for Si54x. This 43 bit value is composed of an unsigned 11-bit integer value (FBDIV[42:32]) concatenated with a 32-bit fractional value (FBDIV[31:0]), for an 11.32 fixed point binary format. The valid range of the 11-bit integer part is from 60 to 2045 | | FCAL_OVR | 1 | 69 | FCAL Override: If set to 1, FCAL is by-
passed. Clear to 0 to allow FCAL. | | ADPLL_DELTA_M[23:0] | 24 | 231-233 | Digital word to effect small frequency shifts to base frequency. Value is 24 bit 2's complement causing a 0.0001164 ppm per bit shift in frequency. Positive values = positive freq shift, negative values = negative freq shift. Valid range is -8161513 to +8161512, representing a max PPM shift range of -950 ppm to +950 ppm, with 0 value representing 0 PPM shift. Writing a new ADPLL_DELTA_M value will take effect upon writing to the MSByte (Register 233). Therefore, value updates should follow the sequence of writing in register order Reg 231Reg 232Reg 233. | | PAGE[1:0] | 2 | 255 | Sets which page of registers the I2C port is reading/writing. The size of a page is 256 bytes which is the addressable range of an I2C "set address" command. The value of PAGE is multiplied by 256 and added to what "set address" has set. Physically, the 2 PAGE bits become bits [9:8] of the device's internal register map address. This mechanism allows for more than 256 registers to be addressed within the 8 bit I2C "set address" limitation. | #### 5.8 Si544 Frequency Planner VB Code ``` Module Main ' Si54x Frequency Planner Code 'Set Target device type, Speed grade, and desired output frequency Public Device As Integer = 544 ' 544 or 549 only Public SpeedGrade As String = "C" 'Can only be "A" or "B" or "C" Public Output_Freq As Double = 312500000.0 'Output frequency in Hz (initially set to 312.5 MHz) 'Set in 'SetLimits" function... Public Fvco_max As Double 'Fvco Max per Table 5.3 Public Fvco_min As Double 'Fvco Min per Table 5.3 Public Xtal_freq As Double 'Xtal_Freq per Table 5.3 Public Fout_min As Double 'Minimum output frequency Public Fout_max As Double 'Maximum output frequency Sub Main() ' Device divider limits (see Tables 5.1 & 5.2)
Dim HSDIV_UpperLimit As Integer = 2046 Dim HSDIV_LowerLimit As Integer = 5 Dim HSDIV_LowerLimit_Odd As Integer = 5 'min count for odd HSDIV divisor Dim LSDIV_UpperLimit As Integer = 5 Dim LSDIV_LowerLimit As Integer = 0 Dim FBDIV_UpperLimit As Double = 2045 + ((2^3 2 - 1) / (2^3 2)) Dim FBDIV_LowerLimit As Double = 60.0 ' Working variables Dim Min_HSLS_Div As Double Dim Min_Hous__. Dim LSDIV_Div As Double ' actual LSDIV divide ratio Dim LSDIV_Reg As Integer ' LSDIV as encoded in power of 2 for device register use Dim HSDIV As Double Dim FBDIV As Double Dim Fvco As Double Dim FBDIV_Int As UInteger Dim FBDIV_Frac As UInteger Dim Reg23 As UInteger = 0 'HSDIV[7:0] Dim Reg24 As UInteger = 0 'OD_LSDIV[2:0], HSDIV[10:8] (*2^4,/2^8) Dim Reg26 As UInteger = 0 'FBDIV[7:0] Dim Reg27 As UInteger = 0 'FBDIV[15:8] (/2^8) Dim Reg28 As UInteger = 0 'FBDIV[23:16] (/2^16) Dim Reg29 As UInteger = 0 'FBDIV[31:24] (/2^24) Dim Reg30 As UInteger = 0 'FBDIV[39:32] (/2^32) Dim Reg31 As UInteger = 0 'FBDIV[42:40] (/2^40) ' Set device limits based on device type and speed grade. ' (Checks if desired output frequency is valid based on device and speed grade) If SetLimits(Device, SpeedGrade, Output_Freq) = 0 Then ' If limits are set and output frequency is valid, calculate frequency plan... ' Step 1: Find theoretical HSDIV *LSDIV value based on lowest valid VCO frequency... (Assumes "Output_Freq" has been tested and is in valid range for the device grade according to Table 5.3) Min_HSLS_Div = Fvco_min / Output_Freq ' Floating point HS*LS div value. Remember to first bounds check Output_Freq! 'Step 2: Find LSDIV divisor value given Min_HSLS_Div value LSDIV_Div = Math.Ceiling(Min_HSLS_Div / HSDIV_UpperLimit) ' Divisor value of LSDIV, NOT yet encoded as power of 2 ``` ``` If (LSDIV_Div > 32) Then LSDIV_Div = 32 ' clip at 32 (max LSDIV divisor) 'Encode LSDIV divisor value into next nearest 'power of 2' value if not already. This will be LSDIV Req LSDIV_Reg = Math.Ceiling(Math.Log(LSDIV_Div, 2)) ' LSDIV_Reg now encoded as proper power of 2. Will range from 0 to 5. ' Adjust LSDIV_Div (holder of divisor) based on rounded power of 2 value in LSDIV_Reg LSDIV_Div = 2 ^ LSDIV_Reg 'LSDIV_Div divisor now synchronized to actual LSDIV_Reg. 'Step 3: Find HSDIV divisor value using known LSDIV divisor HSDIV = Math.Ceiling(Min_HSLS_Div / LSDIV_Div) If ((HSDIV >= HSDIV_LowerLimit_Odd) And (HSDIV <= HSDIV_UpperLimit_Odd))) Then</pre> HSDIV = HSDIV ' Leaves HSDIV as even or odd only if HSDIV is from 5 to 33. Else If ((HSDIV Mod 2) <> 0) Then 'If HSDIV is an odd value... HSDIV = HSDIV + 1 '...make it even by rounding up 'If already even, leave it alone End If End If ' Step 4: Now calculate Fvco and FBDIV Fvco = (HSDIV * LSDIV_Div * Output_Freq) 'Calculate Fvco based on valid HSDIV, LSDIV, and Fout FBDIV = Fvco / Xtal_freq 'Finally, calculate FBDIV based on xtal freq 'Calculate 11.32 fixed point FBDIV value (MCTL_M) 'Extract Integer part FBDIV_Int = Int(FBDIV) 'Extract fractional part FBDIV = (FBDIV - FBDIV_Int) FBDIV = FBDIV * (2 ^ 32) FBDIV_Frac = Int(FBDIV) 'Generate Register values based on LSDIV, HSDIV, and FBDIV (MCTL_M) Reg23 = (HSDIV And \&HFF) Reg24 = ((HSDIV >> 8) And &H7) Or ((LSDIV_Reg And &H7) << 4) Reg26 = (FBDIV_Frac And &HFF) Reg27 = (FBDIV_Frac >> 8) And &HFF Reg28 = (FBDIV_Frac >> 16) And &HFF Reg29 = (FBDIV_Frac >> 24) And &HFF Reg30 = (FBDIV_Int) And &HFF Reg31 = (FBDIV_Int >> 8) And &H7 Console.WriteLine("*** Device invalid or Device limits exceeded. Frequency plan not calculated.") End If End Sub ' Sets device limits according to Table 5.3 Returns 0 if limits are set and output frequency is valid Returns -1 if limits not found or output frequency is invalid Function SetLimits(ByVal Device As Integer, ByVal SpeedGrade As String, ByVal Output_Freq As Double) As Integer Dim ReturnCode As Integer ReturnCode = 0 If Device = 544 Then Xtal_freq = 55050000.0 If SpeedGrade = "A" Then Fvco_min = 10800000000.0 Fvco_max = 12550082103.0 Fout_min = 200000.0 Fout_max = 1500000000.0 If ((Output_Freq < Fout_min) Or (Output_Freq > Fout_max)) Then ReturnCode = -1 End If ElseIf SpeedGrade = "B" Then Fvco_min = 10800000000.0 ``` ``` Fvco_max = 12109728345.0 Fout_min = 200000.0 Fout_max = 800000000.0 If ((Output_Freq < Fout_min) Or (Output_Freq > Fout_max)) Then ReturnCode = -1 ElseIf SpeedGrade = "C" Then Fvco_min = 10800000000.0 Fvco_max = 12109728345.0 Fout_min = 200000.0 Fout_max = 325000000.0 If ((Output_Freq < Fout_min) Or (Output_Freq > Fout_max)) Then ReturnCode = -1 End If Else ReturnCode = -1 End If ElseIf Device = 549 Then Xtal_freq = 152600000.0 If SpeedGrade = "A" Then Fvco_min = 1080000000.0 Fvco_max = 12511886114.0 Fout_min = 200000.0 Fout_max = 1500000000.0 If ((Output_Freq < Fout_min) Or (Output_Freq > Fout_max)) Then ReturnCode = -1 End If ElseIf SpeedGrade = "B" Then Fvco_min = 10800000000.0 Fvco_max = 12206718160.0 Fout_min = 200000.0 Fout_max = 80000000.0 If ((Output_Freq < Fout_min) Or (Output_Freq > Fout_max)) Then ReturnCode = -1 End If ElseIf SpeedGrade = "C" Then Fvco_min = 10800000000.0 Fvco_max = 12206718160.0 Fout_min = 200000.0 Fout_max = 325000000.0 If ((Output_Freq < Fout_min) Or (Output_Freq > Fout_max)) Then ReturnCode = -1 End If Else ReturnCode = -1 End If Else ReturnCode = -1 End If Return (ReturnCode) End Function End Module ``` # 5.9 Table of Common Frequencies for Si544 (55.05 MHz xtal) | Fout (MHz) | LSDIV | HSDIV | FBDIV | Fvco (GHz) | Reg 23 | Reg 24 | Reg 26 | Reg 27 | Reg 28 | Reg 29 | Reg 30 | Reg 31 | |------------|-------|-------|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------| | 70.656 | 0 | 154 | 197.6571117 | 10.881024 | 9Ah | 00h | 34h | 79h | 38h | A8h | C5h | 00h | | 100 | 0 | 108 | 196.1852861 | 10.8 | 6Ch | 00h | FBh | E8h | 6Eh | 2Fh | C4h | 00h | | 122.88 | 0 | 88 | 196.4294278 | 10.81344 | 58h | 00h | D6h | FAh | EEh | 6Dh | C4h | 00h | | 125 | 0 | 88 | 199.818347 | 11 | 58h | 00h | AAh | 2Fh | 7Fh | D1h | C7h | 00h | | 148.351648 | 0 | 74 | 199.419109 | 10.97802195 | 4Ah | 00h | B1h | BAh | 4Ah | 6Bh | C7h | 00h | | 148.5 | 0 | 74 | 199.6185286 | 10.989 | 4Ah | 00h | 19h | E4h | 57h | 9Eh | C7h | 00h | | 148.945454 | 0 | 74 | 200.2173224 | 11.0219636 | 4Ah | 00h | 33h | 70h | A2h | 37h | C8h | 00h | | 150 | 0 | 72 | 196.1852861 | 10.8 | 48h | 00h | FBh | E8h | 6Eh | 2Fh | C4h | 00h | | 153.6 | 0 | 72 | 200.893733 | 11.0592 | 48h | 00h | 15h | AFh | CBh | E4h | C8h | 00h | | 155.52 | 0 | 70 | 197.7547684 | 10.8864 | 46h | 00h | 59h | 80h | 38h | C1h | C5h | 00h | | 156.25 | 0 | 70 | 198.6830154 | 10.9375 | 46h | 00h | 93h | 19h | DAh | AEh | C6h | 00h | | 168.04 | 0 | 66 | 201.4648501 | 11.09064 | 42h | 00h | 24h | 6Bh | 00h | 77h | C9h | 00h | | 168.75 | 0 | 64 | 196.1852861 | 10.8 | 40h | 00h | FBh | E8h | 6Eh | 2Fh | C4h | 00h | | 200 | 0 | 54 | 196.1852861 | 10.8 | 36h | 00h | FBh | E8h | 6Eh | 2Fh | C4h | 00h | | 212.5 | 0 | 52 | 200.7266122 | 11.05 | 34h | 00h | 56h | 41h | 03h | BAh | C8h | 00h | | 245.76 | 0 | 44 | 196.4294278 | 10.81344 | 2Ch | 00h | D6h | FAh | EEh | 6Dh | C4h | 00h | | 250 | 0 | 44 | 199.818347 | 11 | 2Ch | 00h | AAh | 2Fh | 7Fh | D1h | C7h | 00h | | 270 | 0 | 40 | 196.1852861 | 10.8 | 28h | 00h | FBh | E8h | 6Eh | 2Fh | C4h | 00h | | 311.04 | 0 | 36 | 203.4049046 | 11.19744 | 24h | 00h | 79h | D4h | A7h | 67h | CBh | 00h | | 312.5 | 0 | 36 | 204.359673 | 11.25 | 24h | 00h | 05h | 88h | 13h | 5Ch | CCh | 00h | | 322.265625 | 0 | 34 | 199.0378065 | 10.95703125 | 22h | 00h | 7Ah | B0h | ADh | 09h | C7h | 00h | | 400 | 0 | 27 | 196.1852861 | 10.8 | 1Bh | 00h | FBh | E8h | 6Eh | 2Fh | C4h | 00h | | 425 | 0 | 26 | 200.7266122 | 11.05 | 1Ah | 00h | 56h | 41h | 03h | BAh | C8h | 00h | | 491.52 | 0 | 22 | 196.4294278 | 10.81344 | 16h | 00h | D6h | FAh | EEh | 6Dh | C4h | 00h | | 500 | 0 | 22 | 199.818347 | 11 | 16h | 00h | AAh | 2Fh | 7Fh | D1h | C7h | 00h | | 614.4 | 0 | 18 | 200.893733 | 11.0592 | 12h | 00h | 15h | AFh | CBh | E4h | C8h | 00h | | 622.08 | 0 | 18 | 203.4049046 | 11.19744 | 12h | 00h | 79h | D4h | A7h | 67h | CBh | 00h | | 644.53125 | 0 | 17 | 199.0378065 | 10.95703125 | 11h | 00h | 7Ah | B0h | ADh | 09h | C7h | 00h | | 750 | 0 | 15 | 204.359673 | 11.25 | 0Fh | 00h | 05h | 88h | 13h | 5Ch | CCh | 00h | | 800 | 0 | 14 | 203.4514078 | 11.2 | 0Eh | 00h | 59h | 76h | 8Fh | 73h | CBh | 00h | #### 5.10 I2C Interface Configuration and operation of the Si544 is controlled by reading and writing to the RAM space using the I2C interface. The device operates in slave mode with 7-bit addressing and can operate in Standard-Mode (100 kbps), Fast-Mode (400 kbps), or Fast-Mode Plus (1 Mbps). Burst data transfer with auto address increments are also supported. The I2C bus consists of a bidirectional serial data line (SDA) and a serial clock input (SCL). Both the SDA and SCL pins must be connected to the VDD supply via an external pull-up as recommended by the I2C specification. The Si544 7-bit I2C slave address is user-customized during the part number configuration process. Data is transferred MSB first in 8-bit words as specified by the I2C specification. A write command consists of a 7-bit device (slave) address + a write bit, an 8-bit register address, and 8 bits of data as shown in the figure below. A write burst operation is also shown where every additional data word is written using an auto-incremented address. Figure 5.3. I2C Write Operation A read operation is performed in two stages. A data write is used to set the register address, then a data read is performed to retrieve the data from the set address. A read burst operation is also supported. This is shown in the figure below. Figure 5.4. I2C Read Operation The timing specifications and timing diagram for the I2C bus is compatible with the I2C-Bus standard. SDA timeout is supported for compatibility with SMBus interfaces. The I2C bus can be operated at a bus voltage of 1.71 to 3.63 V and should be the same voltage as the Si544 VDD. # 6. Package Outline # 6.1 Package
Outline (5x7 mm) The figure below illustrates the package details for the 5x7 mm Si544. The table below lists the values for the dimensions shown in the illustration. Figure 6.1. Si544 (5x7 mm) Outline Diagram Table 6.1. Package Diagram Dimensions (mm) | Dimension | Min | Nom | Max | Dimension | Min | Nom | |-----------|------|----------|------|-----------|------|----------| | А | 1.07 | 1.18 | 1.33 | L | 1.07 | 1.17 | | A2 | 0.40 | 0.50 | 0.60 | L1 | 1.00 | 1.10 | | A3 | 0.45 | 0.55 | 0.65 | L2 | 0.05 | 0.10 | | b | 1.30 | 1.40 | 1.50 | L3 | 0.15 | 0.20 | | b1 | 0.50 | 0.60 | 0.70 | р | 1.70 | | | С | 0.50 | 0.60 | 0.70 | R | | 0.70 REF | | D | | 5.00 BSC | | aaa | | 0.15 | | D1 | 4.30 | 4.40 | 4.50 | bbb | | 0.15 | | е | | 2.54 BSC | | ccc | | 0.08 | | Е | | 7.00 BSC | | ddd | | 0.10 | | E1 | 6.10 | 6.20 | 6.30 | eee | | 0.05 | # Notes: - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 1.27 1.20 0.15 0.25 1.90 # 6.2 Package Outline (3.2x5 mm) The figure below illustrates the package details for the 3.2x5 mm Si544. The table below lists the values for the dimensions shown in the illustration. Figure 6.2. Si544 (3.2x5 mm) Outline Diagram Table 6.2. Package Diagram Dimensions (mm) | Dimension | MIN | NOM | MAX | Dimension | MIN | NOM | MAX | |-----------|-----------|----------|------|-----------|------|----------|------| | А | 1.02 | 1.17 | 1.33 | E1 | | 2.85 BSC | | | A2 | 0.50 | 0.55 | 0.60 | L | 0.8 | 0.9 | 1.0 | | A3 | 0.45 | 0.50 | 0.55 | L1 | 0.45 | 0.55 | 0.65 | | b | 0.54 | 0.64 | 0.74 | L2 | 0.05 | 0.10 | 0.15 | | b1 | 0.54 | 0.64 | 0.75 | L3 | 0.15 | 0.20 | 0.25 | | D | | 5.00 BSC | | aaa | 0.15 | | | | D1 | | 4.65 BSC | | bbb | 0.15 | | | | е | 1.27 BSC | | ccc | 0.08 | | | | | e1 | 1.625 TYP | | ddd | 0.10 | | | | | E | | 3.20 BSC | | eee | 0.05 | | | # Notes: - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. # 6.3 Package Outline (2.5x3.2 mm) The figure below illustrates the package details for the 2.5x3.2 mm Si544. The table below lists the values for the dimensions shown in the illustration. Figure 6.3. Si544 (2.5x3.2 mm) Outline Diagram Table 6.3. Package Diagram Dimensions (mm) | Dimension | MIN | NOM | MAX | Dimension | MIN | NOM | MAX | | | |-----------|------|----------|------|-----------|------|---------|------|--|--| | А | 0.85 | 0.90 | 1.00 | L1 | 0.35 | 0.4 | 0.45 | | | | A1 | | 0.36 REF | | e 1.1 BSC | | | | | | | A2 | | 0.53 REF | | n | | 5 | | | | | D | | 3.2 BSC | | n1 | | 2 | | | | | E | | 2.5 BSC | | D1 | | 2.2 BSC | | | | | W | 0.55 | 0.6 | 0.65 | aaa 0.10 | | | | | | | L | 0.5 | 0.55 | 0.6 | bbb 0.10 | | | | | | | W1 | 0.35 | 0.4 | 0.45 | ddd 0.08 | | | | | | # Notes: - 1. The dimensions in parentheses are reference. - 2. All dimensions shown are in millimeters (mm) unless otherwise noted. - 3. Dimensioning and Tolerancing per ANSI Y14.5M-1994. - 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. #### 7. PCB Land Pattern # 7.1 PCB Land Pattern (5x7 mm) The figure below illustrates the 5x7 mm PCB land pattern for the Si544. The table below lists the values for the dimensions shown in the illustration. Figure 7.1. Si544 (5x7 mm) PCB Land Pattern Table 7.1. PCB Land Pattern Dimensions (mm) | Dimension | (mm) | Dimension | (mm) | |-----------|------|-----------|------| | C1 | 4.20 | Y1 | 1.95 | | C2 | 6.05 | X2 | 1.80 | | E | 2.54 | Y2 | 0.75 | | X1 | 1.55 | | | ## Notes: # General - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. - 3. This Land Pattern Design is based on the IPC-7351 guidelines. - 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. # Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu m$ minimum, all the way around the pad. # Stencil Design - 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. - 2. The stencil thickness should be 0.125 mm (5 mils). - 3. The ratio of stencil aperture to land pad size should be 1:1. # **Card Assembly** - 1. A No-Clean, Type-3 solder paste is recommended. - 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. # 7.2 PCB Land Pattern (3.2x5 mm) The figure below illustrates the 3.2x5.0 mm PCB land pattern for the Si544. The table below lists the values for the dimensions shown in the illustration. Figure 7.2. Si544 (3.2x5 mm) PCB Land Pattern Table 7.2. PCB Land Pattern Dimensions (mm) | Dimension | (mm) | Dimension | (mm) | |-----------|------|-----------|------| | C1 | 2.70 | X2 | 0.90 | | E | 1.27 | Y1 | 1.60 | | E1 | 4.30 | Y2 | 0.70 | | X1 | 0.74 | | | #### Notes: # General - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. - 3. This Land Pattern Design is based on the IPC-7351 guidelines. - 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. #### Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu m$ minimum, all the way around the pad. # Stencil Design - 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. - 2. The stencil thickness should be 0.125 mm (5 mils). - 3. The ratio of stencil aperture to land pad size should be 1:1. # **Card Assembly** - 1. A No-Clean, Type-3 solder paste is recommended. - 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. # 7.3 PCB Land Pattern (2.5x3.2 mm) The figure below illustrates the 2.5x3.2 mm PCB land pattern for the Si544. The table below lists the values for the dimensions shown in the illustration. Figure 7.3. Si544 (2.5x3.2 mm) PCB Land Pattern Table 7.3. PCB Land Pattern Dimensions (mm) | Dimension | Description | Value (mm) | |-----------|---------------------------------------|------------| | X1 | Width - leads on long sides | 0.7 | | Y1 | Height - leads on long sides | 0.7 | | X2 | Width - single leads on short sides | 0.5 | | Y2 | Height - single leads on short sides | 0.55 | | D1 | Pitch in X directions of XL, Y1 leads | 1.80 | | E1 | Lead pitch X1, Y1 leads | 1.10 | | E2 | Lead pitch X2,Y2 leads | 2.65 | | Dimension | Description | Value (mm) | |-----------|-------------|------------| |-----------|-------------|------------| #### Notes: #### General - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. - 3. This Land Pattern Design is based on the IPC-7351 guidelines. - 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. # Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. # Stencil Design - 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. - 2. The stencil thickness should be 0.125 mm (5 mils). - 3. The ratio of stencil aperture to land pad size should be 0.8:1 for the pads. # **Card Assembly** - 1. A No-Clean, Type-3 solder paste is recommended. - 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. # 8. Top Marking (5x7 and 3.2x5 Packages) The figure below illustrates the mark specification for the Si544 5x7 and 3.2x5 package sizes. The table below lists the line information. Figure 8.1. Mark Specification Table 8.1. Si544 Top Mark Description | Line | Position | Description | | |------|--------------|---|--| | 1 | 1–8 | "Si544", xxx = Ordering Option 1, Option 2, Option 3 (e.g. Si544AAA) | | | 2 | 1 | 1 x = Frequency Range Supported as described in the Ordering Guide | | | | 2–7 | 6-digit custom Frequency Code as described in the Ordering Guide | | | 3 | Trace Code | | | | | Position 1 | Pin 1 orientation mark (dot) | | | | Position 2 | Product Revision (C) | | | | Position 3–5 | Tiny Trace Code (3 alphanumeric characters per assembly release instructions) | | | | Position 6–7 | Year (last two digits of the year), to be assigned by assembly site (ex: 2017 = 17) | | | | Position 8–9 | Calendar Work Week number (1–53), to be assigned by assembly site | | # 9. Top Marking (2.5x3.2 Package) The figure below illustrates the mark specification for the Si544 2.5x3.2 package size. The table below lists the line information. Figure 9.1. Mark Specification Table 9.1. Si544 Top Mark Description | Line | Position | Description | | |------|--------------|---|--| | 1 | 1–6 | D = Si544, CCCCC = Custom Mark Code | | | 2 | Trace Code | | | | | 1–6 | Six digit trace code per assembly release instructions | | | 3 | Position 1 | Position 1 Pin 1 orientation mark (dot) | | | | Position 2–3 | Year (last two digits of the year), to be assigned by assembly site (ex: 2017 = 17) | | | | Position 4–5 | Calendar Work Week number (1–53), to be assigned by assembly site | | # 10. Revision History #### Revision 206612A May, 2023 - Updated Min and Nom package diagram dimensions specs in 6.3 Package
Outline (2.5x3.2 mm). - Added Table 2.7 Absolute Maximum Ratings¹ on page 8. #### **Revision 1.3** June, 2021 - · Updated Ordering Guide and topmark for RevC silicon - · Added HCSL-Fast (faster tR/tF) ordering option - · Updated Table 2.1, Powerup VDD Ramp Rate - Updated Table 2.2, Settling Time for Large Frequency Change #### **Revision 1.2** September, 2020 • Updated Table 2.1, Powerup VDD Ramp Rate and LVDS Swing #### **Revision 1.1** November, 2019 • Added 2.5x3.2 mm package option. #### Revision 1.0 July, 2018 · Added 20 ppm total stability option. # Revision 0.75 March, 2018 · Added 25 ppm total stability option. #### Revision 0.5 October 27, 2017 Initial release. # **ClockBuilder Pro** One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). skyworksinc.com/CBPro skyworksinc.com skyworksinc.com/CBPro skyworksinc.com/quality Support & Resources skyworksinc.com/support # Copyright © 2022 Skyworks Solutions, Inc. All Rights Reserved. Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes. No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale. THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale. Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters. Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, ClockBuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.