



ON Semiconductor®

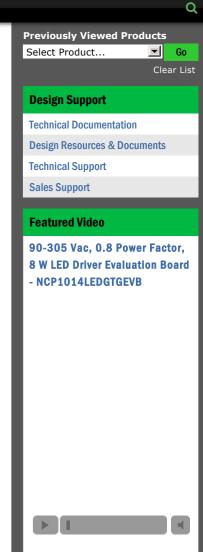


## **Energy Efficient Innovations**

Products SensL Applications Design Support About MyON

Home > Support > Design Support > Design Resources & Documents > Evaluation/Development Tools

## NCP1014LEDGTGEVB: 90-305 Vac, 0.8 Power Factor, 8 W LED **Driver Evaluation Board**


The NCP1014GTGEVB Greenpoint(TM) reference design board has been specifically designed to meet the > 0.7 power factor requirements of residential Energy Star(R) LED Luminaires without the addition of extra circuitry. This makes the driver an ideal candidate for products such as portable desk lamps, step lights, and undercabinet lighting that are included in the Energy Star residential product category. This design is rated at 8W which makes it ideal for driving devices like the Cree XLAMP(R) MC-E which



integrates 4 LEDs in single package. The current for this evaluation board is set at 630 mA nominal although the current can be changed to other values by modifying a current setting sense resistor. While the power factor (>0.8 nominal) has been optimized for AC inputs in the range of 90 - 135 Vac , the board supports an AC input range of 90-265 V ac. While not populated, there are provisions in the board layout to support an optional analog dimming circuit which may be attractive for some applications. It contains all necessary features such as soft-start, frequency jittering, skip cycle etc. to build a rugged and low cost power supply. The device has dynamic self supply to allow it to be powered directly from the high voltage bulk. This demo board uses an auxiliary winding to maximize power output capability.

| Evaluation/Development Tool Information |        |            |                                                               |                 |                                                     |  |  |
|-----------------------------------------|--------|------------|---------------------------------------------------------------|-----------------|-----------------------------------------------------|--|--|
| Product                                 | Status | Compliance | Short Description                                             | Parts Used      | Action                                              |  |  |
| NCP1014LEDGTGEVB                        | Active | Pb-free    | 90-305 Vac, 0.8 Power Factor, 8 W LED Driver Evaluation Board | NCP1014ST100T3G | >> Contact<br>Local Sales<br>Office<br>>> Inventory |  |  |

| Technical Documents           |                                                                                     |                                                |     |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------|-----|--|--|--|
| Туре                          | Document Title                                                                      | Document ID/Size                               | Rev |  |  |  |
| Eval Board: BOM               | NCP1014LEDGTGEVB Bill of Materials ROHS Compliant                                   | NCP1014LEDGTGEVB_BOM_ROHS.PDF - 144.0 KB       | 2   |  |  |  |
| Eval Board: Gerber            | NCP1014LEDGTGEVB Gerber Layout Files (Zip Format)                                   | NCP1014LEDGTGEVB_GERBER.ZIP - 93.0 KB          | 0   |  |  |  |
| Eval Board: Test<br>Procedure | NCP1014LEDGTGEVB Test Procedure                                                     | NCP1014LEDGTGEVB_TEST_PROCEDURE.PDF - 148.0 KB | 3   |  |  |  |
| Eval Board:<br>Schematic      | NCP1014LEDGTGEVB Schematic                                                          | NCP1014LEDGTGEVB_SCHEMATIC - 193 KB            | 0   |  |  |  |
| Video                         | 90-305 Vac, 0.8 Power Factor, 8 W LED Driver Evaluation<br>Board - NCP1014LEDGTGEVB | WVD17547/D                                     |     |  |  |  |



More Videos ...

Privacy Policy | Terms of Use | Site Map | Careers | Contact Us | Terms and Conditions | Mobile App | Subscribe Copyright © 1999-2018 ON Semiconductor

Follow Us





