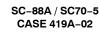
onsemi

NCS20231, NCV20231, NCS20232, NCV20232, NCS20234, NCV20234

The NCS2023x series of op amps feature a wide supply range of 2.7 V to 36 V with an input offset voltage as low as ± 0.95 mV max. These op amps are available in single, dual, and quad channel configurations. Automotive qualified options are available under the NCV prefix with an optional extended operating temperature range from -40° C to 150° C. All other versions are specified over the operating temperature range from -40° C to 125° C.


Features

- Supply Voltage Range: 2.7 V to 36 V
- Temperature Range: -40°C to 150°C
- Unity Gain Bandwidth: 3 MHz
- Input Offset Voltage: $\pm 1.2 \text{ mV}$ max, $T_A = -40$ to 150° C
- Input Offset Voltage Drift: $\pm 2 \,\mu V/^{\circ}C \,max$
- Common–Mode Input Voltage Range
 - Optimal: $V_{SS} 0.1$ to $V_{DD} 2V$
 - ◆ Functional: V_{SS} 0.1 to V_{DD} + 0.1 V
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Telecom Equipment
- Power Supply Designs
- Diesel Injection Control
- Automotive
- Motor Control

C70–5 A–02

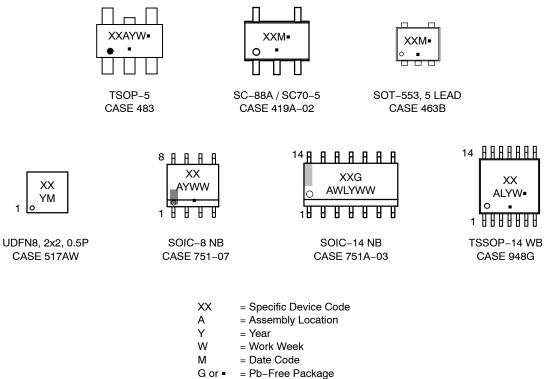
SOT-553, 5 LEAD CASE 463B UDFN8 CASE 517AW

SOIC-14 NB CASE 751A-03

SOIC-8 NB CASE 751-07

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2 of this data sheet.


PIN CONNECTIONS

See pin connections on page 3 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

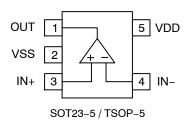
DEVICE MARKING INFORMATION

(Note: Microdot may be in either location)

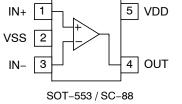
ORDERING INFORMATION

Temperature	Channels	Package	Device Part Number	Marking	Shipping [†]				
Industrial and Commercial									
-40°C to 125°C	Single	TSOP-5	NCS20231SN2T1G	AAC	3000 / Tape & Reel				
		SC-88	NCS20231SQ3T2G	AAG	3000 / Tape & Reel				
		SOT-553	NCS20231XV53T2G	AC	4000 / Tape & Reel				
	Dual	SOIC-8	NCS20232DR2G*	N232	2500 / Tape & Reel				
		UDFN-8	NCS20232MUTBG*	DGA	3000 / Tape & Reel				
	Quad	SOIC-14	NCS20234DR2G*	234G	2500 / Tape & Reel				
		TSSOP-14	NCS20234DTBR2G*	N234	2500 / Tape & Reel				

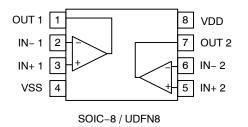
Automotive Qualified, Grade 1

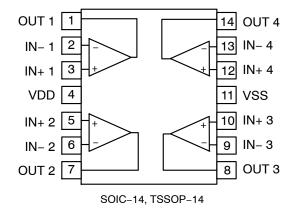

	1				
–40°C to 150°C	Single	TSOP-5	NCV20231SN2T1G	AAC	3000 / Tape & Reel
		SC-88	NCV20231SQ3T2G	AAG	3000 / Tape & Reel
		SOT-553	NCV20231XV53T2G	AC	4000 / Tape & Reel
	Dual	SOIC-8	NCV20232DR2G*	N232	2500 / Tape & Reel
	Quad	SOIC-14	NCV20234DR2G*	234G	2500 / Tape & Reel
		TSSOP-14	NCV20234DTBR2G*	N234	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*In Development. Contact local sales office for more information.

PIN CONNECTIONS


Single Channel



ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Supply Voltage Range (V _{DD} - V _{SS})	Vs	–0.3 to 40	V
Input Common-Mode Voltage	V _{CM}	$V_{SS}{-}0.2$ to V_{DD} + 0.2	V
Differential Input Voltage	V _{ID}	±V _S	V
Maximum Input Current	l _l	±10	mA
Maximum Output Current	Ι _Ο	±100	mA
Continuous Total Power Dissipation	PD	200	mW
Maximum Junction Temperature	T _{J(max)}	150	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
ESD Capability, Human Body Model (Note 2)	НВМ	±2000	V
ESD Capability, Charge Device Model (Note 2)	CDM	±1000	V
Moisture Sensitivity Level	MSL	Level 1	
Lead Temperature Soldering Reflow (SMD Styles Only), Pb-Free Versions (Note 3)	T _{SLD}	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area

2. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per JEDEC standard JS-001-2017 (AEC-Q100-002)

ESD Charged Device Model tested per JEDEC standard JS-002-2014 (AEC-Q100-011)

3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

THERMAL CHARACTERISTICS (Note 4)

Package	θ _{JA} Junction-to-Ambient Thermal Resistance	Ψ _{JT} Junction-to-Case Top Thermal Characteristic	Ψ _{JB} Junction–to–Board Thermal Characteristic	Unit
TSOP-5 / SOT23-5	254	78	150	°C/W
SC-88A / SC-70-5 / SOT-353	902	70	810	°C/W
SOT-553	238	14	134	°C/W
SOIC-8				°C/W
UDFN-8				°C/W
SOIC-14				°C/W
TSSOP-14				°C/W

4. Thermal parameters are based on a 2s2p board following JESD51-7 (JEDEC)

RECOMMENDED OPERATING RANGES (Note 5)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (V _{DD} – V _{SS})	V _S	2.7	36	V
Differential Input Voltage (V _{IN+} - V _{IN-})	V _{ID}		±5 (Note 6)	V
Input Common-Mode Range (Note 7)	V _{CM}	V _{SS} – 0.1	V _{DD} – 2 V	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

5. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area

6. The differential voltage may not exceed the supply voltage, $\pm V_S$. For supplies greater than $V_S = 5 V$, differential voltages up to $\pm V_S$ will consume more input current. See APPLICATION INFORMATION.

7. The specified input common mode range yields the best performance. However, the input common mode range is functional up to V_{DD} + 0.1 V. See APPLICATION INFORMATION.

ELECTRICAL CHARACTERISTICS (V_S = 2.7 V to 36 V)

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Supply Voltage (V)	Temp (°C)	Min	Тур	Max	Unit
INPUT CHARACTER	ISTICS							
Offset Voltage	V _{OS}	V _{CM} = mid–supply	2.7, 5, 10, 36	25		±0.3	±0.95	mV
				-40 to 125			±1.2	
				-40 to 150			±1.2	
Offset Voltage Drift	dV _{OS} /dT	V _{CM} = mid-supply	2.7, 5, 10, 36	-40 to 125		±0.5	± 2	μV/°C
over Temperature				-40 to 150		±0.5	±5	
Input Bias Current	I _{IB}		2.7, 5, 10, 36	25		±5	±60	pА
(Note 8)				-40 to 125			± 3000	
				150		±10000		
Input Offset Current	I _{OS}		2.7	25		±0.5	±60	pА
(Note 8)				-40 to 125			±500	
				-40 to 150			±2000	
			5, 10	25		±0.5	±60	
				-40 to 125			±800	
				-40 to 150			±2500	
			36	25		±0.5	±60	pА
				-40 to 125			±2000	
				-40 to 150			±2500	
Channel Separation		NCS20232, NCS20234	2.7, 5, 10, 36	25		130		dB
Input Capacitance	C _{IN}	IN+	2.7, 36	25		1		pF
		IN-	2.7, 36	25		6		
Common Mode	CMRR	V _{CM} = V _{SS} – 0.1 V to	2.7	25	80	98		dB
Rejection Ratio		V _{DD} – 2 V		-40 to 125	75			
				-40 to 150	69			
			5	25	90	105		
			(Note 8)	-40 to 125	85			
				-40 to 150	80			-
			10	25	100	117		
			(Note 8)	-40 to 125	100			
				-40 to 150	94			1
			36	25	110	122		
				-40 to 125	110			
				-40 to 150	107			
		$V_{CM} = V_{SS} + 1.8 V$ to $V_{DD} - 2.4 V$	36	25	117 (Note 8)	125		dB
EMI Rejection Ratio	EMIRR		2.7, 36	25		See Figure 29		dB

8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS (V_S = 2.7 V to 36 V) (continued) At T_A = +25°C, R_L = 10 k Ω connected to midsupply, V_{CM} = V_{OUT} = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Supply Voltage (V)	Temp (°C)	Min	Тур	Max	Unit
OUTPUT CHARACTE	ERISTICS							
Open Loop Voltage	A _{VOL}	$V_{CM} = mid-supply$	2.7	25	100	115		dB
Gain				-40 to 125	90			
				-40 to 150	90			
			5	25	120	135		
			(Note 9)	-40 to 125	115			
				-40 to 150	115			
			10	25	130	145		
			(Note 9)	-40 to 125	120			
				-40 to 150	120			
			36	25	135	154		
				-40 to 125	130			
				-40 to 150	130			
Open Loop Output Impedance	Z _{OUT}					See Figure 28		Ω
High Level Output	V _{DD} -V _{OH}	$R_L = 10 \ k\Omega$	2.7, 5, 10, 36	25		60	80	mV
Voltage Swing from V _{DD}				-40 to 125			120	
•00				-40 to 150			150	
		R _L = 1 mA	2.7, 5, 10, 36	25		40	60	
				-40 to 125			80	
				-40 to 150			100	
		R _L = 5 mA	10	25		165	200	
				-40 to 125			350	
				-40 to 150			400	
Low Level Output	V _{OL} -V _{SS}	$R_L = 10 \ k\Omega$	2.7, 5, 10	25		16	30	mV
Voltage Swing from V_{SS}				-40 to 125			50	
- 33				-40 to 150			50	
			36	25		55	80	
				-40 to 125			250	
				-40 to 150			120	
		R _L = 1 mA	2.7, 5, 10, 36	25		35	50	
				-40 to 125			80	
				-40 to 150			80	
		$R_L = 5 mA$	10	25		150	170	
				-40 to 125			300	
				-40 to 150			300	
Output Current Capability	I _{OUT}	Output to V _{DD} rail, sinking current	2.7, 5, 10, 36	25		28		mA
		Output to V _{SS} rail, sourcing current	2.7, 5, 10, 36	25		28		
Capacitive Load Drive	CL	Phase margin = 35°	2.7 to 36	25		140		pF

9. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS (V_S = 2.7 V to 36 V) (continued)

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Supply Voltage (V)	Temp (°C)	Min	Тур	Max	Unit
DYNAMIC PERFOR	MANCE		•					
Gain Bandwidth Product	GWBP	C _L = 25 pF	2.7, 5, 10, 36	25		3		MHz
Gain Margin	A _m	C _L = 25 pF	2.7, 5, 10, 36	25		16		dB
Phase Margin	Φ_{m}	C _L = 25 pF	2.7, 5, 10, 36	25		60		0
Slew Rate	SR	Unity gain, $R_L = 2 k\Omega$	2.7, 5, 10, 36	25		4		V/μs
Settling Time to 0.1 %	t _s	V _{IN} = 1 V step	2.7	25		7		μs
		V _{IN} = 3 V step	5	25		7		
		V _{IN} = 8 V step	10	25		7		
		V _{IN} = 10 V step	36	25		6		
Settling Time to 0.01 %	t _s	V _{IN} = 1 V step	2.7	25		20		μs
		V _{IN} = 3 V step	5	25		10		_
		V _{IN} = 8 V step	10	25		9		
		V _{IN} = 10 V step	36	25		9		
NOISE PERFORMA	NCE							
Total Harmonic Distortion + Noise	THD+ N	V _{IN} = 0.5 V _{pp} , f = 1 kHz, A _V = 1	2.7	25		0.009		%
		V _{IN} = 2.5 V _{pp} , f = 1 kHz, A _V = 1	5	25		0.0004		
		V _{IN} = 7.5 V _{pp} , f = 1 kHz, A _V = 1	10	25		0.0002		
		V_{IN} = 28.5 V_{pp} , f = 1 kHz, A _V = 1	36	25		0.0002		
Voltage Noise		f = 1 kHz	2.7, 5, 10, 36	25		20		nV/√H:
Density	e _n	f = 10 kHz	1			20		1
Current Noise Density	i _n	f = 1 kHz	2.7, 5, 10, 36	25		30		fA/√Hz

POWER SUPPLY

to Peak

Voltage Noise, Peak

e_{pp}

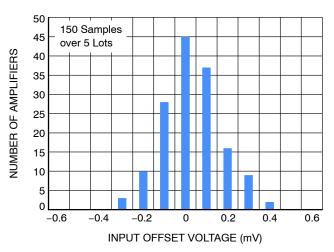
Power Supply	PSRR	Vs = 2.7 V to 36 V	2.7, 36	25	125	138		dB
Rejection Ratio				-40 to 125	120			
				-40 to 150	120			
Quiescent Current	l _Q	No load, per channel	2.7, 5	25		0.37	0.595	mA
				-40 to 125			0.650	
				-40 to 150			0.7	
			10	25		0.375	0.595	
				-40 to 125			0.650	
				-40 to 150			0.75	
			36	25		0.41	0.595	
				-40 to 125			0.650	1
				-40 to 150			0.8	1

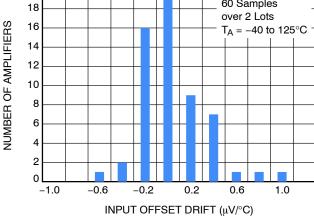
2.7, 5, 10, 36

25

700

 $\mathsf{nV}_{\mathsf{pp}}$


f_{IN} = 0.1 Hz to 10 Hz


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS


Typical Performance at T_A = 25°C, VCM = mid-supply, C_L = 20 pF, R_L = 10 k Ω to mid-supply, unless otherwise noted

20

60 Samples

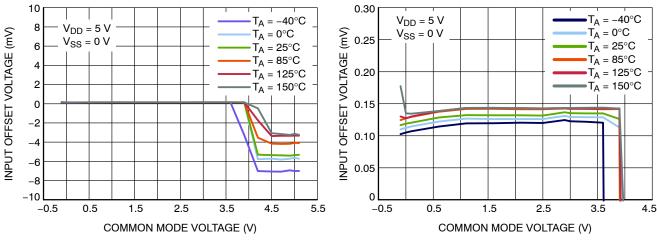
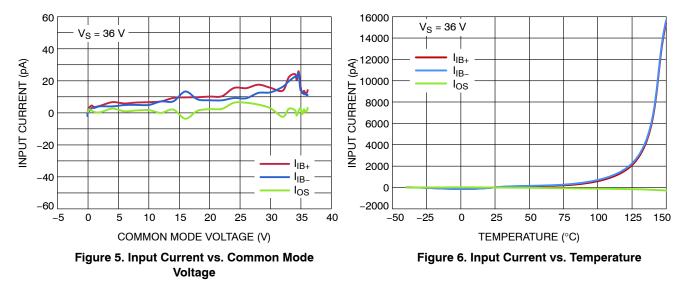
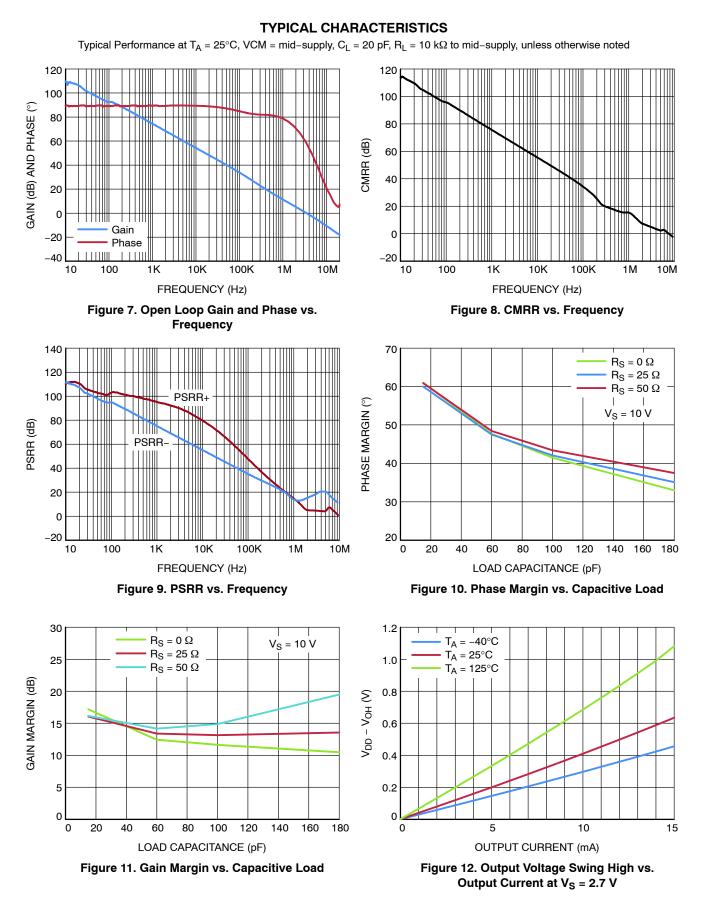




Figure 3. Input Offset Voltage vs. Common Mode Voltage

Figure 4. Input Offset Voltage vs. Common Mode Voltage, Performance Region

TYPICAL CHARACTERISTICS

Typical Performance at T_A = 25°C, VCM = mid-supply, C_L = 20 pF, R_L = 10 k Ω to mid-supply, unless otherwise noted

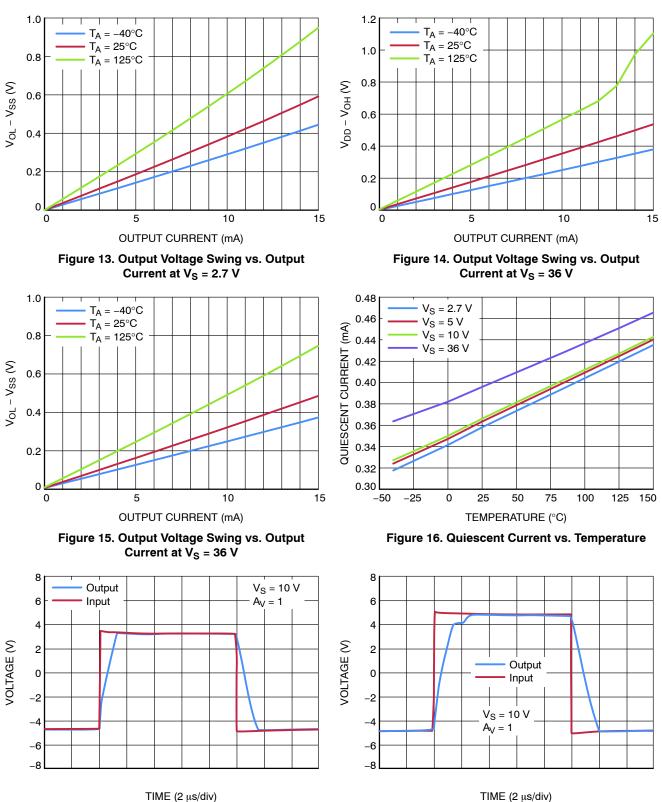


Figure 17. Large Signal Step Response

Figure 18. Large Signal Step Response

Typical Performance at T_A = 25°C, VCM = mid-supply, C_L = 20 pF, R_L = 10 k Ω to mid-supply, unless otherwise noted

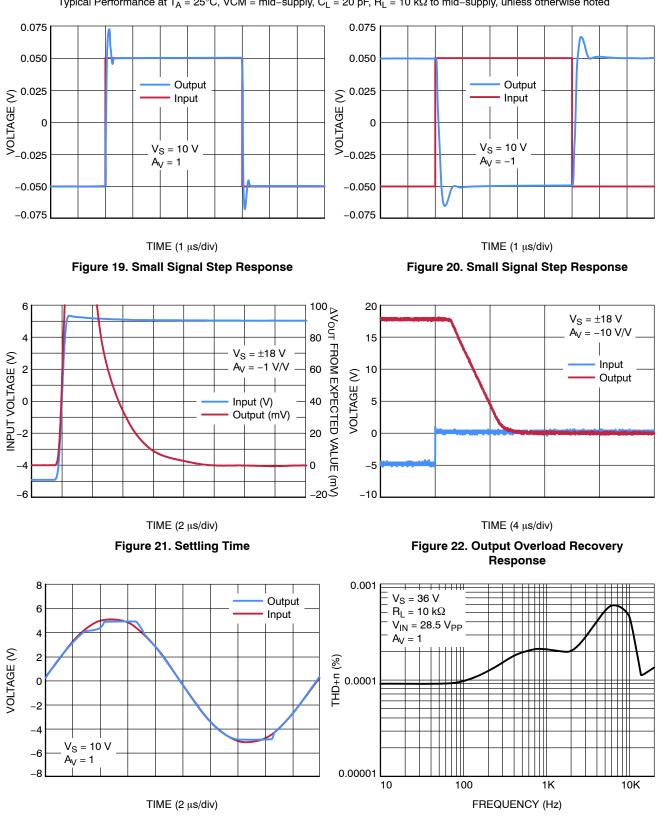
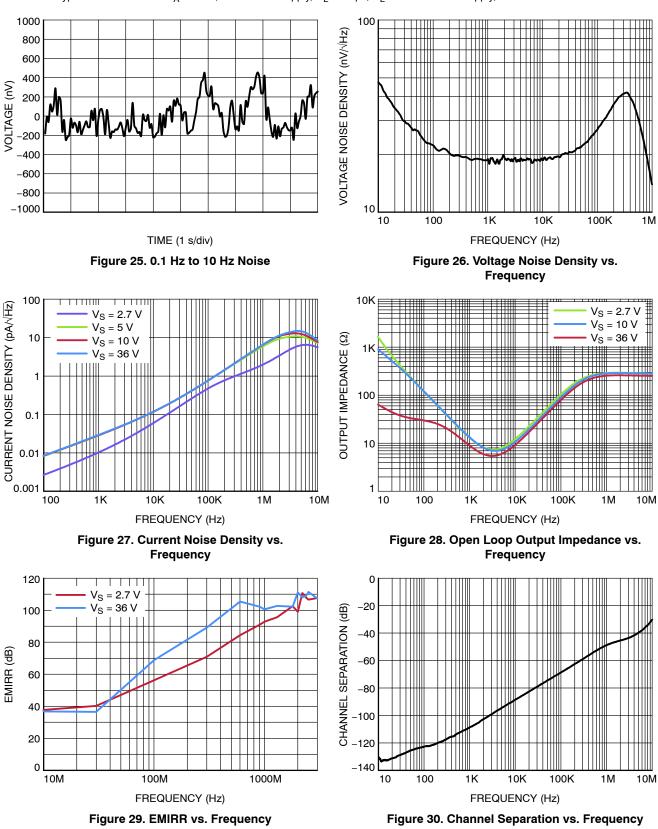



Figure 23. No Phase Reversal

Figure 24. THD+n vs. Frequency

TYPICAL CHARACTERISTICS

Typical Performance at T_A = 25°C, VCM = mid-supply, C_L = 20 pF, R_L = 10 k Ω to mid-supply, unless otherwise noted

APPLICATION INFORMATION

Input and ESD Structure

The NCS20231 series amplifiers have back-to-back Zener diodes, which allow for normal operation with the differential voltage up to ± 5 V. Differential voltages beyond this are permitted, up to $\pm V_S$, but increased input leakage current should be expected. Internal current limiting resistors in series with the input pins limit the current to ± 10 mA in scenarios where the differential voltage is as high as ± 36 V.

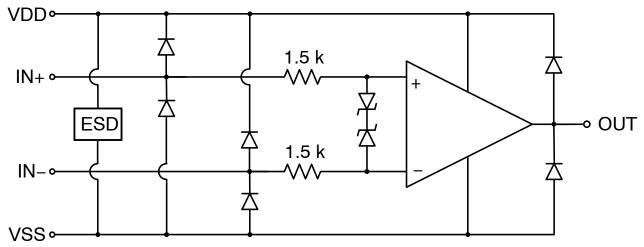
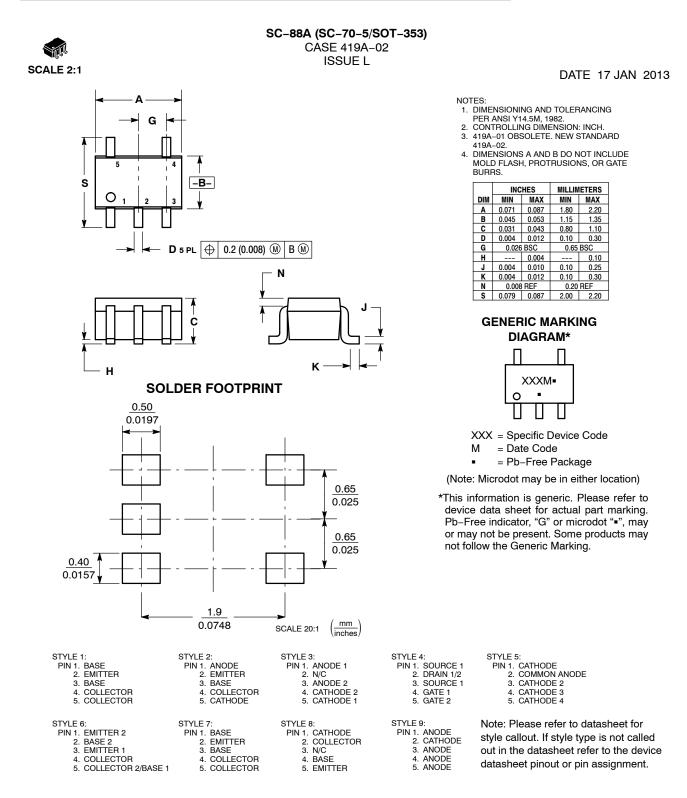


Figure 31. Representative Schematic of the Op Amp

Each input pin is diode clamped to the rails. In case of an input overvoltage, input currents must be limited to within ± 10 mA to prevent excessive current from damaging the part.

Rail-to-Rail Performance

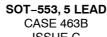

The functional common mode input voltage spans 100 mV beyond the rails. High precision performance, as

shown throughout the ELECTRICAL CHARACTERISTICS table, is achieved in the $V_{SS} - 0.1 V$ to $V_{DD} - 2 V$ common mode voltage range. The input common mode extends further up to $V_{DD} + 0.1 V$ to ensure functionality near the upper rail, though without precision performance in that region. The typical performance within the $V_{DD} - 2 V$ to $V_{DD} + 0.1 V$ range is shown in the table below.

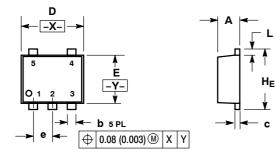
Parameter	Symbol	Conditions	Тур	Units
Input Offset Voltage	V _{OS}	$V_{CM} = V_{DD} - 0.5 V$	±9	mV
Input Offset Voltage over Temperature	dV _{OS} /dT		±24	μV/°C
Common Mode Rejection Ratio	CMRR	V_{CM} = $V_{DD} - 0.5$ V to V_{DD} + 0.1 V	75	dB
Open Loop Voltage Gain	A _{VOL}	$V_{CM} = V_{DD} - 0.5 V$	90	dB
Gain Bandwidth Product	GBWP	$V_{CM} = V_{DD} - 0.5 \text{ V}, \text{ C}_{L} = 25 \text{ pF}$	2.5	MHz
Slew Rate	SR	Unity gain, V_{CM} = $V_{DD}-1$ V to $V_{DD}-0.2$ V	1.2	V/µs
Voltage Noise Density	e _n	f = 1 kHz	1000	nV/√Hz

The NCS2023x does not exhibit output phase reversal. Phase reversal occurs in some amplifiers when the input voltage exceeds the recommended input common mode voltage range, causing the output to flip to the opposite rail. Instead, when the input common mode voltage range is exceeded on the NCS2023x, the output becomes clipped at the output, limited by the output voltage swing.

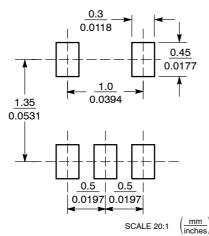
DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	SC-88A (SC-70-5/SOT-35	53) PAGE 1 O						
ON Semiconductor and ()) are trac ON Semiconductor reserves the right	lemarks of Semiconductor Components Indu to make changes without further notice to an	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation	and/or other countries. or guarantee regarding					


ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2018



SCALE 4:1



ISSUE C

RECOMMENDED **SOLDERING FOOTPRINT***

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2 3.

DIMENSIONING AND TOLERANOUS PER AND THANK, 199 CONTROLLING DIMENSION: MILLIMETERS MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	м	ILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.13	0.18	0.003	0.005	0.007	
D	1.55	1.60	1.65	0.061	0.063	0.065	
Е	1.15	1.20	1.25	0.045	0.047	0.049	
е		0.50 BSC			0.020 BSC)	
Г	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.55	1.60	1.65	0.061	0.063	0.065	

GENERIC **MARKING DIAGRAM***

XXM•

XX = Specific Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

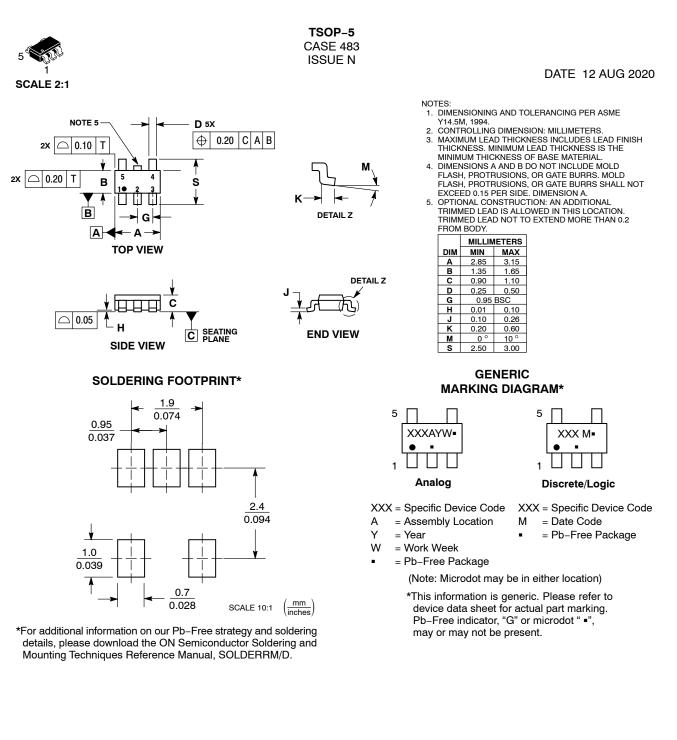
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. ANODE
2. EMITTER	2. COMMON ANODE	2. N/C	2. DRAIN 1/2	2. EMITTER
3. BASE	3. CATHODE 2	3. ANODE 2	3. SOURCE 1	3. BASE
4. COLLECTOR	4. CATHODE 3	4. CATHODE 2	4. GATE 1	4. COLLECTOR
5. COLLECTOR	5. CATHODE 4	5. CATHODE 1	5. GATE 2	5. CATHODE
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	
PIN 1. EMITTER 2	PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE	
2. BASE 2	2. EMITTER	2. COLLECTOR	2. CATHODE	
3. EMITTER 1	3. BASE	3. N/C	3. ANODE	
4. COLLECTOR 1	4. COLLECTOR	4. BASE	4. ANODE	
5. COLLECTOR 2/BASE 1	5. COLLECTOR	5. EMITTER	5. ANODE	

DOCUMENT NUMBER: 98AON11127D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed **ON SEMICONDUCTOR STANDARD** STATUS: versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **NEW STANDARD: DESCRIPTION:** SOT-553, 5 LEAD PAGE 1 OF 2

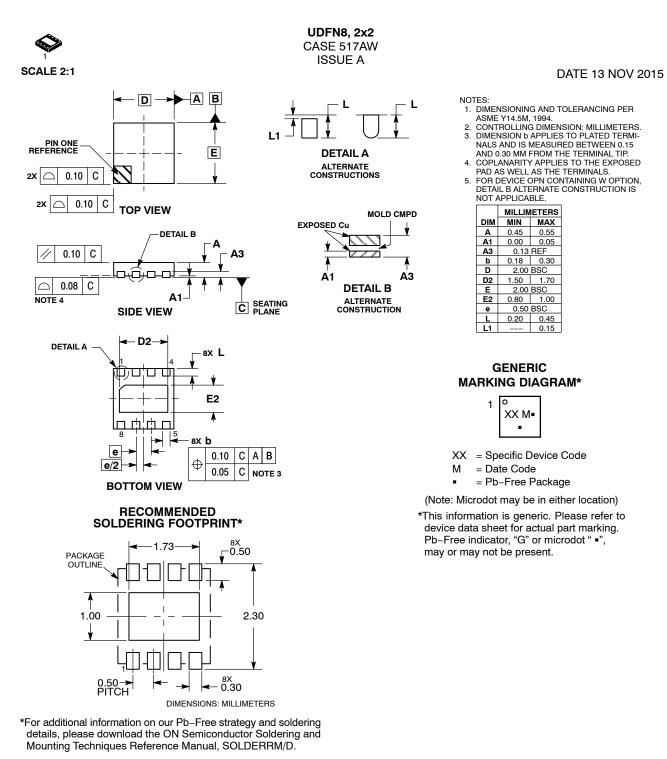
DOCUMENT NUMBER: 98AON11127D

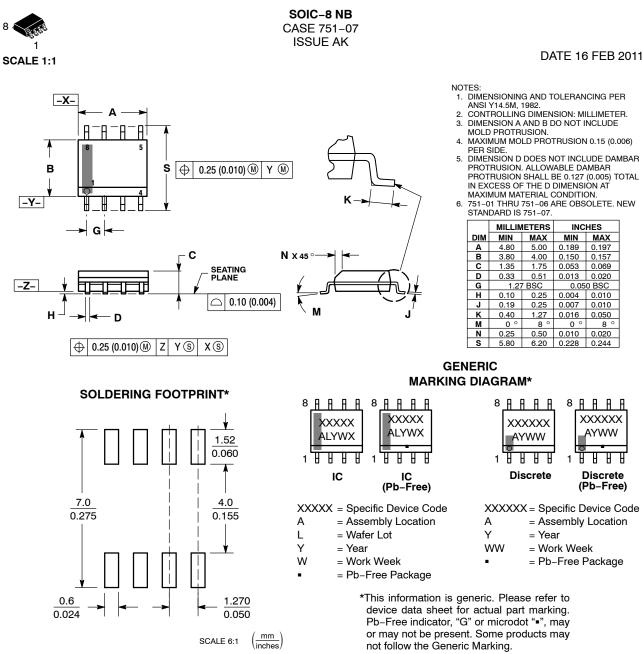
PAGE 2 OF 2


ISSUE	REVISION	DATE
Α	ADDED STYLES 3–9. REQ. BY D. BARLOW	11 NOV 2003
В	ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO	27 MAY 2005
С	UPDATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.	20 MAR 2013

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

© Semiconductor Components Industries, LLC, 2013 March, 2013 – Rev. C


Downloaded from Arrow.com.


DOCUMENT NUMBER:	98ARB18753C Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-5		PAGE 1 OF 1
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an rticular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically

DOCUMENT NUMBER:	98AON34462E Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	UDFN8, 2X2		PAGE 1 OF 1	
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the			

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2
the right to make changes without furth purpose, nor does onsemi assume a	er notice to any products herein. onsemi making ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	roducts for any particular

SOIC-8 NB CASE 751-07 **ISSUE AK**

ŝ

ę

ŝ

S

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR З. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE, DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C З. REXT 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6. BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5. 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC COMMON CATHODE/VCC 3 I/O LINE 3 4. 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt ENABLE З. 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

2. 3. 4. 5. 6. 7.	DRAIN, DIE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 GATE, #2 SOURCE, #2 GATE, #1 SOURCE, #1
2. 3. 4. 5. 6. 7.	INPUT EXTERNAL BYPASS THIRD STAGE SOURCE GROUND DRAIN GATE 3 SECOND STAGE Vd FIRST STAGE Vd
2. 3. 4. 5. 6. 7.	: SOURCE 1 SOURCE 2 GATE 2 DRAIN 2 DRAIN 2 DRAIN 1 DRAIN 1
3. / 4. / 5. (6. (7. (
2. 3. 4. 5. 6. 7. 8.	SOURCE 1 GATE 1 SOURCE 2 GATE 2 DRAIN 2 MIRROR 2 DRAIN 1 MIRROR 1
2. 3. 4. 5.	5: LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND LINE 2 IN LINE 2 OUT COMMON ANODE/GND COMMON ANODE/GND LINE 1 OUT
STYLE : PIN 1. 2. 3. 4. 5. 6. 7. 8.	ILIMIT OVLO UVLO INPUT+ SOURCE SOURCE SOURCE

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves				

SOURCE 1/DRAIN 2

7.

8 GATE 1

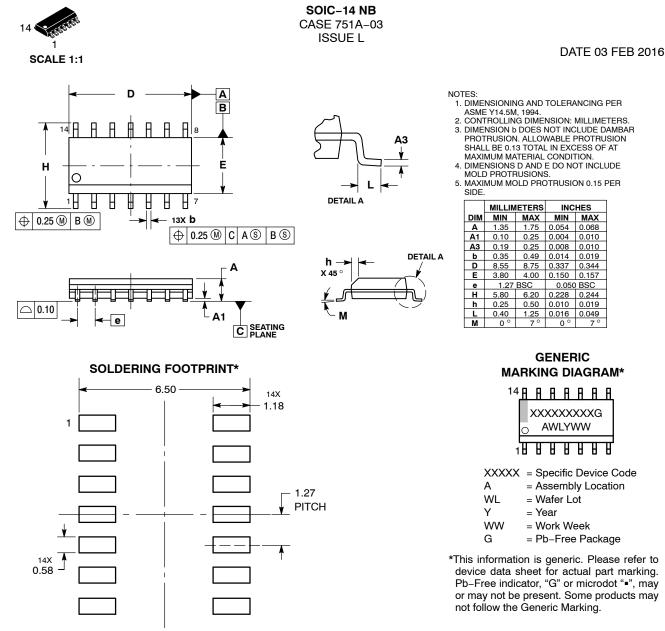
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

6.

7.

8

COLLECTOR, #1


COLLECTOR, #1

DUSEM

0.068

0.019

0.344

DIMENSIONS: MILLIMETERS

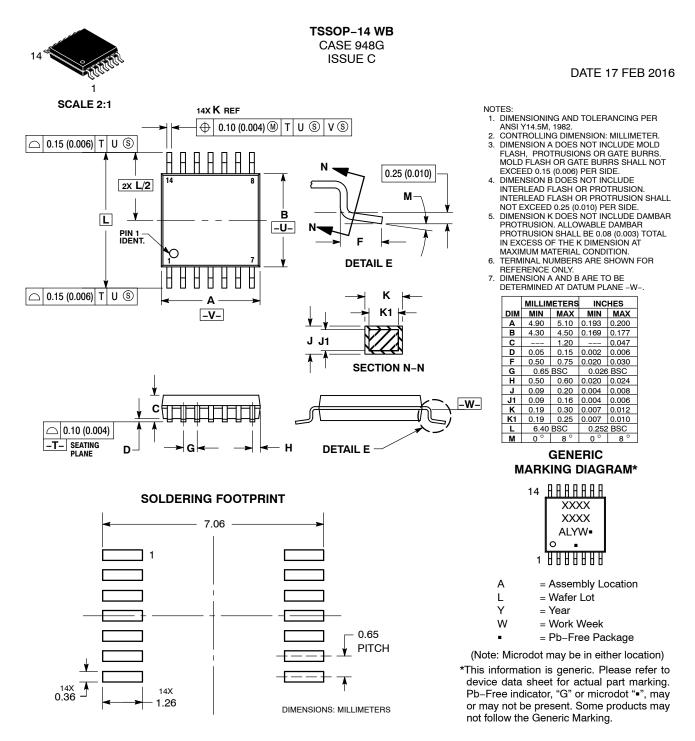
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016


STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANDDE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemí

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-14 WB PAGE		PAGE 1 OF 1	
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation				

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥