ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET - Power, Dual N- & P-Channel, µ8FL

100 V, 70 mΩ, 9.5 A, -100 V, 186 mΩ, -5 A

NTTBC070NP10M5L

Features

- Small Footprint (3 x 3 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

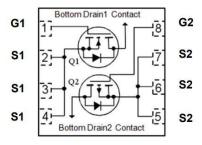
- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- Motor Drive, Home Automation

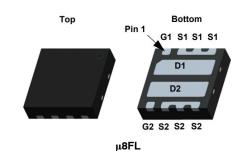
MAXIMUM RATINGS (T_J = 25°C, Unless otherwise specified)

Parameter			Symbol	Q1	Q2	Unit
Drain-to-Source	Drain-to-Source Breakdown Voltage			100	-100	٧
Gate-to-Source	/oltage		V_{GS}	±20	±20	V
Continuous Drain Current R ₀ JC (Note 2)	Steady State	T _C = 25°C	Ι _D	9.5	-5	Α
Power Dissipation R _{θJC} (Note 2)			P _D	14	10	W
Continuous Drain Current R _{0JA} (Note 1, 2)	Steady State	T _A = 25°C	I _D	3.5	-2.2	Α
Power Dissipation $R_{\theta JA}$ (Note 1, 2)			P _D	1.9	1.9	W
Pulsed Drain Current	$T_A = 25^{\circ}C$, $t_p = 10 \ \mu s$		I _{DM}	33	33	Α
Operating Junctio perature Range	Operating Junction and Storage Temperature Range			–55 to	+150	°C
Source Current (E	Source Current (Body Diode)			12	8	Α
Single Pulse Drain-to-Source Avalanche Energy (I _L = 7.3 A, 7.8 A, L = 1 mH)			E _{AS}	26	30	mJ
Lead Temperature Soldering Purpose (1/8" from case fo	es	Reflow for	TL	260	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
 The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.




ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	70 mΩ @ 10 V	9.5 A
-100 V	186 mΩ @ 10 V	–5 A

Dual-Channel MOSFET

MARKING DIAGRAM

CASE 511DG

&Y&Z&2&K 70NP 10M5L

= ON Semiconductor Logo &Y &Z = Assembly Plant Code = Numeric Date Code

= Lot Code

70NP10M5L = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Note 3)	8.9	12.5	°C/W
$R_{ hetaJA}$	Junction-to-Ambient - Steady State (Note 3)	65	65	

^{3.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ELECTRICAL CHARACTERISTICS (Q1, N-CHANNEL) ($T_J = 25$ °C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS					-	-	<u>-</u>
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 25$	Αμ 0	100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to	25°C		70		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	μΑ
		$V_{DS} = 100 \text{ V}$	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 2	±20 V			±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 2$	4 μΑ	1.0		3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} [/] T _J	$I_D = 24 \mu A$, ref to	25°C		7.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ V}$	1.3A		47	70	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D = 100 \text{ V}$	1.0 A		67	102	
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 4 A			6.2		S
Gate-Resistance	R_{G}	T _A = 25°C			0.74		Ω
CHARGES & CAPACITANCES	•				•		•
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			252		pF
Output Capacitance	C _{OSS}				64		7
Reverse Transfer Capacitance	C _{RSS}				3		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 50 V, I _D = 1.3 A			3		nC
Threshold Gate Charge	Q _{G(TH)}				0.6		
Gate-to-Source Charge	Q _{GS}				1.0		1
Gate-to-Drain Charge	Q_{GD}				1.1		
Total Gate Charge	Q _{G(TOT)}	V 40VV 50V			5.6		1
Plateau Voltage	V_{GP}	$V_{GS} = 10 \text{ V}, V_{DD} = 50 \text{ V}$, I _D = 1.3 A		2.6		V
SWITCHING CHARACTERISTICS							
Turn-On Delay Time	t _{d(ON)}				5.3		ns
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 50 \text{ V}, I_{D} = 1.3 \text{ A},$ $R_{G} = 6 \Omega$			2.5		1
Turn-Off Delay Time	t _{d(OFF)}				12.4		1
Fall Time	t _f				7.5		1
							—
Turn-On Delay Time	t _{d(ON)}				7.6		ns
Turn-On Delay Time Rise Time	t _{d(ON)}	V _G e = 4.5 V. V _D e = 50 V	. In = 1.3 A.		7.6		- ns
<u> </u>		$V_{GS} = 4.5 \text{ V}, V_{DS} = 50 \text{ V}$ $R_{G} = 6 \Omega$, I _D = 1.3 A,				ns -

ELECTRICAL CHARACTERISTICS (Q1, N-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

	. ,	, (0		, (,		
Parameter	Symbol	Test Conditio	ns	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.75	1.2	V
		$V_{GS} = 0 \text{ V},$ $I_{S} = 1.3 \text{ A}$	T _J = 125°C		0.6		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 50 A/μs, I _S = 1.2 A			28		ns
Charge Time	t _a				13		
Discharge Time	t _b				15		
Reverse Recovery Charge	Q_{RR}				8		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS (Q2, P-CHANNEL) (T_J = 25°C unless otherwise noted)

	60		l v
Drain-to-Source Breakdown Voltage Temperature Coefficient $V_{(BR)DSS}/T_J$ $I_D = -250 \mu\text{A}$, ref to 25°C Zero Gate Voltage Drain Current I_{DSS} $V_{GS} = 0 \text{V}$, $V_{DS} = -100 \text{V}$ $T_J = 25^{\circ}\text{C}$ Gate-to-Source Leakage Current I_{GSS} $V_{DS} = 0 \text{V}$, $V_{GS} = \pm 20 \text{V}$ ON CHARACTERISTICS Gate Threshold Voltage $V_{GS}(TH)$ $V_{GS} = V_{DS}, I_D = -40 \mu\text{A}$ -2.0 Negative Threshold Temperature Coefficient $V_{GS}(TH)^T / T_J$ $I_D = -40 \mu\text{A}$, ref to 25°C -2.0 Drain-to-Source On Resistance $R_{DS}(on)$ $V_{GS} = -10 \text{V}, I_D = -2.2 \text{A}$ -2.0 Forward Transconductance g_{FS} $V_{DS} = 5 \text{V}, I_D = -4 \text{A}$ -2.0 Gate-Resistance R_G $T_A = 25^{\circ}\text{C}$ -2.0 CHARGES & CAPACITANCES -2.0V -2.0V	60		V
Temperature Coefficient $I_{DSS} = -230 \ \mu \text{A, ref to } 25 \ \text{C}$ $Zero \ \text{Gate Voltage Drain Current}$ $I_{DSS} = 0 \ \text{V, V}_{DS} = -100 \ \text{V}$ $T_{J} = 25^{\circ}\text{C}$ $T_{J} = 125^{\circ}\text{C}$ $T_$	60		1 "
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-1	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-100	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		±100	nA
Negative Threshold Temperature Coefficient $V_{GS(TH)}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-4.0	V
$V_{GS} = -6 \text{ V, } I_D = -1.4 \text{ A}$ Forward Transconductance $g_{FS} \qquad V_{DS} = 5 \text{ V, } I_D = -4 \text{ A}$ $Gate-Resistance \qquad R_G \qquad T_A = 25^{\circ}C$ $CHARGES \& CAPACITANCES$ $Input Capacitance \qquad C_{ISS}$	6.6		mV/°C
Forward Transconductance g_{FS} $V_{DS} = 5 \text{ V}, I_D = -4 \text{ A}$ Gate-Resistance R_G $T_A = 25^{\circ}\text{C}$ CHARGES & CAPACITANCES Input Capacitance C_{ISS}	146	186	mΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	178	284	1
CHARGES & CAPACITANCES Input Capacitance CISS	5.9		S
Input Capacitance C _{ISS}	1.75		Ω
Output Capacitance Coss Vos = 0 V. f = 1 MHz, Vps = -50 V	256		pF
1 1 000 100 011 1 1 1 1 1 1 1 1 1 1 1	63		1
Reverse Transfer Capacitance C _{RSS}	3		1
Total Gate Charge Q _{G(TOT)}	7.3		nC
Threshold Gate Charge Q _{G(TH)}	1.5		1
Gate-to-Source Charge Q_{GS} $V_{GS} = -10 \text{ V}, V_{DS} = -50 \text{ V}, I_D = -2.2 \text{ A}$	2.4		1
Gate-to-Drain Charge Q _{GD}	1.2		1
Total Gate Charge Q _{G(TOT)}	4.6		nC
Plateau Voltage V_{GP} $V_{GS} = -6 \text{ V}, V_{DD} = -50 \text{ V}, I_D = -2.2 \text{ A}$	4.5		V
SWITCHING CHARACTERISTICS			
Turn-On Delay Time t _{d(ON)}	8.9		ns
Rise Time $ t_{r} \hspace{1cm} V_{GS} = -10 \text{ V}, V_{DS} = -50 \text{ V}, I_{D} = -2.2 \text{ A}, $	3.6		1
D 00	13.2		1
Fall Time t _f			1

ELECTRICAL CHARACTERISTICS (Q2, P-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Turn-On Delay Time	t _{d(ON)}			10.8		ns
Rise Time	t _r	$V_{GS} = -6 \text{ V}, V_{DS} = -50 \text{ V}, I_{D} = -2.2 \text{ A},$		4.8		
Turn-Off Delay Time	t _{d(OFF)}	$R_G = 6 \Omega$		10		
Fall Time	t _f			4.1		

OFF CHARACTERISTICS

Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C	-0.86	-1.2	V
		$V_{GS} = 0 \text{ V},$ $I_{S} = -2.2 \text{ A}$	T _J = 125°C	-0.72		
Reverse Recovery Time	t _{RR}			34		ns
Charge Time	ta	$V_{GS} = 0 \text{ V, } dI_S/dt = 100 \text{ A/}\mu\text{s,}$ $I_S = -1.1 \text{ A}$		27		
Discharge Time	t _b	I _S = −1.1 A	.,	7		
Reverse Recovery Charge	Q_{RR}			53		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS - N-CHANNEL

D, DRAIN CURRENT (A)

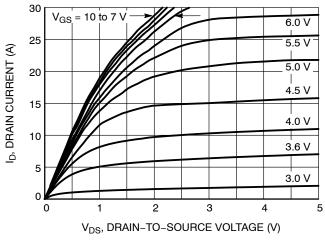


Figure 1. On-Region Characteristics

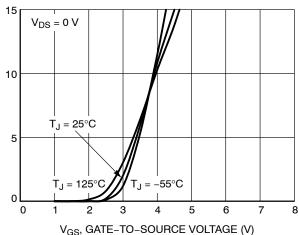


Figure 2. Transfer Characteristics

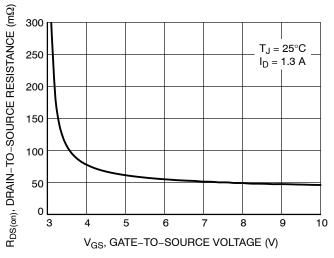


Figure 3. On-Resistance vs. Gate-to-Source Voltage

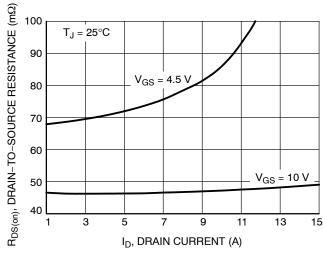


Figure 4. On-Resistance vs. Drain Current

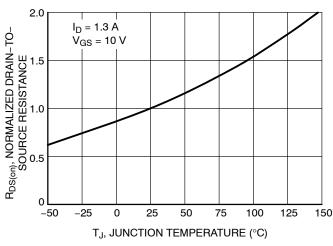


Figure 5. On–Resistance Variation with Temperature

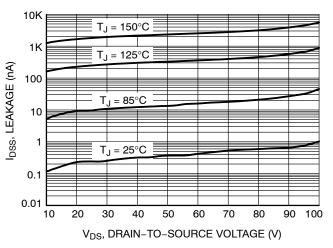
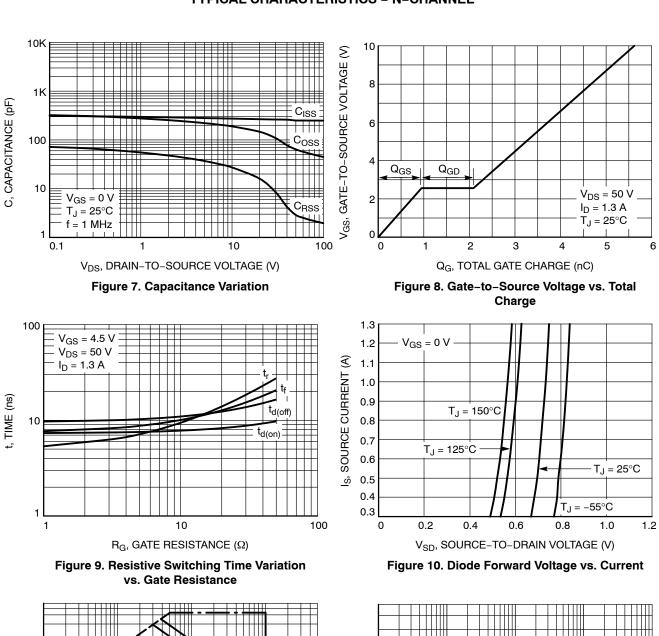



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - N-CHANNEL

ID, DRAIN CURRENT (A) 300 μs 1 ms T_A = 25°C Single Pulse $V_{GS} \leq 10 \ V$ 10 ms 100 ms $R_{DS(on)}$ Limit Thermal Limit 1 sec Package Limit 0.01 10 0.1 V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 11. Safe Operating Area

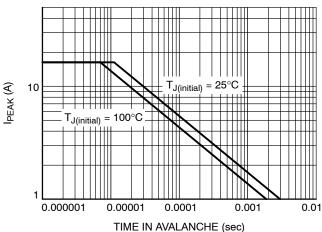


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS - N-CHANNEL

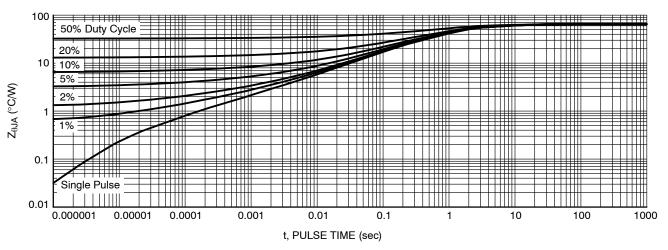


Figure 13. Junction-to-Ambient Transient Thermal Response

TYPICAL CHARACTERISTICS - P-CHANNEL

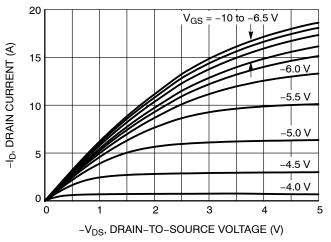


Figure 14. On-Region Characteristics

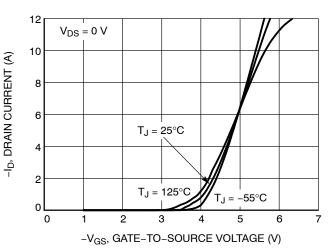


Figure 15. Transfer Characteristics

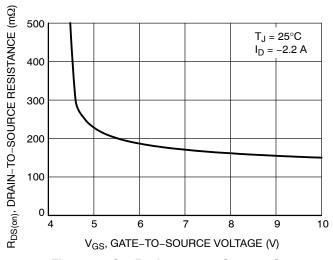


Figure 16. On-Resistance vs. Gate-to-Source Voltage

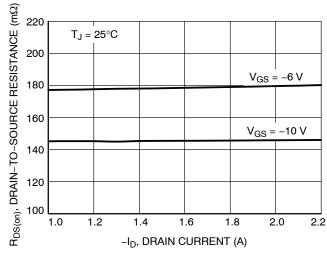


Figure 17. On-Resistance vs. Drain Current

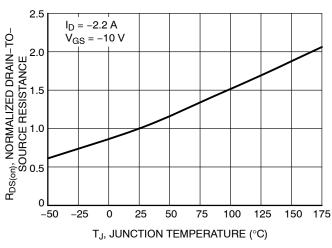


Figure 18. On-Resistance Variation with Temperature

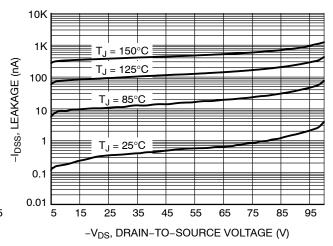


Figure 19. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - P-CHANNEL

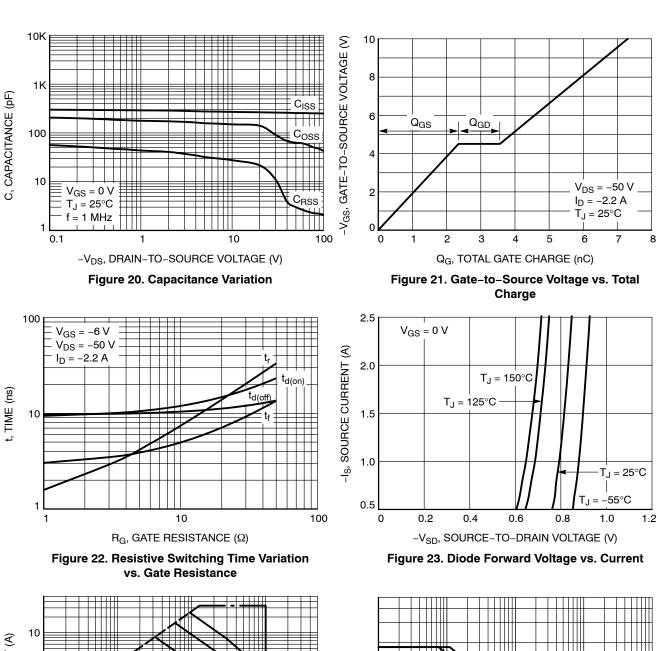


Figure 24. Safe Operating Area

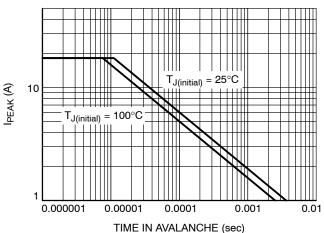


Figure 25. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS - P-CHANNEL

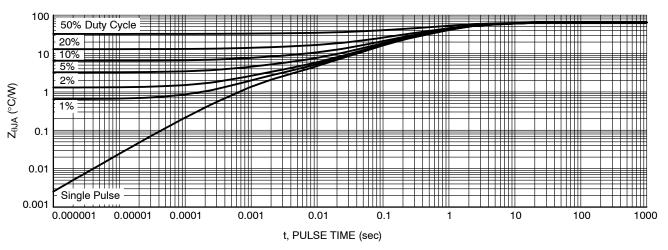


Figure 26. Junction-to-Ambient Transient Thermal Response

ORDERING INFORMATION

Device	Device Marking	Package	Shipping (Qty / Packing) [†]
NTTBC070NP10M5L	70NP10M5L	μ8FL (Pb–Free/Halogen Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

WDFN8 3x3, 0.65P CASE 511DG **ISSUE A** B PIN DNE REFERENCE **A3** TOP VIEW DETAIL B DETAIL B // 0.10 C ○ 0.08 C SEATING NOTE 4 **PLANE** C SIDE VIEW -8X L -סמ 2X b2 4X L2 8 (0.20)5 2X 0.755 2X E2 (0.35) <u>rco</u>.20>5× 0.52 8X b

e

BOTTOM VIEW

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 APPLIES TO PLATED TERMINALS AND IS MEASURED BETWEEN 0.15 AND 0.30MM FROM THE TERMINAL TIP.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS					
	IMIT	MILLIMETERS				
DIM	MIN.	N□M.	MAX.			
Α	0.70	0.75	0.80			
A1	0.00		0.05			
A3	-	0.20 REF	-			
b	0.30	0.35	0.40			
b2		1.65 REF				
D	2.90	3.00	3.10			
D2	2.45	2.50	2.55			
E	2.90	3.00	3.10			
E2	1.40	1.50	1.60			
e		0.65 BSC	;			
К	0.25					
K2		0.35 REF	-			
١	0.27	0.32	0.37			
L2	().163 REF	-			

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

RECOMMENDED

MOUNTING FOOTPRINT*

nformation on our Pb-Free strategy and 5, please download the DN Semiconductor ounting Techniques Reference Manual,

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

0.10 C A B

NOTE 3

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support: