

ORQP-EOS12Isolated DC-DC Converter

The 0RQP-E0S12 series are isolated DC/DC converters that operate from a nominal 48 VDC source. These units provide up to 800 W of output power from a nominal 48 VDC input.

These units are designed to be highly efficient and low cost. Features include remote on/off, short circuit protection, over current protection, under-voltage lockout, over temperature protection, power management bus communications and so on.

These converters are provided in an industry standard quarter brick package.

Key Features & Benefits

- 40 60 VDC Input
- 12 VDC @ 66.8 A Output
- 1/4th Brick Converter
- Fixed Frequency
- High Efficiency
- Input Under Voltage Lockout
- Input Over Voltage Lockout
- OCP/SCP
- Over Temperature Protection
- Over Voltage Protection
- Power Management Bus Communications
- Approved to IEC/EN 62368-1
- Class II, Category 2, Isolated DC/DC Converter (refer to IPC-9592B)

Applications

- Industrial
- Telecommunications

1. MODEL SELECTION

MODEL NUMBER	OUTPUT VOLTAGE	INPUT VOLTAGE	MAX. OUTPUT CURRENT	MAX. OUTPUT POWER	TYPICAL EFFICIENCY
0RQP-E0S12AG					
0RQP-E0S12BG					
0RQP-E0S12CG	12 VDC	40 – 60 VDC	66.8 A	800 W	96.5%
0RQP-E0S12PG					
0RQP-E0S12BNG					

PART NUMBER EXPLANATION

0	R	QP	- E0	s	12	x	G
Mounting Type	RoHS Status	Series Name	Output Power	Input Range	Output Voltage	Logic and Optional Features	Package Type
Through hole mount	RoHS	with power management bus interface	800 W	40 – 60 V	12 V	 A - Active high, without droop, pin length 0.18" B - Active low, without droop, pin length 0.18" C - Active low, with heatsink, without droop, pin length 0.18" P - Active low, with droop, pin length 0.18" BN - Active low, without droop, pin length 0.11" 	Tray package

2. ABSOLUTE MAXIMUM RATINGS

PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNITS
Non-operating Input Voltage		-0.3	-	80	V
Input Transient Voltage	Operating transient \leq 100 ms	-	-	80	V
Remote On/Off		-0.3	-	18	V
PMBDATA		-0.3	-	3.3	V
PMBCLK		-0.3	-	3.3	V
SMBALERT		-0.3	-	3.3	V
Addr1		-0.3	-	3.3	V
Addr0		-0.3	-	3.3	V
C2		-0.3	-	3.3	V
Isolation Voltage	Input to output	-	-	1500	V
Ambient Temperature Long-Term	All components on the Unit meet IPC-9592 (latest revision) derating guidelines.	-40	-	85	°C
Ambient Temperature Short-Term	(96 hours/year). Unit's component temperatures exceed IPC-9592 (latest revision) derating guidelines but not exceed component temperature ratings.	-40	-	90	°C
Storage Temperature		-55	-	125	°C
Altitude		-	-	5000	m
Humidity		10	-	90	%

NOTE: Ratings used beyond the maximum ratings may cause a reliability degradation of the converter or may permanently damage the device.

tech.support@psbel.com belfuse.com/power-solutions

ORQP-EOS12 3

INPUT SPECIFICATIONS

All specifications are typical at 25°C unless otherwise stated.

PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNIT
Operating Input Voltage	Fully functioning for long term operation	40	48	60	V
Input Current (full load)	Vin = 40 V, Vo = 12 V, Io = 66.8 A	-	-	25	Α
Input Current (no load)	Vin = 40 V, Vo = 12 V	-	150	200	mA
Remote Off Input Current		-	15	20	mA
Input Reflected Ripple Current is (RMS)	10 µH source impedance, Vin = 40-60 V, Io = Io max. Refer to section 13 for detail input capacitance and waveforms	-	20	30	mA
Input Reflected Ripple Current is (PK-PK)	10 µH source impedance, Vin = 40-60 V, Io = Io max. Refer to section 13 for detail input capacitance and waveforms	-	60	110	mA
Input Terminal Ripple Current (RMS)	10 µH source impedance, Vin = 40-60 V, lo = lo max. Refer to section 13 for detail input capacitance and waveforms	-	1000	1500	mA
Under-voltage Turn off Threshold	Lockout turn off, non-latching	35	36.5	38	V
Under-voltage Turn on Threshold	Auto-recovery and non-latching.	36	38.5	39.5	V
Under-voltage Lockout Hysteresis Voltage		-	2	-	V
Over-voltage Recovery Threshold	Lockout turn off, non-latching	75	77	79	V
Over-voltage Shutdown Threshold	Auto-recovery and non-latching.	80	82	85	V
Over-voltage Lockout Hysteresis Voltage		-	5	-	V

CAUTION: This converter is not internally fused. An input line fuse must be used in application. Recommended input fast-acting fuse on system board.

+86 755 298 85888

Asia-Pacific Europe, Middle East +353 61 225 977

4. OUTPUT SPECIFICATIONS

All specifications are typical at nominal input, full load at 25°C unless otherwise stated.

Output Voltage Set Point Test condition of the output set point: Vin = 48 V, lo = 50% load at 25°C ambient. Vin = 40-60 V, resistive load, and temperature conditions until end of life Vin = 40-60 V, resistive load, and temperature conditions until end of life Vin = 40-60 V, resistive load, and temperature conditions until end of life Vin = 40-60 V, resistive load, and temperature conditions until end of life	76 12.00 63 12.00	0 12.24	V V
Output Voltage Range (with droop) 11.6	63 12.00		
() lithlit Voltage Range (with groop)		0 12.37	
	00		V
Load Regulation (without droop) Io = $0\sim100\%$ load (Vin = $40-60$ V)	20	40	mV
Load Regulation (with droop) Io = $0\sim100\%$ load (Vin = $40-60$ V)	500	-	mV
Line Regulation $Vin = 40\sim60 \text{ V}$ -	20	60	mV
Regulation Over Temperature -	150	200	mV
Output Ripple and Noise (pk-pk)	75	150	mV
Output Ripple and Noise (rms) Vin = 48V, lo = 100% load at 25°C ambient, 5 Hz - 20 MHz BW, 270 µF / 16 V (OS-CON)	20	30	mV
Output Current Range 0	-	66.8	Α
Output DC Current Limit Hiccup mode 73	80.2	87	Α
Rise Time Trise=Time for Vo to rise from 10% to 90% of Vo,set -	12	20	ms
Turn-On Delay (Vin) Tdelay=Time until Vo = 10% of Vo,set Enable with Vin -	29	35	ms
Turn-On Delay (on/off) Tdelay=Time until Vo = 10% of Vo,set Enable with on/off	18	20	ms
Overshoot at Turn on -	0	3	%
Undershoot at Turn off -	0	3	%
Output Capacitance 270) -	10000	μF
Transient Response			
△V 50%~75% of Max Load -	250	350	mV
Settling Time $di/dt = 0.1 \text{ A/}\mu\text{s}$, $Vin = 48 \text{ VDC}$, $Ta=25^{\circ}\text{C}$,	-	700	μs
Δ V 75%~50% of Max Load Tested with a 270 μ F / 16 V (OS-CON)	250	350	mV
Settling Time -	-	700	μs

5. GENERAL SPECIFICATIONS

PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNIT
Efficiency	lo = 100% Irate	94	96.5	97.5	%
Efficiency	lo = 60% Irate	94	96.6	97.5	%
Switching Frequency		-	150	-	kHz
MTBF	Calculated Per Bell Core SR-332 (Vin = 48	-	3.5	-	M hrs
FIT	V, Vo = 12 V, Io = 80% Iomax A, Ta = 40°C, Airflow = 200 LFM, FIT = 109/MTBF)	-	55	-	109/Hours
Over Temperature Protection		-	130	-	°C
Over Voltage Protection (Static)	Latching mode	12.8	-	14	V
Weight		-	85	-	g
	0RQP-E0S12A 0RQP-E0S12B	2.30 x 1.45 x 0.57 inch			
Dimensions (L × W × H)	0RQP-E0S12P 0RQP-E0S12P	58.42 x 36.83 x 14.48			mm
	0RQP-E0S12C	2.	inch		
	UNQF-EUSTZU	58.4	58.42 x 36.83 x 25.91		
Isolation Characteristics					
Input to Output		-	-	1500	VDC
Input to Heatsink		-	-	1500	VDC
Output to Heatsink		-	-	500	VDC
Isolation Resistance		10M	-	-	Ohm
Isolation Capacitance		-	-	3300	pF

6. EFFICIENCY DATA

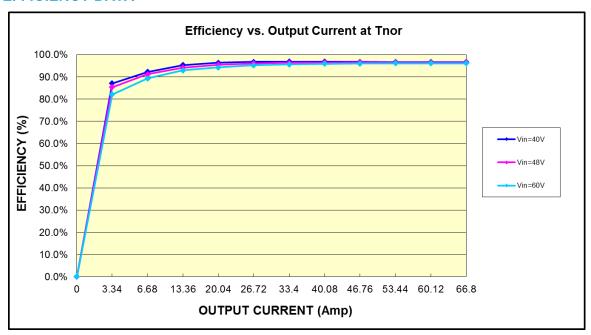


Figure 1. Efficiency data

Asia-Pacific Europe, Middle East +86 755 298 85888 +353 61 225 977

7. REMOTE ON/OFF

PARAMETER		DESCRIPTION	MIN	TYP	MAX	UNIT
Signal Low (Unit On)	Active Low	Domete On/Off pip is open the module is off	-0.3	-	0.8	V
Signal High (Unit Off)	Active Low	Remote On/Off pin is open, the module is off	2.4	-	18	V
Signal Low (Unit Off)	Active High	Remote On/Off pin is open, the module is on	-0.3	-	0.8	V
Signal High (Unit On)	Active High		2.4	-	18	V
Current Sink		Remote on/off pin is pulled up to 10 V.	0	-	1000	μΑ
Source Current		Remote on/off pin is pulled down to 0 V.	-	-	200	μΑ
Remote Open circuit voltage			-	-	15	V

Recommended remote on/off circuit for active low

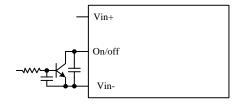


Figure 2. Control with open collector/drain circuit

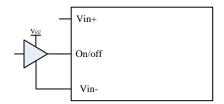


Figure 4. Control with logic circuit

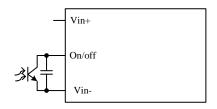


Figure 3. Control with photocoupler circuit

Figure 5. Permanently on

Recommended remote on/off circuit for active high

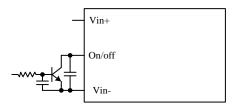


Figure 6. Control with open collector/drain circuit

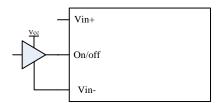


Figure 8. Control with logic circuit

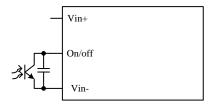


Figure 7. Control with photocoupler circuit

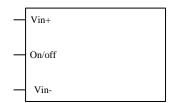


Figure 9. Permanently on

tech.support@psbel.com belfuse.com/power-solutions

8. INPUT NOISE

Input reflected ripple current

Testing setup:

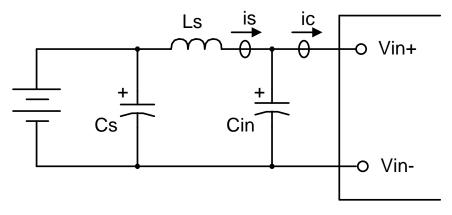


Figure 10.

Notes and values in testing.

is: Input Reflected Ripple Current

ic: Input Terminal Ripple Current

Ls: Simulated Source Impedance (12 μ H)

Cs: Offset possible source Impedance (100 μF , ESR < 0.1 Ω @ 100 kHz, 20°C)

Cin: Electrolytic capacitor, should be as close as possible to the power module to damp ic ripple current and enhance stability. Recommendation: 100 μ F, ESR < 0.12 Ω @ 100 kHz, 20°C.

Below measured waveforms are based on above simulated and recommended inductance and capacitance.

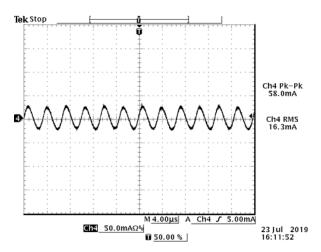


Figure 11. is (input reflected ripple current), AC component

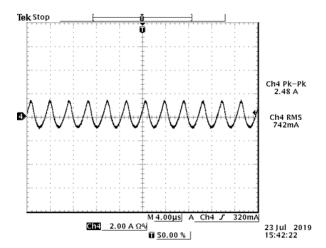


Figure 12. ic (input terminal ripple current), AC component

Test condition: 48 VDC input, 12 VDC / 66.8 A output and Ta = $25 \, ^{\circ}\text{C}$

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

9. RIPPLE AND NOISE WAVEFORM

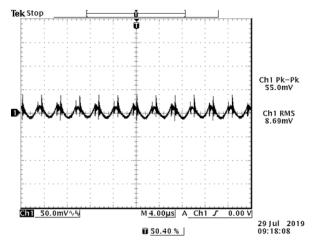


Figure 13. Ripple and noise waveform

Note: 48 VDC input, 12 VDC / 66.8 A output and Ta = 25 °C, 270 μ F/16 V (OS-CON).

10. TRANSIENT RESPONSE WAVEFORMS

Transient Response test condition: di/dt = 0.1 A/µs, 270 µF / 16 V (OS-CON). CHI: Vout, CH2: lout.

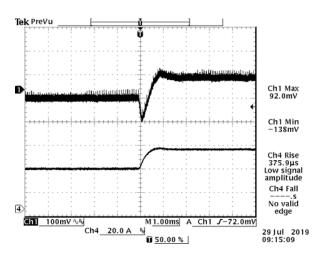


Figure 14. Vout = 12 V, 50%-75% Load Transients at Vin = 48 V, $Ta = 25 \degree C (0.1 \text{ A/µs})$

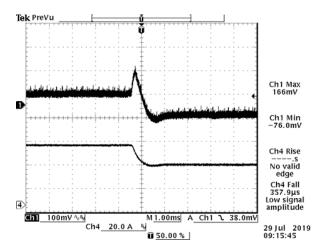


Figure 15. Vout = 12 V, 75%-50% Load Transients at Vin = 48 V, $Ta = 25 ^{\circ}\text{C} (0.1 \text{ A/µs})$

11. STARTUP & SHUTDOWN

Rise Time

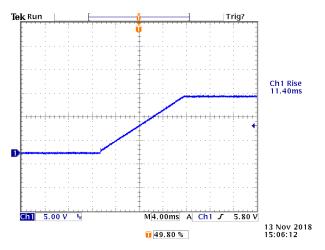


Figure 16. Vout = 12 V / 0 A @ Vin = 48 V, $Ta = 25^{\circ}C$, $Cext = 0 \mu F$

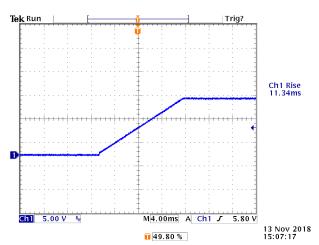


Figure 17. Vout = 12 V / 0 A @ Vin = 48 V, $Ta = 25^{\circ}C$, $Cext = 10000 \,\mu F$

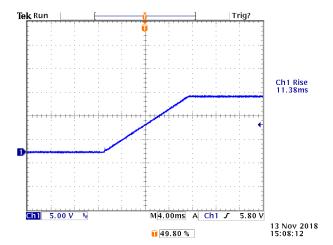


Figure 18. Vout = 12 V / 66.8 A @ Vin = 48 V, $Ta = 25^{\circ}\text{C}$, $Cext = 0 \mu\text{F}$

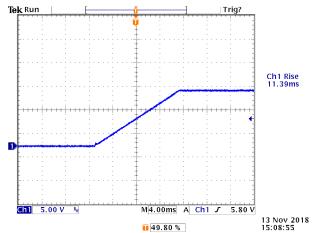


Figure 19. Vout = 12 V / 66.8 A @ Vin = 48V, $Ta = 25^{\circ}\text{C}$, $Cext = 10000 \, \mu\text{F}$

Startup

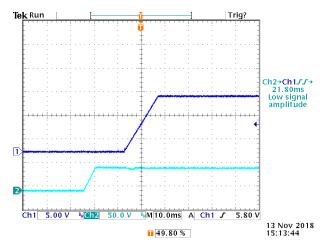


Figure 20. Startup from Vin CH1: Vo CH2: Vin Vout = 12 V / 66.8 A @ Vin = 48 V, Ta = 25°C

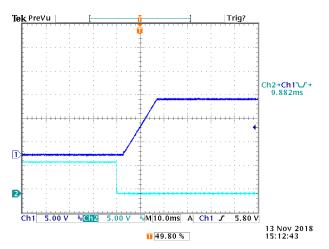


Figure 21. Startup from on/off
CH1: Vo
CH2: on/off
Vout = 12 V / 66.8 A @ Vin = 48 V, Ta = 25°C

Shutdown

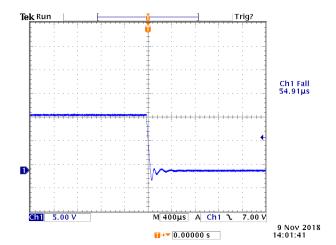


Figure 22. Vout = 12 V / 66.8 A @ Vin = 48 V, Ta = 25°C

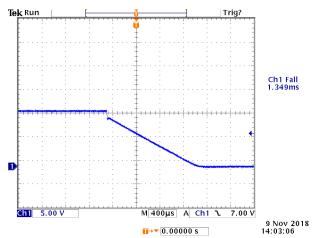


Figure 23. Vout = 12 V / 66.8 A @ Vin = 48 V, Ta = 25°C, Cext = 10000 μF

12. THERMAL DERATING CURVES

THERMAL TEST SETUP

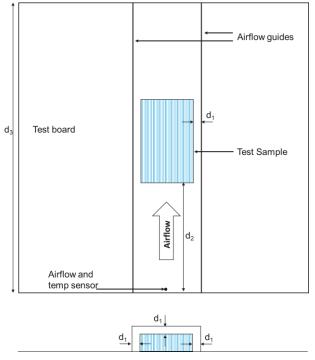


Figure 24. Thermal test setup, Airflow from Vo to VIN

- $d_1\!\!: \text{The distance is } 6.35 \text{ mm (} 0.25 \text{ inch) from the top of the module and } 6.35 \text{ mm (} 0.25 \text{ inch) on the left and right side of the module.}$
- d₂: Ambient temperature and airflow are measured in front of the module at the distance of 76.2 mm (3 inch).
- d_3 : Product is tested on an 8"×8", Internal 105 um (3 oz), outside 70 um (2 oz), 6-layer test board mounted in a wind tunnel.

V_{IN}: 54 V

Airflow: test at 200 LFM and 400 LFM

Test without heatsink or use external heatsink which size is 2.30"×1.45"×0.7", show as follow.

Hot spot location and allowed maximum temperature.

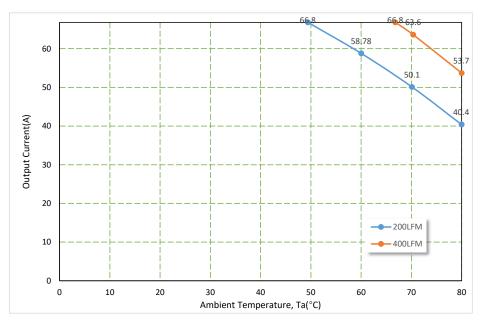


Figure 25. Thermal derating curve – with external Heatsink 0RQP-E0S12A/B/P/BN Airflow from Vo to V_{IN}

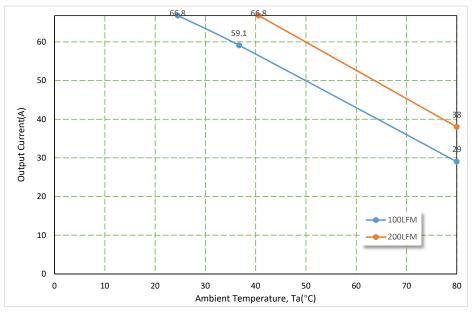


Figure 26. Thermal derating curve ORQP-E0S12C Airflow from V_O to V_{IN}

13. UNDER VOLTAGE LOCKOUT

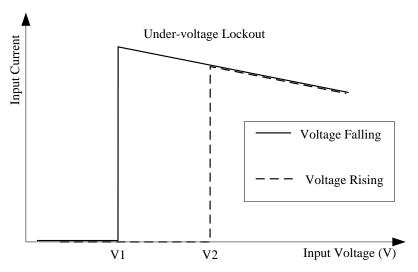


Figure 27. Under voltage lockout V1 = 36.5 V V2 = 38.5 V

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

14. SAFETY&EMC

Safety:

Approved to IEC/EN 62368-1

EMC:

Compliance to EN 55032 class A (both peak and average) with the following inductive and capacitive filter

Test setup:

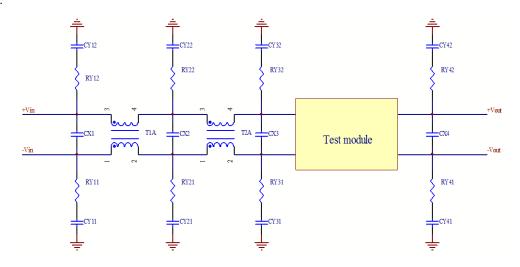


Figure 28.

T1A	CX1	CX4	CY22	CY42	
3mH Common mode Choke	CAP X2 1µF+/-20% 310VAC	Chip Cap 2.2µF*10 +AL Cap 47µF	CAP Y2 4700PF+/-20% 250VAC	CAP Y2 4700PF+/-20% 250VAC	-
T2A	CX2	CY21	CY41		
3mH Common mode Choke	CAP X2 1µF+/-20% 305VAC	CAP Y2 4700PF+/-20% 250VAC	CAP Y2 4700PF+/-20% 250VAC	-	-
-					

Positive:

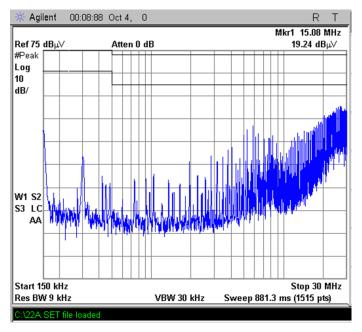


Figure 29.

Negative:

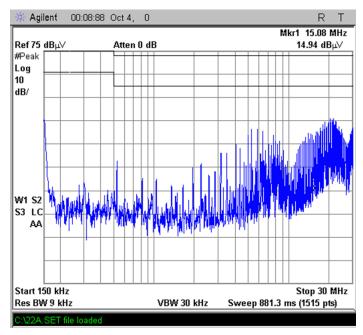
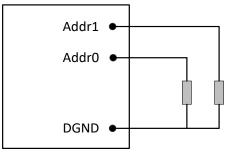


Figure 30.

15. POWER MANAGEMENT BUS

DIGITAL FEATURE DESCRIPTIONS

The module supports Power Management Bus to allow to be monitored, controlled and configured by the system. More detailed Power Management Bus information can be found in the Power Management Bus Power Management Protocol Specification, Part I and part II, revision 1.3, which is shown in the System Management Interface Forum Web site: www.powerSIG.org. The supported Power Management Bus commands of the module are listed below in the supported Power Management Bus commands section. The module supports four Power Management Bus signal lines: Data, Clock, SMBALERT (optional), Control (C2 pin, optional), and two Address lines: Addr0 and Addr1. Connection for the Power Management Bus interface should follow the High-Power DC specifications given in section 3.1.3 in the SMBus specification V2.0 or the Low Power DC specifications in section 3.1.2. The complete SMBus specification is shown in http://smbus.org. 100 kHz communication bus speed is preferred.


SMBALERT protocol is also supported by the module. SMBALERT line is also a wired-AND signal, by which the module can alert the Power Management Bus master via pulling the SMBALERT pin to an active low. There is only one way that the master and the module response to the alert of SMBALERT line. The master will communicate with the slave module using the programmed address, and using the various READ_STATUS commands to find the cause for the SMBALERT. The CLEAR_FAULTS command will clear the SMBALERT.

The module also supports the Packet Error Checking (PEC) protocol. It can check the PEC byte provided by the Power Management Bus master, and include a PEC byte in all message transmitted back to the master.

Power Management Bus Addressing

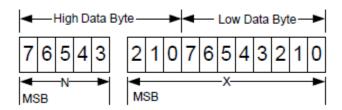
The Module has flexible power management bus addressing capability. When connect different resistor from Addr0 and Addr1 pin to DGND pin, 64 possible addresses can be acquired. The address is in the form of octal digits; Each pin offers one octal digit, and then combine together to form the decimal address as shown in below.

Address = 8 * ADDR1 + ADDR0

Figure	3	7	1
ı iyui c	J	,	•

Resistor (kohm)
10
15.4
23.7
36.5
54.9
84.5
130
200

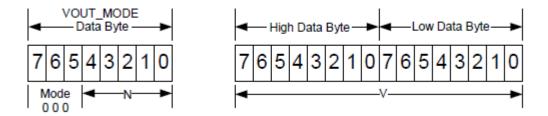
Corresponded to each octal digit, the requested resistor values are shown in below, and +/-1% resistors accuracy can be accepted. If there are any resistances exceeding the requested range, address 64 will be return. 0-12 and 40, 44, 45, and 55 in decimal address cannot be used, since they are reserved according to the SMBus specifications, and which will also return address 64.


NOTE:

- 1. Power Management Bus communication is only supported when vin normal and remote on
- 2. If boot load function is needed, there can not be an I2C slave address of 0x58 on I2C bus

Power Management Bus Data Format

For commands which is except to the output voltage, including input voltage, output current, temperature, PWM frequency, duty cycle, the controller will use the 2-byte linear format as defined by the Power Management Bus system management protocol. The linear data format contains 2 bytes which include a 5-bit two's complement exponent and an 11-bit two's complement mantissa. The communicated value Y is received and reported as $Y = X^*2^N$



For example, to set the over temperature fault threshold 135 deg C by OT_FAULT_LIMIT command, the read/write data can be calculated refer to below:

The binary number of N is 0, whose decimal is 0.

 $X = OT_FAULT_LIMIT /2^{(0)} = 135$, whose binary is 0b00010000111.

Combine X and N, the binary is 0b000000010000111. The hexadecimal of OT_FAULT_LIMIT is 0x0087.

The controller will receive output voltage parameters and report output voltage values using the Power Management Bus Vout linear format. The voltage will be in the form Voltage = V^*2^N . The Mantissa and exponent in this equation will be read and reported using 3 bytes. The first byte is the VOUT_MODE byte which will always contain 000 in the 3 MSB's. The 5 LSB's are the exponent. The exponent N is fixed and equals -10. The other 2 bytes N will contain the Mantissa. In the above format N is a 5-bit two's complement binary integer and V is a 16-bit unsigned binary integer. All 16 bits are reported to be compatible with the Power Management Bus protocol.

For example, to set Vout to 12V by VOUT_COMMAND, the read/write data can be calculated refer to below process:

 $V = Vout/2^{(-10)} = 12/2^{(-10)} = 12288.$

Convert the decimal to hexadecimal 0x3000. So the VOUT_COMMAND is 0x3000.

SUPPORTED POWER MANAGEMENT BUS COMMANDS

The main Power Management Bus commands described in the Power Management Bus 1.3 specification are supported by the module. Partial Power Management Bus commands are fully supported; Partial Power Management Bus commands have difference with the definition in Power Management Bus 1.3 specification. All the supported Power Management Bus commands are detailed summarized in the below table.

Command	Code	Command Description	Туре	Data format	Default value	Data units	Note
OPERATION	0x01	Configures the operational state of the module	R/W byte	Bit field	0x80	/	1
ON_OFF_CONFIG	0x02	Configures the combination of CONTROL pin input and serial bus commands needed to turn the module on and off	Read byte	Bit field	0x1C	/	1,2
CLEAR_FAULTS	0x03	Clear any fault bits that have been set	Send byte	/	/	/	/
RESTORE_DEFAULT_ALL	0x12	Restore the factory settings to the non- volatile memory	Write	/	/	/	5
STORE_USER_ALL	0x15	Store the current settings to the non-volatile memory	Write	/	/	/	5
VOUT_MODE	0x20	Vo data format	Read byte	mode + exponent	0x16	/	/
VOUT_COMMAND	0x21	Set the output voltage normal value	R/W word	Vout linear	12/12.2	Volts	8
VOUT_MAX	0x24	Set an upper limit on the output voltage the module can command	Read word	Vout linear	12.6	Volts	/
VOUT_MARGIN_HIGH	0x25	Set the output voltage margin high value	Read word	Vout linear	12.5	Volts	/
VOUT_MARGIN_LOW	0x26	Set the output voltage margin low value	Read word	Vout linear	10	Volts	/
VOUT_MIN	0x2B	Set a lower limit on the output voltage the module can command	Read word	Vout linear	9	Volts	/
MAX_DUTY	0x32	Set the maximum duty cycle	Read word	Linear	50	%	/
FREQUNCY_SWITCH	0x33	Set the primary side switching frequency	Read word	Linear	150	kHz	/
VOUT_OV_FAULT_LIMIT	0x40	Set the output over voltage fault threshold	R/W word	Vout linear	13.5	Volts	4
VOUT_OV_FAULT_RESPONSE	0x41	Instructs what action to take in response to an output overvoltage fault	R/W byte	Bit field	0x80	/	1
IOUT_OC_FAULT_LIMIT	0x46	Set the output overcurrent fault threshold	R/W word	Linear	80	Α	3,4
IOUT_OC_FAULT_RESPONSE	0x47	Instructs what action to take in response to an output overcurrent fault	R/W byte	Bit field	0xF8	/	1
OT_FAULT_LIMIT	0x4F	Set the over temperature fault threshold	R/W word	Linear	135	Deg C	3,4
OT_FAULT_RESPONSE	0x50	Instructs what action to take in response to an over temperature fault	R/W byte	Bit field	0xB8	/	1
MFR_C1_C2_CONFIG	0x6C	Configure C2 pin function	R/W byte	Bit field	0x00	/	1
MFR_C2_CONFIG	0x6D	Configure C2 pin logic	R/W byte	Bit field	0x00	/	1
MFR_PGOOD_POLARITY	0x6E	Configure power good logic	R/W byte	Bit field	0x00	/	1
STATUS_WORD	0x79	Returns the information with a summary of the unit's fault condition	Read word	Bit field	0	/	1,6
STATUS_VOUT	0x7A	Returns the information with a summary of the unit's output voltage condition	Read byte	Bit field	0	/	1,6
STATUS_IOUT	0x7B	Returns the information with a summary of the unit's output current condition	Read byte	Bit field	0	/	1,6
STATUS_TEMPERATURE	0x7D	Returns the information with a summary of the unit's temperature condition	Read byte	Bit field	0	/	1,6
STATUS_CML	0x7E	Returns the information with a summary of the unit's communication condition	Read byte	Bit field	0	/	1,6
READ_VIN	0x88	Returns the input voltage of the module	Read word	Linear	/	Volts	/
READ_VOUT	0x8B	Returns the output voltage of the module	Read word	Vout Linear	/	Volts	/

tech.support@psbel.com belfuse.com/power-solutions

Command	Code	Command Description	Туре	Data format	Default value	Data units	Note
READ_IOUT	0x8C	Returns the output current of the module	Read word	Linear	/	Α	/
READ_TEMPERATURE_1	0x8D	Returns the temperature of the module	Read word	Linear	/	Deg C	/
POWER MANAGEMENT BUS_REVISION	0x98	Reads the revision of the Power Management Bus	Read byte	Bit field	0x33	/	1
MFR_ID	0x99	Reads the ID of the manufacture	Read block	ASCII	BELF	/	1
FIRMWARE_REV	0x9B	Reads the revision of the firmware	Read block	ASCII	A1	/	7

NOTES:

- 1. Refer to below detailed description
- 2. OPERATION command controls module on/off
- 3. Before write operation, it is necessary to read the register data and parse out the corresponding linear format N value, then convert write value based on N.
- 4. In order to ensure that the product works properly, the adjustment range of the protection limit value is limited, when the set value exceeds the upper or lower limits, the lower limit value is automatically set. The following table shows the upper and lower limits

,						
Command	Code	The low limit	The upper limit			
VOUT_OV_FAULT_LIMIT	0x40	13	14			
IOUT_OC_FAULT_LIMIT	0x46	20	150			
OT_FAULT_LIMIT	0x4F	120	140			

- 5. Read or write this command, PSU will shut down until next vin power cycle
- 6. ALL the fault bits set in all the status registers remain set, even if the fault condition is removed or corrected, until one of the following
 - 1) A remote off then remote on cycle;
 - 2) The device receives a CLEAR_FAULTS command;
 - 3) Vin power is removed from the module.
- 7. Block read command, byte count=2.
- 8. No-load condition, Default value is 12.2V(With droop); Default value is 12V(Without Droop).

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

OPERATION	OPERATION (0x01)				
Bit number	Purpose	Bit value	Meaning	Default settings	
7	Turn the module on/off	1	on	1	
,		0	off	' 	
6	Not supported	/	/	0	
		00	VOUT_COMMAND		
5:4	Control the source of the output voltage	01	VOUT_MARGIN_LOW	00	
command command	10	VOUT_MARGIN_HIGH	00		
		11	Not supported		
3:0	Reserved or Not supported	/	/	0000	

ON_OFF_	ON_OFF_CONFIG (0x02)					
Bit number	Purpose	Bit value	Meaning	Default settings		
7:5	Reserved	/	1	000		
	Module powers up regardless of the state of	0	Not supported			
4	the CONTROL pin and OPERATION command or not	1	Wait CONTROL and OPERATION	1		
3	Module powers up regardless of the state of	0	Not supported	1		
3	the OPERATION command or not	1	Wait OPERATION command	1		
0	Module powers up regardless of the state of	0	Not supported	4		
۷	the CONTROL pin or not (Not supported)	1	Wait CONTROL pin	I		
1:0	Not supported	/	/	00		

VOUT_OV	VOUT_OV_FAULT_RESPONSE (0x41)				
Bit number	Purpose	Bit value	Meaning	Default settings	
		00	Not supported		
	01	Not supported			
7:6	7:6 Response when fault happens	10	The module shuts down and response according to the retry setting in bits [5:3]	10	
		11	Not supported		
5.0	Detector	000	Module does not attempt to restart until a RESET signal or OPERATION command or Bias power is removed	000	
5:3 Retry setting	Retry setting	001-110	Not supported	000	
		111	Attempts to restart continuously until it is commanded off		
2:0	Delay time	/	Not supported	000	

IOUT_OC	IOUT_OC_FAULT_RESPONSE (0x47)				
Bit number	Purpose	Bit value	Meaning	Default settings	
		00	Not supported		
	7:6 Response when fault happens	01	Not supported		
7:6		10	Not supported	11	
		11	The module shuts down and response according to the retry setting in bits [5:3]		
5.0		000	Module does not attempt to restart until a RESET signal or OPERATION command or Bias power is removed	444	
5:3	5:3 Retry setting	001-110	Not supported	111	
		111	Attempts to restart continuously until it is commanded off		
2:0	Delay time	/	Not supported	000	

OT_FAUL	OT_FAULT_RESPONSE (0x50)				
Bit number	Purpose	Bit value	Meaning	Default settings	
		00	Not supported		
	01	Not supported			
7:6	7:6 Response when fault happens	10	The module shuts down and response according to the retry setting in bits [5:3]	10	
		11	Not supported		
5.0		000	Module does not attempt to restart until a RESET signal or OPERATION command or Bias power is removed		
5:3	5:3 Retry setting	001-110	Not supported	111	
		111	Attempts to restart continuously until it is commanded off		
2:0	Delay time	/	Not supported	000	

MFR_C1_	C2_CONFIG (0x6C)			
Bit number	Purpose	Bit value	Meaning	Default settings
7:4	Reserved	/	/	0000
3:0	Pin configuration	0000 0010	C2 pin: POWER_GOOD C2 pin: ON/OFF (Secondary)	0000

MFR_C2_	CONFIG (0x6D)			
Bit number	Purpose	Bit value	Meaning	Default settings
7:2	Reserved	/	/	000000
4	ON/OFF Configuration	1	And- Primary and secondary side on/off	0
ı	ON/OFF Configuration	0	C2 pin signal is ignored	U
0	Secondary Side ON/OFF logic	1	Positive Logic (High level enable: input > 2.64V)	0
U	Secondary Side On/OFF logic	0	Negative Logic (Low level enable: input < 0.66V)	U

Asia-Pacific Europe, Middle East +86 755 298 85888 +353 61 225 977

MFR_PG0	OOG_POLARITY (0x6E)			
Bit number	Purpose	Bit value	Meaning	Default settings
7:1	Reserved	/	/	0000000
0	Dowar Cood Logia	1	Positive PGOOD logic	0
0 Po	Power Good Logic	0	Negative PGOOD logic	U

STATUS_	STATUS_WORD (0x79)				
HIGH BYT	E				
Bit number	Purpose	Bit value	Meaning	Default settings	
7	VOUT	1	An output voltage fault has occurred	0	
,	0	0	Not occurred	U	
6	IOUT/POUT	1	An output current or output power fault has occurred	0	
		0	Not occurred		
5	INPUT	1	An input overvoltage fault has occurred	0	
3	(Not supported)	0	Not occurred	U	
4	Not supported	/	/	0	
3	Dower Cood	1	Power_Good signal is negated	0	
3	Power_Good	0	Power_Good signal is ok	0	
2:1	Not supported	/	/	00	
0	UNKNOWN	1	A fault type not given in bits [15:1] of the STATUS_WORD has been detected	0	
		0	Not occurred		

STATUS_WORI	O (0x79)				
Bit number	Purpose	Bit value	Meaning	Default settings	
7	Busy	1	A fault was declared because the device was busy and unable to respond Not occurred	0	
6	Off	1	This bit is asserted if the unit is not providing power to the output, regardless of the reason, including simply not being enabled	0	
		0	Not occurred		
5	VOUT OV FAULT	1	An output overvoltage fault has occurred	0	
	V001_0V_1/\0E1	0	Not occurred	ŭ	
4	IOUT OC FAULT	1	An output overcurrent fault has occurred	0	
4	IOUT_OC_I AULI	0	Not occurred	U	
0	VIN_UV_FAULT	1	An input under voltage fault has occurred	0	
3	(Not supported)	0	Not occurred	0	
		1	A temperature fault has occurred		
2	TEMPERATURE	0	Not occurred	0	
1	CML	1	A communication, memory or logic fault has occurred	0	
		0	Not occurred		
0	NONE_OF_THE_ABOVE	1	A fault not listed in bits [7:1] of this byte has occurred	0	
		0	Not occurred		

tech.support@psbel.com belfuse.com/power-solutions

STATUS_VOUT (0x7A)				
Bit number	Purpose	Bit value	Meaning	Default settings
7	VOLIT OV FALLET	1	Occurred	0
1	7 VOUT_OV_FAULT	0	Not occurred	U
6:5	Reserved or Not supported	/	/	00
4	VOLIT LIV FALLET	1	Occurred	0
4	VOUT_UV_FAULT	0	Not occurred	0
3:0	Not supported	/	/	0000

STATUS_IOUT (0x7B)					
Bit number	Purpose	Bit value	Meaning	Default settings	
7	IOUT_OC_FAULT	1	Occurred	0	
		0	Not occurred	U	
6:0	Not supported	/	/	0000000	

STATUS_TEMPERATURE (0x7D)					
Bit number	Purpose	Bit value	Meaning	Default settings	
7	OT FAULT	1	Occurred	0	
1	OI_FAULI	0	Not occurred	U	
6:0	Reserved or Not supported	/	/	0000000	

STATUS_CML (0x7E)					
Bit number	Purpose	Bit value	Meaning	Default settings	
7	Invalid or unsupported command received	1	Occurred	0	
		0	Not occurred	U	
6:0	Reserved or Not supported	/	/	0000000	

POWER N	POWER MANAGEMENT BUS_REVISION (0x98)						
Bit number	Purpose	Bit value	Meaning	Default settings			
	Indicate the revision of Power Management Bus specification Part I to which the device is compliant	0000	1.0				
7:4		0001	1.1	1.3			
7.4		0010	1.2	1.3			
		0011	1.3				
	Indicate the revision of Power Management Bus specification Part II to which the device is compliant	0000	1.0				
3:0		0001	1.1	1.0			
3:0		0010	1.2	1.3			
		0011	1.3				

+86 755 298 85888

Asia-Pacific Europe, Middle East +353 61 225 977

16. MECHANICAL DIMENSIONS

ORQP-E0S12A/B/P OUTLINE

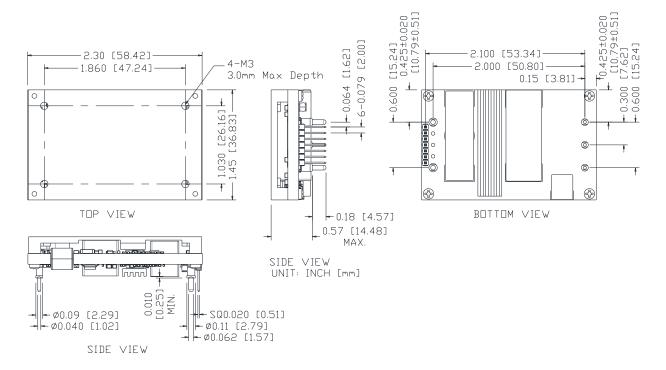


Figure 32. ORQP-E0S12A/B/P Outline

Note: This module is recommended and compatible with Pb-Free Wave Soldering and must be soldered using a peak solder temperature of no more than 260 °C for less than 5 seconds.

Note:

- All Pins: Material Copper Alloy;
 Finish PIN 1/2/3/4/5 tin plated. Others gold plated.
- 2) Un-dimensioned components are shown for visual reference only.
- 3) All dimensions in inch [mm]; Tolerances: x.xx +/-0.02 inch [0.51 mm]. x.xxx +/-0.010 inch [0.25 mm]. Unless otherwise stated.

ORQP-EOS12

ORQP-E0S12C OUTLINE

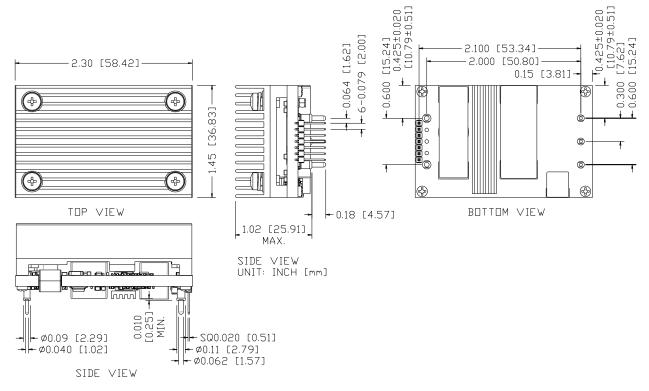


Figure 33. ORQP-E0S12C Outline

Note: This module is recommended and compatible with Pb-Free Wave Soldering and must be soldered using a peak solder temperature of no more than 260 °C for less than 5 seconds.

Note:

- All Pins: Material Copper Alloy;
 Finish PIN 1/2/3/4/5 tin plated. Others gold plated.
- 2) Un-dimensioned components are shown for visual reference only.
- 3) All dimensions in inch [mm]; Tolerances: x.xx +/-0.02 inch [0.51 mm]. x.xxx +/-0.010 inch [0.25 mm]. Unless otherwise stated.

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

ORQP-E0S12BN OUTLINE

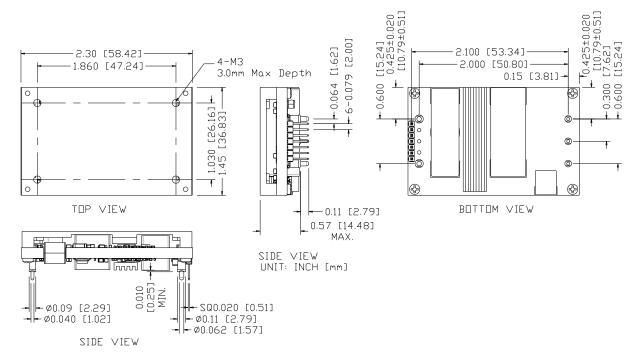
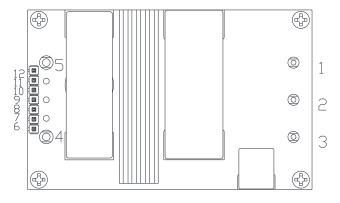


Figure 34. ORQP-E0S12BN Outline


Note: This module is recommended and compatible with Pb-Free Wave Soldering and must be soldered using a peak solder temperature of no more than 260 °C for less than 5 seconds.

Note:

- All Pins: Material Copper Alloy;
 Finish PIN 1/2/3/4/5 tin plated. Others gold plated.
- 2) Un-dimensioned components are shown for visual reference only.
- 3) All dimensions in inch [mm]; Tolerances: x.xx +/-0.02 inch [0.51 mm]. x.xxx +/-0.010 inch [0.25 mm]. Unless otherwise stated.

PIN DEFINITIONS

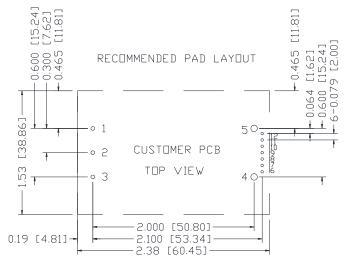

BOTTOM VIEW

Figure 35. Pins

PIN	FUNCTION	PIN SIZE	PIN LENGTH	PIN	FUNCTION	PIN SIZE	PIN LENGTH
1	Vin (+)	F0.040"	0.180"	7	DGND	SQ0.02"	0.180''
2	ON/OFF	F0.040"	0.180"	8	PMBDATA	SQ0.02"	0.180''
3	Vin (-)	F0.040"	0.180"	9	SMBALERT	SQ0.02"	0.180''
4	Vout (-)	F0.062"	0.180"	10	PMBCLK	SQ0.02"	0.180''
5	Vout (+)	F0.062"	0.180"	11	Addr1	SQ0.02"	0.180''
6	C2	SQ0.02"	0.180"	12	Addr0	SQ0.02"	0.180"

NOTE: The length of all pins is 0.11" for 0RQP-E0S12BN.

RECOMMENDED PAD LAYOUT

1,2,3 Ø0.065 HOLE SIZE, Ø0.110 min PAD SIZE 4,5 Ø0.085 HOLE SIZE, Ø0.130 min PAD SIZE 6,7,8,9,10,11,12 Ø0.035 HOLE SIZE, Ø0.065 min PAD SIZE

Figure 36. Recommended pad layout

Asia-Pacific Europe, Middle East +86 755 298 85888 +353 61 225 977

17. REVISION HISTORY

DATE	REVISION	CHANGES DETAIL	APPROVAL
2019-03-15	AA	First release	Z.Tang
2019-07-11	AB	Update efficiency and input voltage rating.	J.Yao
2019-08-21	AC	Update electrical spec	J.Yao
2019-09-12	AD	Update Humidity, Over Temperature Protection, Under Voltage Lockout, Typical Efficiency, Output Trim Equations	J.Yao
2020-06-18	AE	Update mechanical dimensions	J.Yao
2020-09-07	AF	Update input specifications, output voltage set point, turn-on delay(vin), efficiency, MTBF, FIT, altitude, SAFETY&EMC and power management bus information.	J.Yao
2020-12-25	AG	Update mechanical dimensions for deleting Vo sense+/- and TRIM pins. Change module photo.	J.Yao
2021-04-30	AH	Add object ID. Update power management bus information.	J.Yao
2021-07-08	AJ	Add 0RQP-E0S12C. Update thermal derating curves.	J.Yao
2021-08-10	AK	Add 0RQP-E0S12BN.	J.Yao

For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

tech.support@psbel.com belfuse.com/power-solutions