BFL4036

ON Semiconductor®

N-Channel Power MOSFET 500V, 14A, 0.52Ω, TO-220F-3FS

http://onsemi.com

Features

- ON-resistance RDS(on)= 0.4Ω (typ.)
- · 10V drive

• Input capacitance Ciss=1000pF (typ.)

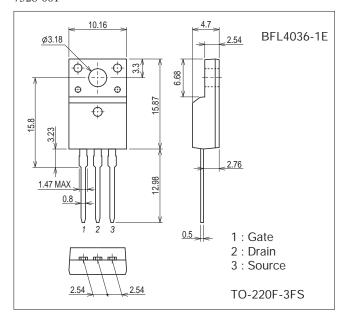
Specifications

Absolute Maximum Ratings at Ta=25°C

Parameter	Symbol	Conditions	Ratings	Unit
Drain to Source Voltage	V _{DSS}		500	V
Gate to Source Voltage	VGSS		±30	V
Drain Current (DC)	I _{Dc} *1	Limited only by maximum temperature Tch=150°C	14	Α
Diani Curient (DC)	I _{Dpack} *2	Tc=25°C (Our ideal heat dissipation condition)*3	9.6	Α
Drain Current (Pulse)	IDP	PW≤10μs, duty cycle≤1%	50	Α
Allowable Power Dissipation	PD		2.0	W
		Tc=25°C (Our ideal heat dissipation condition)*3	37	W
Channel Temperature	Tch		150	°C
Storage Temperature	Tstg		-55 to +150	°C
Avalanche Energy (Single Pulse) *4	EAS		109	mJ
Avalanche Current *5	IAV		14	Α

Note: *1 Shows chip capability

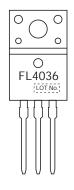
- *2 Package limited
- *3 Our condition is radiation from backside.

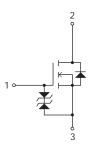

The method is applying silicone grease to the backside of the device and attaching the device to water-cooled radiator made of aluminium.

- *4 VDD=50V, L=1mH, IAV=14A (Fig.1)
- *5 L≤1mH, single pulse

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Package Dimensions


unit : mm (typ) 7528-001


Ordering & Package Information

Device	Package	Shipping	memo		
BFL4036-1E	TO-220F-3FS SC-67	50 pcs./tube	Pb-Free		

Marking

Electrical Connection

Semiconductor Components Industries, LLC, 2013

June, 2013

Electrical Characteristics at Ta=25°C

Parameter	Symbol	Conditions	Ratings			Linit
Parameter			min	typ	max	Unit
Drain to Source Breakdown Voltage	V(BR)DSS	ID=10mA, VGS=0V	500			V
Zero-Gate Voltage Drain Current	IDSS	V _{DS} =400V, V _{GS} =0V			100	μΑ
Gate to Source Leakage Current	IGSS	V _{GS} =±24V, V _{DS} =0V			±10	μΑ
Cutoff Voltage	VGS(off)	V _{DS} =10V, I _D =1mA	3		5	V
Forward Transfer Admittance	yfs	V _{DS} =10V, I _D =7A	3.5	7		S
Static Drain to Source On-State Resistance	R _{DS} (on)	I _D =7A, V _G S=10V		0.4	0.52	Ω
Input Capacitance	Ciss	V _{DS} =30V, f=1MHz		1000		pF
Output Capacitance	Coss			200		pF
Reverse Transfer Capacitance	Crss			44		pF
Turn-ON Delay Time	t _d (on)	See Fig.2		22		ns
Rise Time	t _r			66		ns
Turn-OFF Delay Time	t _d (off)			117		ns
Fall Time	tf			46		ns
Total Gate Charge	Qg	V _{DS} =200V, V _{GS} =10V, I _D =14A		38.4		nC
Gate to Source Charge	Qgs			6.7		nC
Gate to Drain "Miller" Charge	Qgd			22.1		nC
Diode Forward Voltage	V _{SD}	I _S =14A, V _{GS} =0V		0.95	1.3	V
Reverse Recovery Time	t _{rr}	See Fig.3		520		ns
Reverse Recovery Charge	Qrr	I _S =14A, V _{GS} =0V, di/dt=100A/μs		4200		nC

Fig.1 Unclamped Inductive Switching Test Circuit

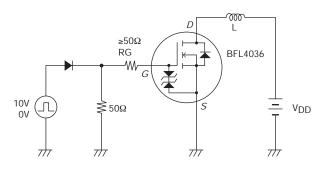


Fig.2 Switching Time Test Circuit

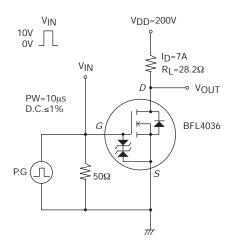
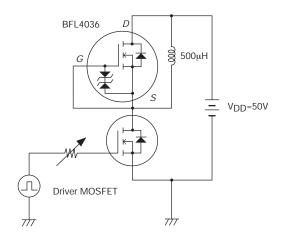
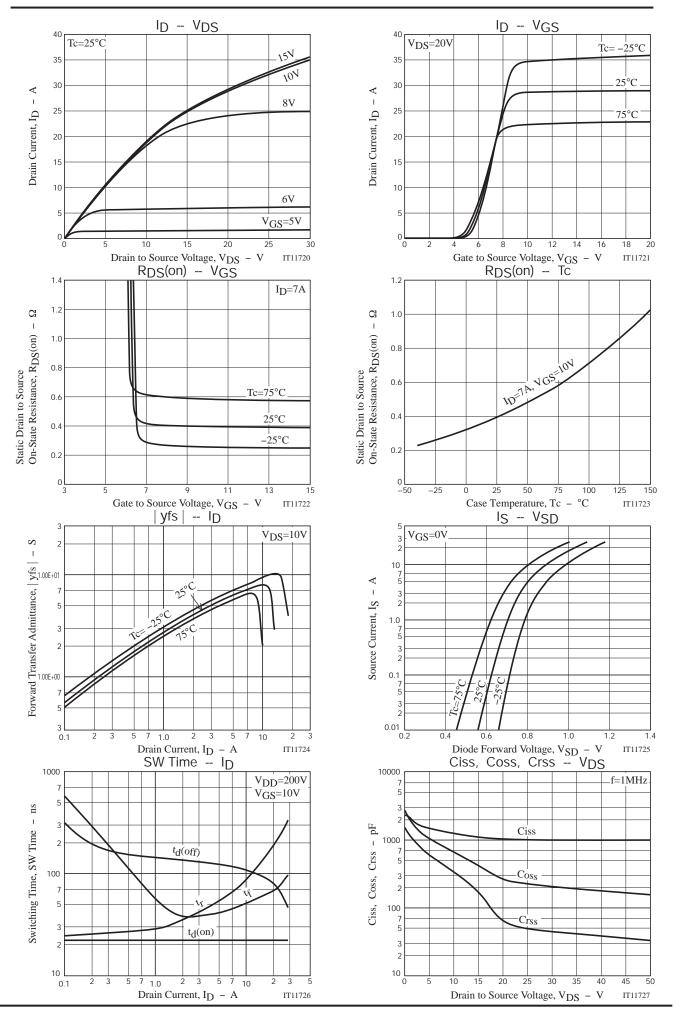
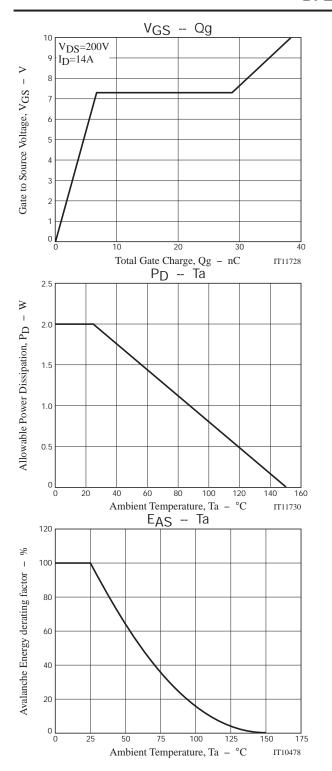
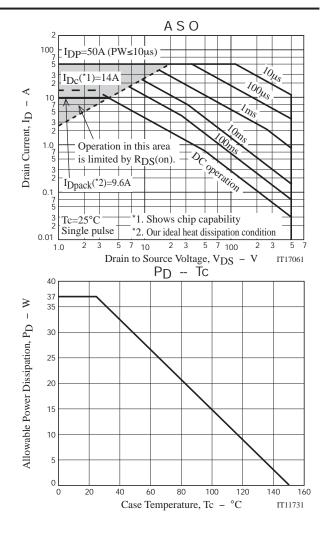
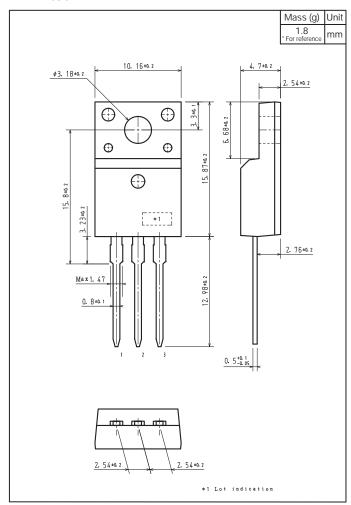






Fig.3 Reverse Recovery Time Test Circuit



Outline Drawing

BFL4036-1E

Note on usage: Since the BFL4036 is a MOSFET product, please avoid using this device in the vicinity of highly charged objects.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa