

Features

Saturated Power: 60 W
Power Added Efficiency: 30 %
Large Signal Gain: 25 dB

Small Signal Gain: 20 dB
Input Return Loss: -10 dB
Output Return Loss: -6 dB

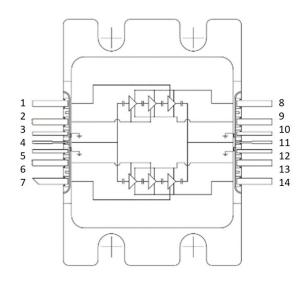
CW operation

Applications

• Direct Broadcast Satcom

Description

The CMPA1H1J050F is a 60 W package MMIC HPA utilizing MACOM's high performance, 0.15 µm GaN-on-SiC production process. The CMPA1H1J050F operates from 17.3 - 18.4 GHz and supports Direct Broadcast Satellite communications. The CMPA1H1J050F achieves 60 W of saturated output power with 25 dB of large signal gain and typically 30% power-added efficiency under CW operation.


Packaged in a 17.5 x 24 mm bolt-down, flange package, the CMPA1H1J050F provides superior RF performance and thermal management allowing customers to improve SWaP-C benchmarks in their next-generation systems.

Ordering Information

Part Number	Package (MOQ/ Mult)
CMPA1H1J050F	Tray (10/10)
CMPA1H1J050F-AMP	Sample Board (1/1)

Functional Schematic

Pin Configuration¹

Pin #	Function
1, 2	Gate Bias - Top MMIC
3, 5, 10, 12	GND
4	RF Input
6, 7	Gate Bias - Bot MMIC
8, 9	Bias Drain - Top MMIC
11	RF Output
13, 14	Bias Drain - Bot MMIC

The base of the package must be connected to RF, DC and thermal ground.

RF Electrical Specifications: $V_D = 28 \text{ V}$, $I_{DQ} = 700 \text{ mA}$, CW, $T_C = 25^{\circ}\text{C}$, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Frequency (GHz)	Units	Min.	Тур.	Max.
Output Power		17.3 17.8 18.4	dBm	46.0 47.0 46.0	47.0 48.5 48.0	_
Power Added Efficiency	P _{IN} = 23 dBm	17.3 17.8 18.4	%	29 30 29	30 32 32	_
Large Signal Gain		17.3 17.8 18.4	dB	23.0 24.0 23.0	24.0 25.5 25.0	_
Small Signal Gain		17.3 - 18.4	dB	_	30	_
Input Return Loss	P _{IN} = -20 dBm	17.3 - 18.4	dB	_	-10	_
Output Return Loss		17.3 - 18.4	dB	_	-6	_
IM3	P _{OUT} /Tone = 41 dBm Tone/Spacing = 600 MHz	17.3 17.8 18.4	dBc		-26 -27 -27	_

DC Electrical Specifications:

Parameter	Units	Min.	Тур.	Max.
Drain Voltage	V	_	28	_
Gate Voltage	V	_	-1.9	_
Quiescent Drain Current	mA	_	700	_
Saturated Drain Current	А	_	7.8	_

Recommended Operating Conditions

Parameter	Symbol	Unit	Min.	Тур.	Max.
Input Power	P _{IN}	dBm	_	23	_
Drain Voltage	V _D	V	_	28	_
Gate Voltage	V _G	V	_	-1.9	_
Quiescent Drain Current	I _{DQ}	mA	_	700	_
Operating Temperature	T _C	°C	-40	_	+85

Absolute Maximum Ratings^{2,3}

Parameter	Symbol	Unit	Min.	Max.
Input Power	P _{IN}	dBm	_	26
Drain to Source Voltage	V _{DS}	V	_	84
Drain Voltage	V _D	V	_	28
Gate Voltage	V _G	V	-8	+2
Drain Current	I _D	А	_	12.8
Gate Current	I _G	mA	_	24.6
Dissipated Power @ +85°	P _{DISS}	W	_	160
VSWR	_	Ratio	_	3:1
Junction Temperature (MTTF > 1E6 Hrs)	TJ	°C	_	+225
Storage Temperature	T _{STG}	°C	-55	+150
Mounting Temperature (30 seconds)	T _M	°C	_	+320
Screw Torque	τ	in-oz	_	40

^{2.} Exceeding any one or combination of these limits may cause permanent damage to this device.

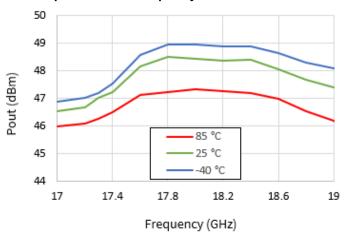
Handling Procedures

Please observe the following precautions to avoid damage:

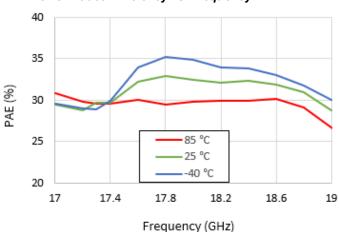
Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

^{3.} MACOM does not recommend sustained operation near these survivability limits.

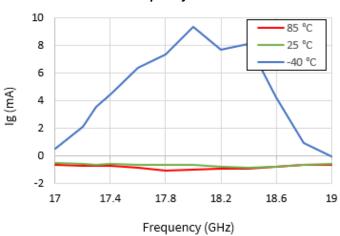

Large Signal vs Temperature

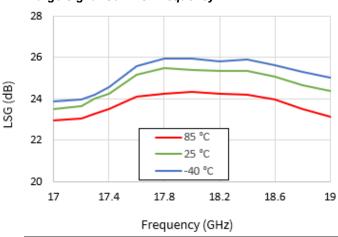
CMPA1H1J050F Rev. V1


Typical Performance Curves - Large Signal over Temperature

 V_D = 28 V, I_{DQ} = 700 mA, CW, P_{IN} = 23 dBm


Output Power vs. Frequency

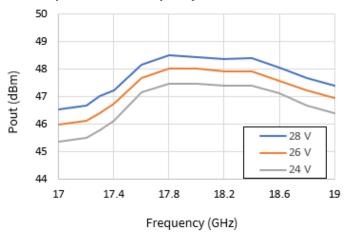

Power Added Efficiency vs. Frequency

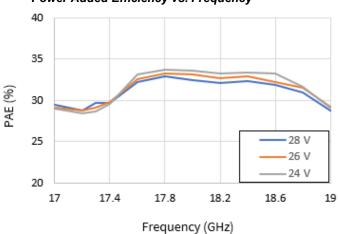

Drain Current vs. Frequency

Gate Current vs. Frequency

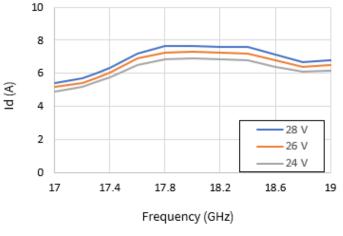
Large Signal Gain vs. Frequency

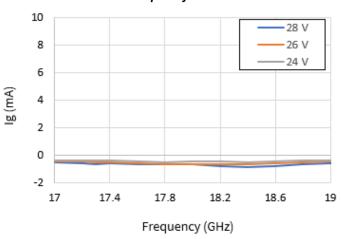
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

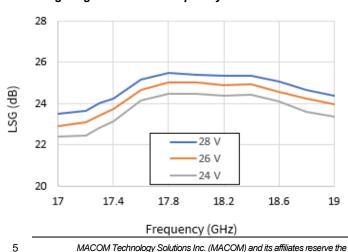

Visit www.macom.com for additional data sheets and product information.


Typical Performance Curves - Large Signal over V_D

 I_{DQ} = 700 mA, CW, P_{IN} = 23 dBm, T_{C} = 25°C


Output Power vs. Frequency

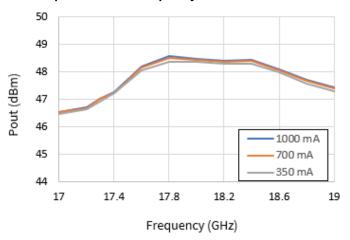

Power Added Efficiency vs. Frequency

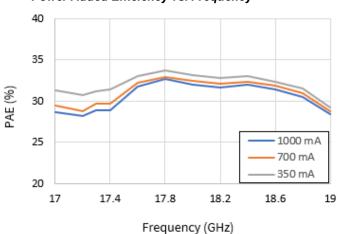

Drain Current vs. Frequency

Gate Current vs. Frequency

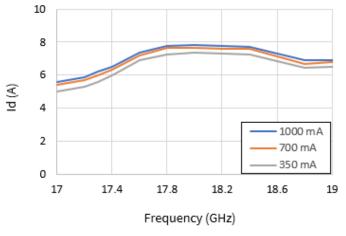
Large Signal Gain vs. Frequency

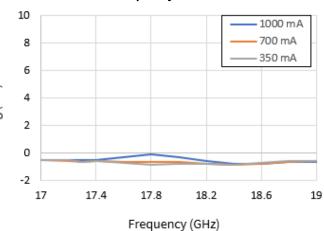
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

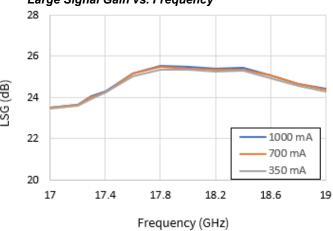

Visit www.macom.com for additional data sheets and product information.


Typical Performance Curves - Large Signal over IDQ

 $V_D = 28 \text{ V}, \text{ CW}, \text{ P}_{\text{IN}} = 23 \text{ dBm}, \text{ T}_{\text{C}} = 25 ^{\circ}\text{C}$


Output Power vs. Frequency

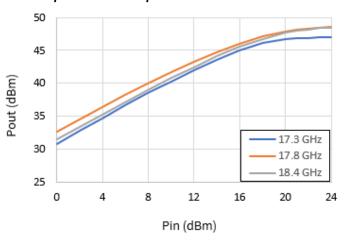

Power Added Efficiency vs. Frequency

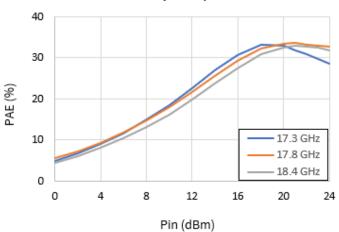

Drain Current vs. Frequency

Gate Current vs. Frequency

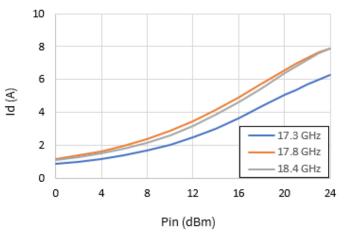
Large Signal Gain vs. Frequency

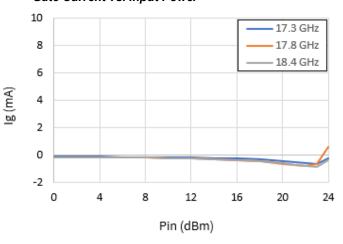
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

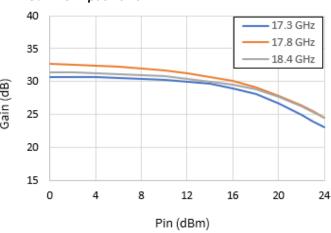

Visit www.macom.com for additional data sheets and product information.


Typical Performance Curves - Drive-Up over Frequency

 $V_D = 28 \text{ V}, I_{DQ} = 700 \text{ mA}, CW, T_C = 25^{\circ}\text{C}$


Output Power vs. Input Power

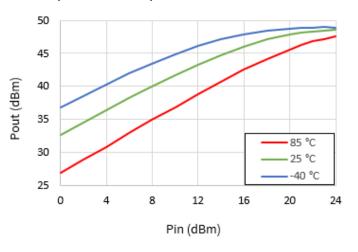

Power Added Efficiency vs. Input Power

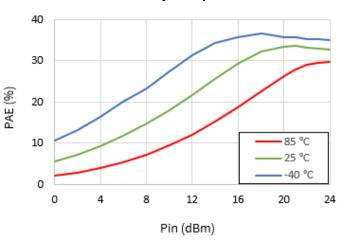

Drain Current vs. Input Power

Gate Current vs. Input Power

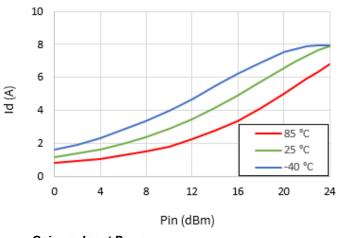
Gain vs. Input Power

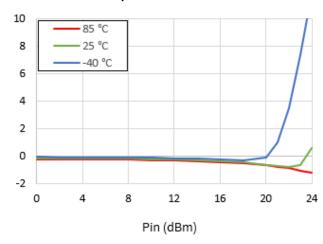
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

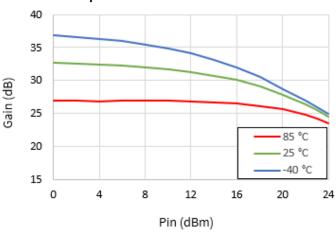

Visit www.macom.com for additional data sheets and product information.


Typical Performance Curves - Drive-Up over Temperature

 V_D = 28 V, I_{DQ} = 700 mA, CW, Frequency = 17.8 GHz


Output Power vs. Input Power


Power Added Efficiency vs. Input Power

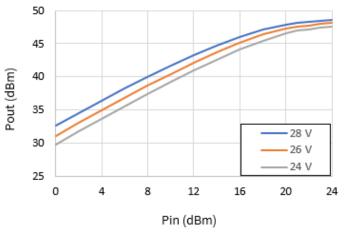

Drain Current vs. Input Power

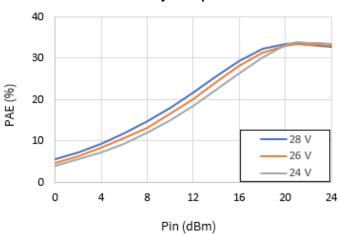
Gate Current vs. Input Power

Gain vs. Input Power

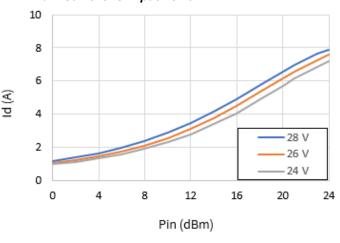
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

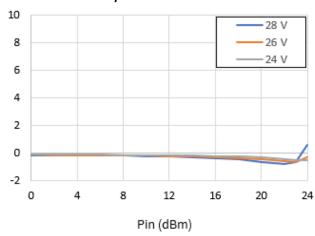
Visit www.macom.com for additional data sheets and product information.

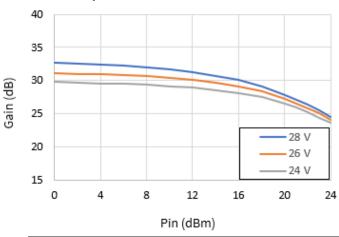

lg (mA)


Typical Performance Curves - Drive-Up over V_D

 I_{DQ} = 700 mA, CW, Frequency = 17.8 GHz, T_{C} = 25°C


Output Power vs. Input Power


Power Added Efficiency vs. Input Power


Drain Current vs. Input Power

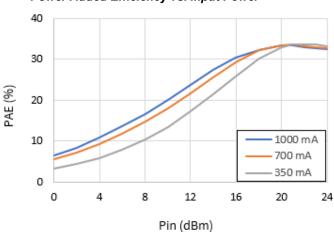
Gate Current vs. Input Power

Gain vs. Input Power

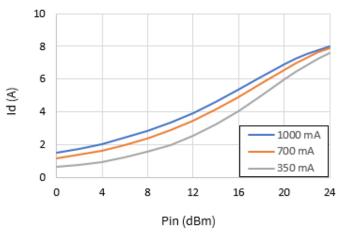
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

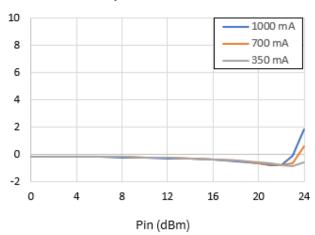
Visit www.macom.com for additional data sheets and product information.

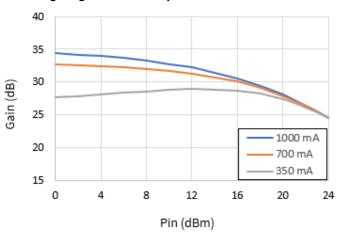
lg (mA)


Typical Performance Curves - Drive-Up over IDQ

 V_D = 28 V, CW, Frequency = 17.8 GHz, T_C = 25°C


Output Power vs. Input Power


Power Added Efficiency vs. Input Power


Drain Current vs. Input Power

Gate Current vs. Input Power

Large Signal Gain vs. Input Power

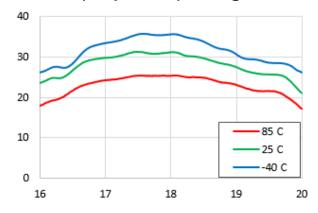
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

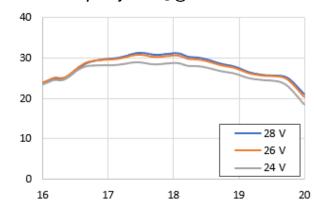
Ig (mA)

Typical Performance Curves - Small Signal over Temperature and V_D

S21 (dB)

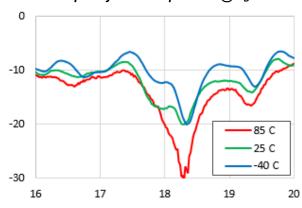

S11 (dB)

 I_{DQ} = 700 mA, CW, P_{IN} = -20 dBm

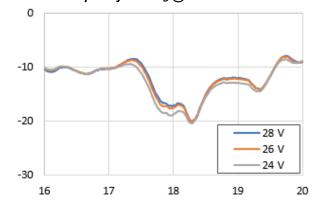

S21 (dB)

S11 (dB)

S21 vs. Frequency over Temperature @ V_D = 28 V

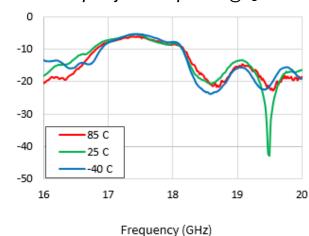


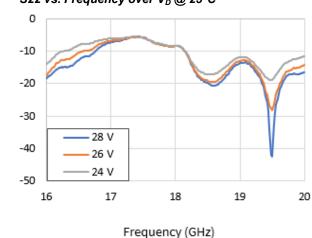
S21 vs. Frequency over V_D @ 25°C


Frequency (GHz)

S11 vs. Frequency over Temperature @ V_D = 28 V

Frequency (GHz)


S11 vs. Frequency over V_D @ 25°C


Frequency (GHz)

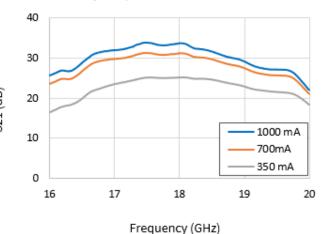
Frequency (GHz)

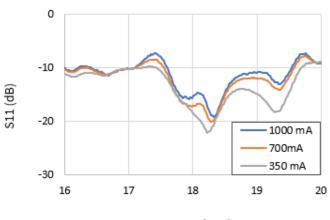
S22 vs. Frequency over Temperature @ V_D = 28 V

S22 vs. Frequency over V_D @ 25°C

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

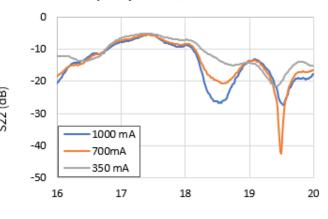
Visit www.macom.com for additional data sheets and product information.


S22 (dB)


Typical Performance Curves - Small Signal over IDQ

 $V_D = 28 \text{ V}, \text{ CW}, P_{IN} = -20 \text{ dBm}, T_C = 25^{\circ}\text{C}$

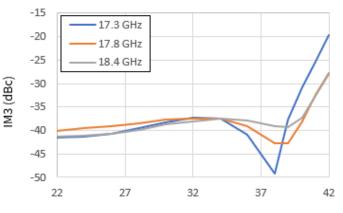
S21 vs. Frequency over IDQ



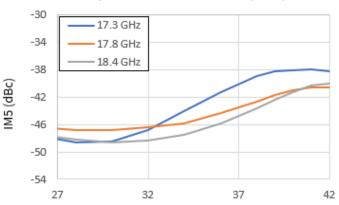
S11 vs. Frequency over IDQ

Frequency (GHz)

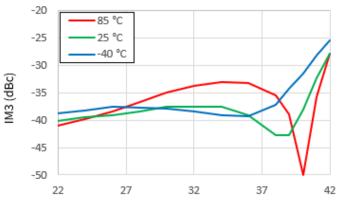
S22 vs. Frequency over IDQ


Frequency (GHz)

Typical Performance Curves - Linearity (IM3 and IM5)


V_D = 28 V, I_{DQ} = 700 mA, CW, Frequency = 17.8 GHz, Tone Spacing = 10 MHz, T_C = 25°C (unless otherwise stated)

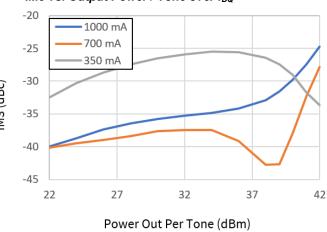
IM3 vs. Output Power / Tone over Frequency


Power Out Per Tone (dBm)

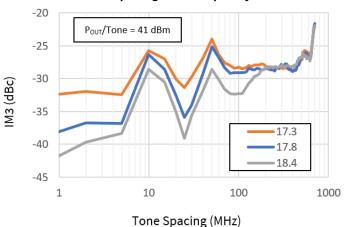
IM5 vs. Output Power / Tone over Frequency

Power Out Per Tone (dBm)

IM3 vs. Output Power / Tone over Temperature


Power Out Per Tone (dBm)

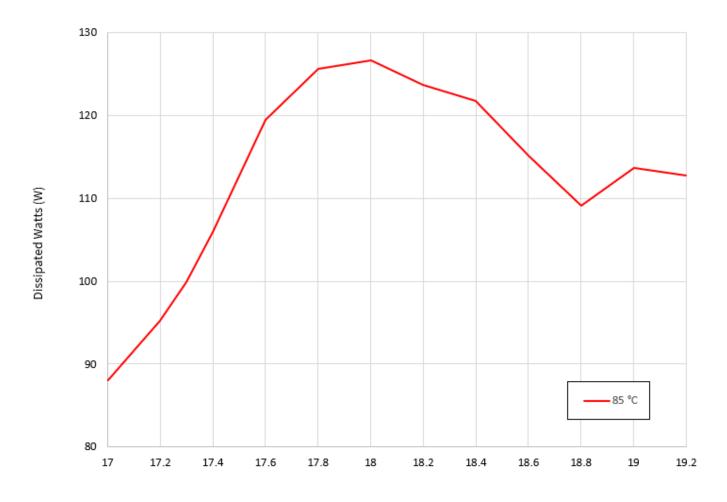
IM5 vs. Output Power / Tone over Temperature



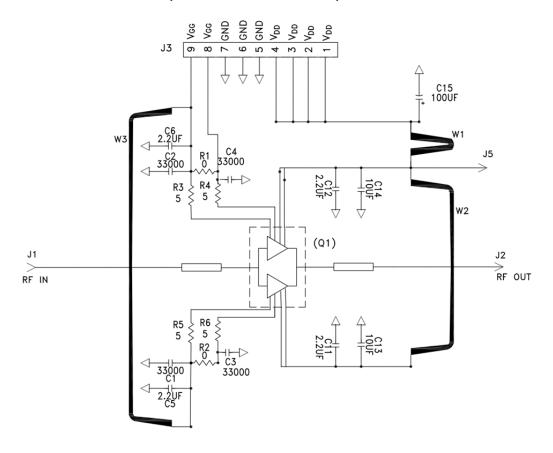
Power Out Per Tone (dBm)

IM3 vs. Output Power / Tone over IDQ

IM3 vs. Tone Spacing over Frequency

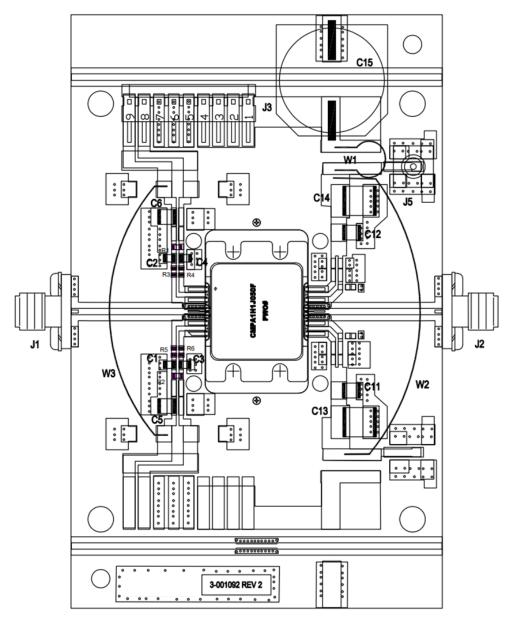


Thermal Characteristics


Parameter	Operating Conditions	Value
Operating Junction Temperature (T_J)	Freq = 17.8 GHz, V_D = 28 V, I_{DQ} = 700 mA, I_{DRIVE} = 6.35 A, P_{IN} = 23 dBm, P_{OUT} = 47.2 dBm, P_{DISS} = 125.3 W,	215.3°C
Thermal Resistance, Junction to Case ($R_{\theta JC}$)	$T_{CASE} = 85^{\circ}C, CW$	1.04°C/W

Power Dissipation vs. Frequency ($T_c = 85^{\circ}C$)

Evaluation Board Schematic (CMPA1H1J050F-AMP)

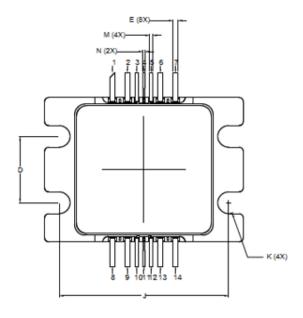


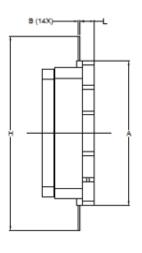
Parts List

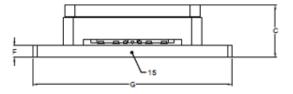
Part	Value	Qty.
C1,C3,C2,C4	CAP, 33000 pF, 0805,100V, X7R	4
C5,C6,C11,C12	CAP, 2.2 μF, 100V, 10%, X7R, 1210	4
C13,C14	CAP, 10 μF, 100V, 10%, X7R, 2220	2
C15	CAP, 100 μF, 20%, 160V, ELEC	1
W1, W2, W3	WIRE, 18 AWG ~ 1.75"	3
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
J5	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
Q1	CMPA1H1J050F, MMIC	1
-	PCB, ROGERS 6035 HTC, 2.5x4.0x0.020 IN	1
-	BASEPLATE, CU, 2.5 X 4.0 X 0.5 IN	1
-	2-56 SOC HD SCREW 1/4 SS	4
-	#2 SPLIT LOCKWASHER SS	4
R1,R2	RES,1/16W,0603,1%,0 OHMS	2
R3,R4,R5,R6	RES,1/16W,0603,1%,5.1 OHMS	4

Evaluation Board Assembly Drawing (CMPA1H1J050F-AMP)

Bias On Sequence

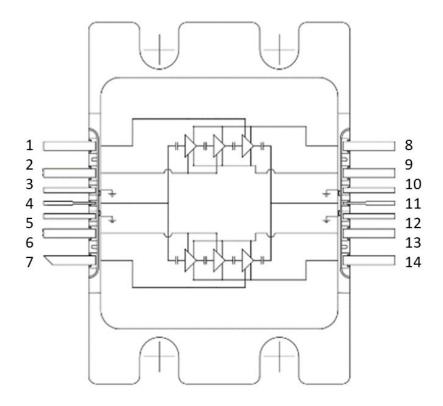

- 1. Ensure RF is turned-off
- 2. Apply pinch-off voltage of -5 V to the gate (V_G)
- 3. Apply nominal drain voltage (V_D)
- 4. Adjust Vg to obtain desired quiescent drain current (I_{DQ})
- 5. Apply RF


Bias Off Sequence


- 1. Turn RF off
- 2. Apply pinch-off to the gate $(V_G = -5 V)$
- 3. Turn off drain voltage (V_D)
- 4. Turn off gate voltage (V_G)

Mechanical Information[†]

NOTES:


- 1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.679	0.691	17.25	17.55
В	0.003	0.006	0.076	0.152
С	0.234	0.261	5.94	6.63
D	0.307	0.323	7.80	8.20
Ε	0.016	0.032	0.406	0.813
F	0.047	0.063	1.194	1.600
G	0.936	0.954	23.77	24.23
Н	0.912	0.930	23.16	23.62
J	0.795	0.811	20.19	20.60
K	ø0.094	ø0.110	ø2.39	ø2.79
L	0.062	0.078	1.575	1.981
М	0.006	0.022	0.152	0.559
N	0.004	0.018	0.102	0.457

Pin Description

Pin#	Name	Description
1	VG3, Top MMIC	Gate bias - 3rd stage - Top MMIC
2	VG1-2, Top MMIC	Gate bias - 1st and 2nd stages - Top MMIC
3, 5, 10, 12	GND	RF and DC ground
4	RF Input	RF Input. 50-ohm matched. Internally DC blocked.
6	VG1-2, Bot MMIC	Gate bias - 1st and 2nd stages - Bottom MMIC
7	VG3, Bot MMIC	Gate bias - 3rd stage - Bottom MMIC
8, 9	Bias Drain—Top MMIC	Drain bias - Top MMIC - Both must be connected.
11	RF Output	RF Output. 50-ohm matched. Internally DC blocked.
13, 14	Bias Drain—Bot MMIC	Drain bias - Bottom MMIC - Both must be connected.
Base	GND	RF and DC ground

GaN High Power Amplifier, 60 W 17.3 - 18.4 GHz

CMPA1H1J050F Rev. V1

Revision History

Rev	Date	Change Description
V1	12/20/2024	Production release.

GaN High Power Amplifier, 60 W 17.3 - 18.4 GHz

CMPA1H1J050F Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.