

LDC1051: 8-bit Rp only Inductance-to-Digital Converter with SPI

1 Features

- Remote Sensor Placement (Decoupling The LDC From Harsh Environments)
- High Durability (By Virtue Of Contactless Operation)
- Higher Flexibility For System Design (Using Coils Or Springs As Sensors)
- Insensitive to Non-conductive Environmental Interferers (such As Dirt, Dust, Oil etc.)
- Magnet-free Operation
- Supply Voltage: 5 V, typ
- Supply Voltage, IO: 1.8V to 5.5V
- Stand-by Current: 250uA, typ
- Rp Resolution: 8-bit
- LC Frequency Range: 5kHz to 5MHz

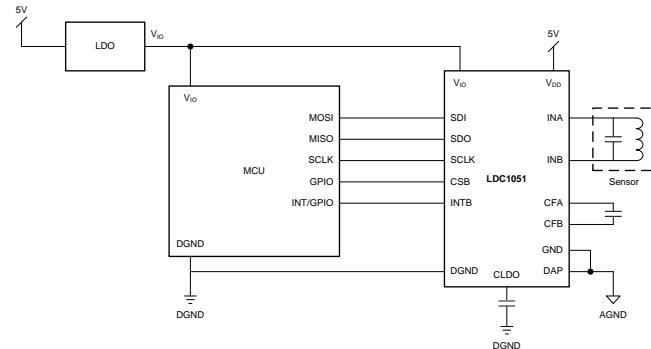
Axial Distance Sensing Application

2 Applications

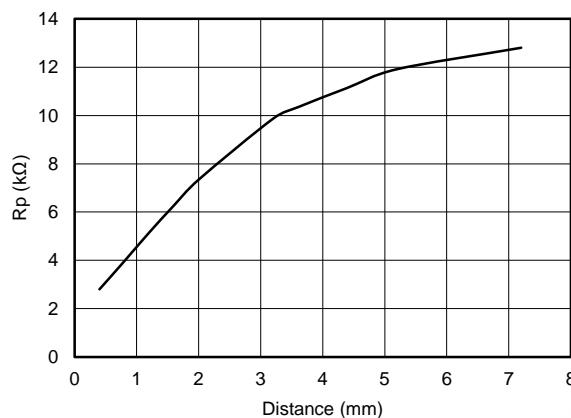
- Proximity Sensing
- Level Sensing
- Lateral Position Sensing

3 Description

Inductive sensing is a contactless, short-range sensing technology enabling high-resolution and low-cost position sensing of conductive targets, even in harsh environments. Using a coil or spring as a sensor, the LDC1051 inductance-to-digital converter provides system designers a way to achieve high performance and reliability at a lower system cost than other competing solutions.


The LDC1051 is pin compatible with the LDC1000 (16-bit Rp/24-bit L) and the LDC1041 (8-bit Rp/24-bit L). This family of devices offers system designers different resolution options based on their application and system requirements.

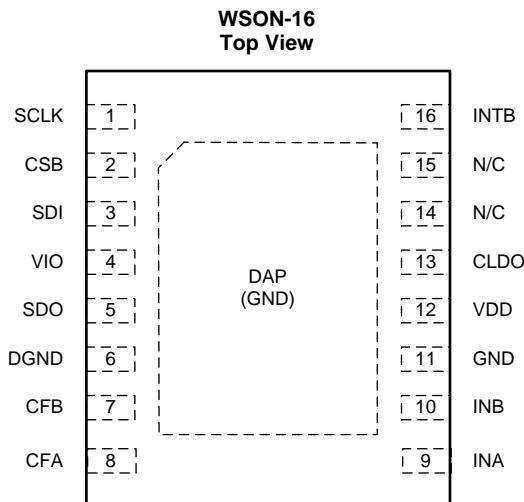
The LDC1051 is available in a 5mm x 4mm WSON-16 package. Device programming via SPI allows for easy configuration using a microcontroller.


Device Information

ORDER NUMBER	PACKAGE	BODY SIZE
LDC1051NHRT	WSON (16)	5 mm x 4 mm
LDC1051NHRR	WSON (16)	5 mm x 4 mm
LDC1051NHRJ	WSON (16)	5 mm x 4 mm

Application Schematic

Rp vs Distance With 14mm PCB Coil


Table of Contents

1	Features	1	7.3	Feature Description	8
2	Applications	1	7.4	Device Functional Modes	11
3	Description	1	7.5	Programming	14
4	Revision History	2	7.6	Register Map and Description	15
5	Terminal Configuration and Functions	3	8	Applications and Implementation	20
6	Specifications	4	8.1	Application Information	20
6.1	Absolute Maximum Ratings	4	8.2	Typical Applications	21
6.2	Handling Ratings	4	9	Power Supply Recommendations	25
6.3	Recommended Operating Conditions	4	10	Layout	25
6.4	Thermal Information	4	10.1	Layout Guidelines	25
6.5	Electrical Characteristics	5	10.2	Layout Example	26
6.6	Timing Requirements	6	11	Device and Documentation Support	27
6.7	Typical Characteristics	7	11.1	Trademarks	27
7	Detailed Description	8	11.2	Electrostatic Discharge Caution	27
7.1	Overview	8	11.3	Glossary	27
7.2	Functional Block Diagram	8	12	Mechanical, Packaging, and Orderable	
				Information	27

4 Revision History

DATE	REVISION	NOTES
March 2014	*	Initial release.

5 Terminal Configuration and Functions

Terminal Functions

TERMINAL NAME	TERMINAL NO.	TERMINAL TYPE	DESCRIPTION
SCLK	1	DO	SPI clock input. SCLK is used to clock-out/clock-in the data from/into the chip
CSB	2	DI	SPI CSB(Chip Select Bar). Multiple devices can be connected on the same SPI bus and CSB can be used to select the device to be communicated with
SDI	3	DI	SPI Slave Data In (Master Out Slave In). This should be connected to the Master Out Slave In of the master
VIO	4	P	Digital IO Supply
SDO	5	DO	SPI Slave Data Out (Master In Slave Out).It is high impedance when CSB is high
DGND	6	P	Digital ground
CFB	7	A	LDC filter capacitor
CFA	8	A	LDC filter capacitor
INA	9	A	External LC Tank. Connect to external LC tank
INB	10	A	External LC Tank. Connect to external LC tank
GND	11	P	Analog ground
VDD	12	P	Analog supply
CLDO	13	A	LDO bypass capacitor. A 56nF capacitor should be connected from this Terminal to GND
N/C	14	N/C	No Connection
N/C	15	N/C	No Connection
INTB	16	DO	Configurable interrupt. This Terminal can be configured to behave in 3 different ways by programing the INT Terminal mode register. Either threshold detect, wakeup, or DRDYB
DAP	17	P	Connect to GND

6 Specifications

6.1 Absolute Maximum Ratings

	MIN	MAX	UNIT
Analog Supply Voltage (V_{DD} – GND)	6		V
IO Supply Voltage (V_{IO} – GND)	6		V
Voltage on any Analog Terminal	-0.3	$V_{DD} + 0.3$	V
Voltage on any Digital Terminal	-0.3	$V_{IO} + 0.3$	V
Input Current on INA and INB	8		mA
Junction Temperature, T_J	150		°C

6.2 Handling Ratings

		MIN	MAX	UNIT
T_{stg}	Storage Temperature range	-65	150	°C
V_{ESD}	Human Body Model (HBM) ESD stress voltage	1k	1k	V
	Charge Device Model (CDM) ESD stress voltage	250	250	V

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Analog Supply Voltage (V_{DD} – GND)	4.75	5.25	V
IO Supply Voltage (V_{IO} – GND)	1.8	5.25	V
$V_{DD}-V_{IO}$	0		V
Operating Temperature, T_A	-40	125	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		NHR (16-TERMINALS)	UNIT
θ_{JA}	Junction-to-ambient thermal resistance	28	°C/W

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](#).

6.5 Electrical Characteristics⁽¹⁾

Unless otherwise specified, all limits ensured for $T_A = T_J = 25^\circ\text{C}$, $V_{DD} = 5\text{ V}$, $V_{IO} = 3.3\text{ V}$

PARAMETER	TEST CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
POWER					
V_{DD}	Analog supply voltage		4.75	5	5.25
V_{IO}	$V_{IO} \leq V_{DD}$	1.8	3.3	5.25	V
I_{DD}	Supply current, V_{DD}	Does not include sensor current. ⁽⁴⁾			1.7 2.3
I_{VIO}	IO supply current	Static current			14 μA
I_{DD_LP}	Stand-by mode supply current				250 μA
t_{START}	Start-Up Time	From POR to ready-to-convert.		2	ms
LDC					
$f_{\text{sensor_MIN}}$	Minimum sensor frequency		5	kHz	
$f_{\text{sensor_MAX}}$	Maximum sensor frequency		5	MHz	
$A_{\text{sensor_MIN}}$	Minimum sensor amplitude		1	V_{PP}	
$A_{\text{sensor_MAX}}$	Maximum sensor amplitude		4	V_{PP}	
t_{REC}	Recovery time	Oscillation start-up time after R_p under-range condition	10	$1/f_{\text{sensor}}$	
R_p Min	Minimum sensor R_p range		798	Ω	
R_p Max	Maximum Sensor R_p range		3.93	$M\Omega$	
R_p Res	R_p measurement resolution		8	Bits	
t_S_{MIN}	Minimum response time	Minimum programmable settling time of digital filter	$192 \times 1 / f_{\text{sensor}}$	s	
t_S_{MAX}	Maximum response time	Maximum programmable settling time of digital filter	$6144 \times 1 / f_{\text{sensor}}$	s	
DIGITAL I/O CHARACTERISTICS					
V_{IH}	Logic 1 input voltage		$0.8 \times V_{IO}$	V	
V_{IL}	Logic 0 input voltage			$0.2 \times V_{IO}$	V
V_{OH}	Logic 1 output voltage	$I_{\text{SOURCE}} = 400\text{ }\mu\text{A}$	$V_{IO} - 0.3$	V	
V_{OL}	Logic 0 output voltage	$I_{\text{SINK}} = 400\text{ }\mu\text{A}$	0.3	V	
I_{IOHL}	Digital IO leakage current	-500	500	nA	

- (1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No specification of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$. Absolute Maximum Ratings indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
- (2) Limits are specified by testing, design, or statistical analysis at 25°C . Limits over the operating temperature range are specified through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.
- (4) LC tank current depends on the Q-factor of the tank, distance and material of the target.

6.6 Timing Requirements

Unless otherwise noted, all limits specified at $T_A = 25^\circ\text{C}$, $V_{DD} = 5$, $V_{IO} = 3.3$, 10 pF capacitive load in parallel with a 10 k Ω load on the SDO terminal. Specified by design; not production tested.

PARAMETER		MIN	TYP	MAX	UNIT
f_{SCLK}	Serial Clock Frequency			4	MHz
t_{PH}	SCLK Pulse Width High	$f_{SCLK} = 4$ MHz			s
t_{PL}	SCLK Pulse Width Low	$f_{SCLK} = 4$ MHz			s
t_{SU}	SDI Setup Time			10	ns
t_H	SDI Hold Time			10	ns
t_{ODZ}	SDO Driven-to-Tristate Time	Measured at 10% / 90% point		20	ns
t_{OZD}	SDO Tristate-to-Driven Time	Measured at 10% / 90% point		20	ns
t_{OD}	SDO Output Delay Time			20	ns
t_{CSS}	CSB Setup Time		20		ns
t_{CSH}	CSB Hold Time		20		ns
t_{IAG}	Inter-Access Gap		100		ns
t_{DRDYB}	Data ready pulse width	Data ready pulse at every 1 / ODR if no data is read		$1 / f_{\text{sensor}}$	s

Unless otherwise noted, all limits specified at $TA = 25^\circ\text{C}$, $VDD=5.0$, $VIO=3.3$, 10pF capacitive load in parallel with a 10k Ω load on SDO. Specified by design; not production tested.

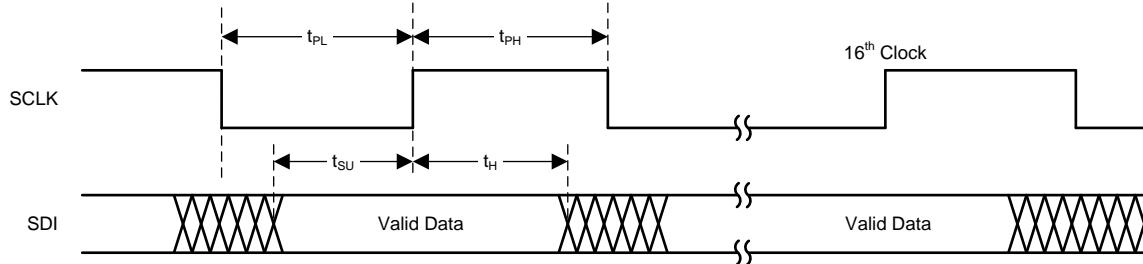


Figure 1. Write Timing Diagram

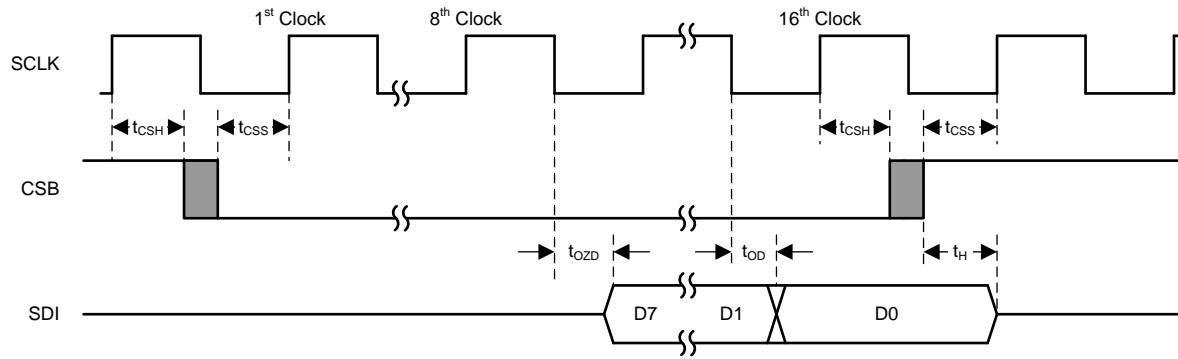
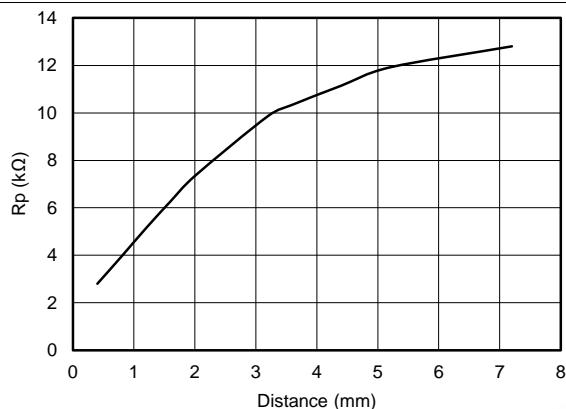
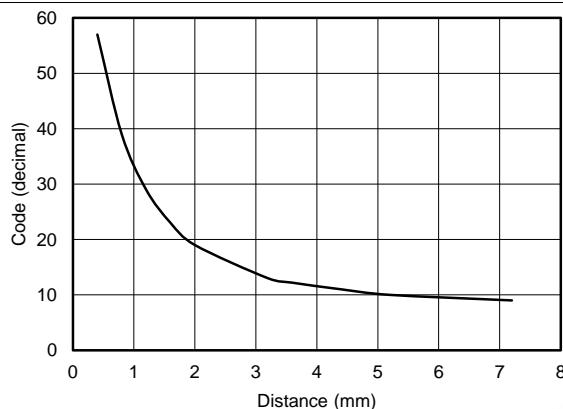



Figure 2. Read Timing Diagram


6.7 Typical Characteristics

Sensor Details: [Table 16](#)
Target Material: Stainless Steel

Rp_MIN: 1.347 kΩ **Rp_MAX:** 38.785 kΩ

Figure 3. Rp vs Distance

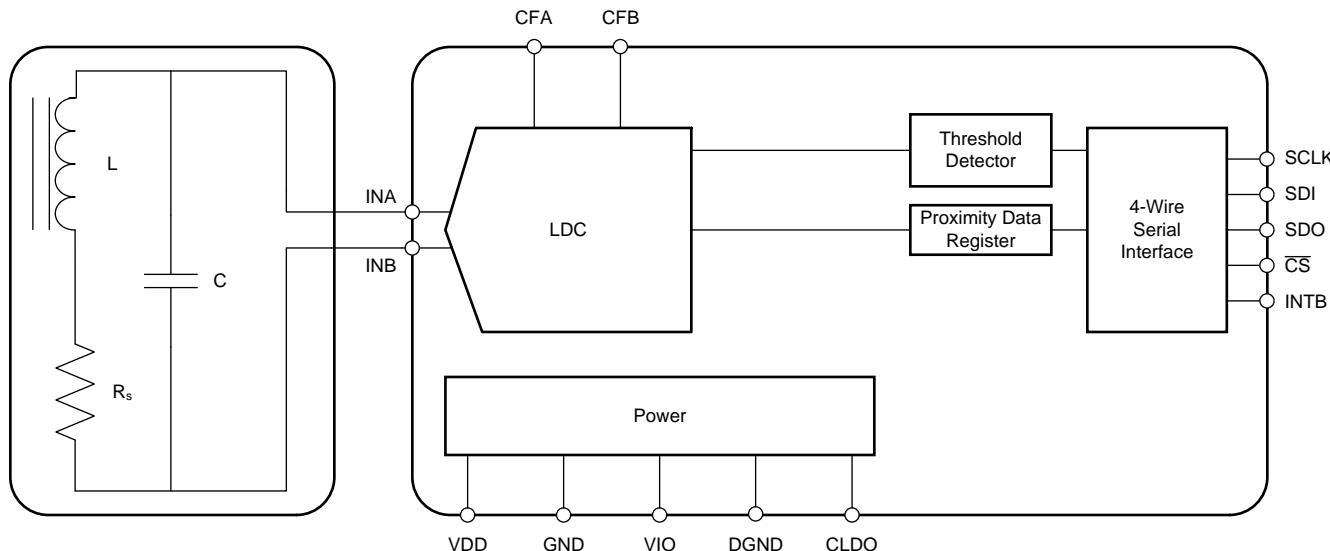
Sensor Details: [Table 16](#)
Target Material: Stainless Steel

Rp_MIN: 1.347 kΩ **Rp_MAX:** 38.785 kΩ

Figure 4. Proximity Data vs Distance

7 Detailed Description

7.1 Overview

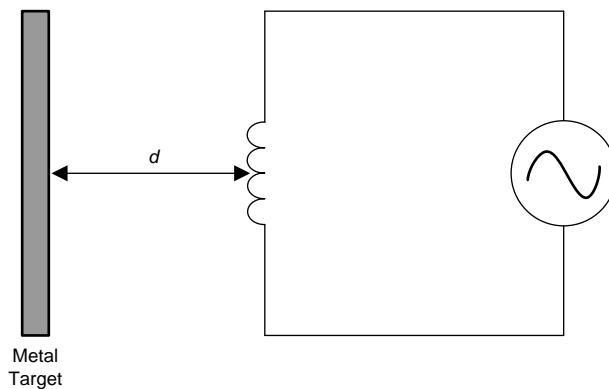

The LDC1051 is an Inductance-to-Digital Converter that measures the parallel impedance of an LC resonator. It accomplishes this task by regulating the oscillation amplitude in a closed loop configuration to a constant level, while monitoring the energy dissipated by the resonator. By monitoring the amount of power injected into the resonator, the LDC1051 can determine the value of R_p ; it returns this as a digital value which is inversely proportional to R_p .

The threshold detector block provides a comparator with hysteresis, with the threshold registers programmed and comparator enabled, proximity data register is compared with threshold registers and INTB terminal indicates the output.

The device has a simple 4-wire SPI interface. The INTB terminal provides multiple functions which are programmable with SPI.

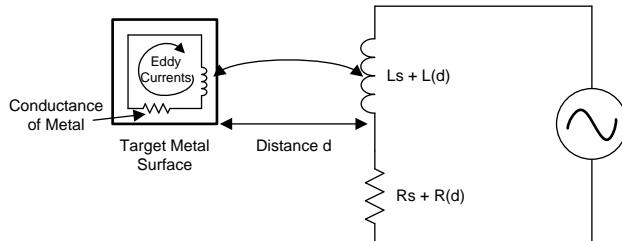
The device has separate supplies for Analog and I/O, with analog operating at 5V and I/O at 1.8-5V. The integrated LDO needs a 56nF capacitor connected from CLDO terminal to GND.

7.2 Functional Block Diagram

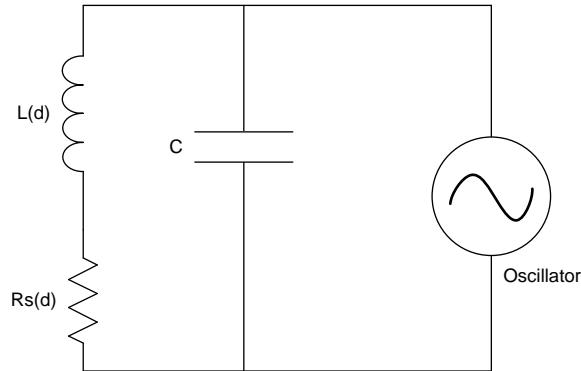


7.3 Feature Description

7.3.1 Inductive Sensing


An AC current flowing through a coil will generate an AC magnetic field. If a conductive material, such as a metal target, is brought into the vicinity of the coil, this magnetic field will induce circulating currents (eddy currents) on the surface of the target. These eddy currents are a function of the distance, size, and composition of the target. The eddy currents then generate their own magnetic field, which opposes the original field generated by the coil. This mechanism is best compared to a transformer, where the coil is the primary core and the eddy current is the secondary core. The inductive coupling between both cores depends on distance and shape. Hence the resistance and inductance of the secondary core (eddy current), shows up as a distant dependent resistive and inductive component on the primary side (coil). The figures(Figure 5 to Figure 8) below show a simplified circuit model.

Feature Description (continued)


Figure 5. Inductor With A Metal Target

Eddy currents generated on the surface of the target can be modeled as a transformer as shown in [Figure 6](#). The coupling between the primary and secondary coils is a function of the distance and the conductor's characteristics. In [Figure 6](#), the inductance L_s is the coil's inductance, and R_s is the coil's parasitic series resistance. The inductance $L(d)$, which is a function of distance d , is the coupled inductance of the metal target. Likewise, $R(d)$ is the parasitic resistance of the eddy currents and is also a function of distance.

Figure 6. Metal Target Modeled As L And R With Circulating Eddy Currents

Generating an alternating magnetic field with just an inductor will consume a large amount of power. This power consumption can be reduced by adding a parallel capacitor, turning it into a resonator as shown in [Figure 7](#). In this manner the power consumption is reduced to the eddy and inductor losses $R_s+R(d)$ only.

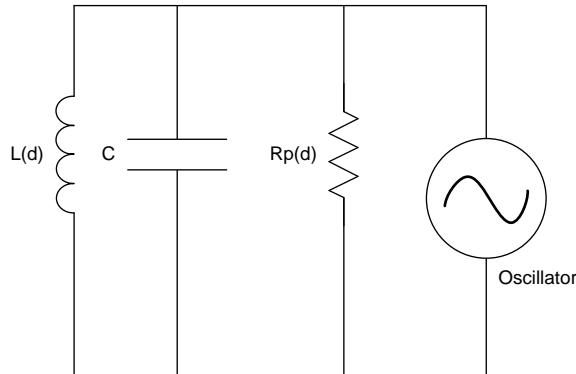
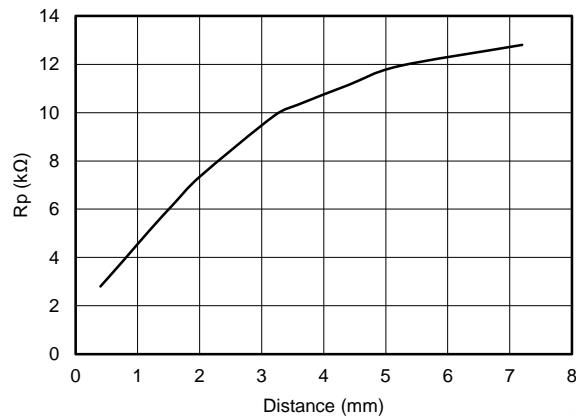


Figure 7. LC Tank Connected To Oscillator

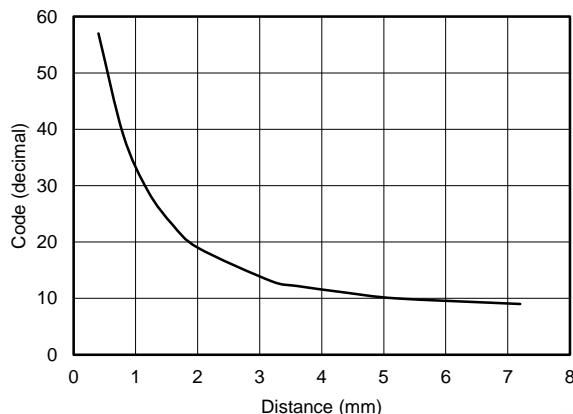
The LDC1051 doesn't measure the series resistance directly; instead it measures the equivalent parallel resonance impedance R_p (see [Figure 8](#)). This representation is equivalent to the one shown in [Figure 8](#), where the parallel resonance impedance $R_p(d)$ is given by:


Feature Description (continued)

$$R_p(d) = \frac{L_s + L(d)}{[R_s + R(d)] \times C} \quad (1)$$

Figure 8. Equivalent Resistance Of R_s in Parallel With LC Tank

Figure 9 below shows the variation in R_p as a function of distance for a 14mm diameter PCB coil (Sensor Details:Table 16). The target in this example is a section of a 2mm thick stainless steel disk.


Figure 9. Typical R_p vs Distance With 14mm PCB Coil

7.3.2 Measuring R_p with LDC1051

The LDC1051 supports a wide range of LC combinations, with oscillation frequencies ranging from 5kHz to 5MHz and R_p ranging from 798Ω to $3.93M\Omega$. This range of R_p can be viewed as the maximum input range of an ADC. As illustrated in Figure 9, the range of R_p is typically much smaller than the maximum input range supported by the LDC1051. To get better resolution in the desired sensing range, the LDC1051 offers a programmable input range through the $R_p_{_MIN}$ and $R_p_{_MAX}$ registers. Refer to [Calculation of \$R_p_{_MIN}\$ and \$R_p_{_MAX}\$](#) below for how to set these registers.

When the sensor's resonance impedance R_p drops below the programmed $R_p_{_MIN}$, the LDC's R_p output will clip at its full scale output. This situation could, for example, happen when a target comes too close to the coil.

Feature Description (continued)

Figure 10. Transfer Characteristics Of LDC1051 With Rp_MIN= 1.347 kΩ And Rp_MAX= 38.785 kΩ

The resonance impedance can be calculated from the digital output code as follows:

$$Rp = \frac{Rp_MAX \times Rp_MIN}{Rp_MIN \times (1 - Y) + Rp_MAX \times Y}$$

Where:

- $Y = \text{Proximity Data}/2^7$
- Rp_MAX and Rp_MIN are the maximum and minimum Rp values selected in the respective registers
- Proximity data is the LDC output, register address 0x22.

(2)

Example: If Proximity data (address 0x22) is 50, Rp_MIN is 2.394 kΩ, and Rp_MAX is 38.785 kΩ, the resonance impedance is given by:

$$Y = 50/2^7 = 0.3906$$

$$Rp = (38785 \times 2394) / (2394 \times (1 - 0.3906) + 38785 \times 0.3906) = (92851290) / (15149.421 + 1458.9036)$$

$$Rp = 5.59 \text{ kΩ}$$

7.4 Device Functional Modes

7.4.1 Power Modes

The LDC1051 has two power modes:

- Active Mode : In this mode the Proximity data conversion is enabled.
- Stand-by Mode: This is the default mode on device power-up. In this mode conversion is disabled.

7.4.2 INTB terminal Modes

The INTB terminal is a configurable output terminal which can be used to drive an interrupt on an MCU. The LDC1051 provides three different modes on INTB terminal:

1. Comparator Mode
2. Wake-Up Mode
3. DRDY Mode

LDC1051 has built-in High and Low trigger threshold registers which can be used as a comparator with programmable hysteresis or in a special mode which can be used to wake-up an MCU. These modes are explained in detail below.

Device Functional Modes (continued)

7.4.2.1 Comparator Mode

In the Comparator mode, the INTB terminal is asserted or deasserted when the proximity register value increases above Threshold High or decreases below Threshold Low registers respectively. In this mode, the LDC1051 essentially behaves as a proximity switch with programmable hysteresis.

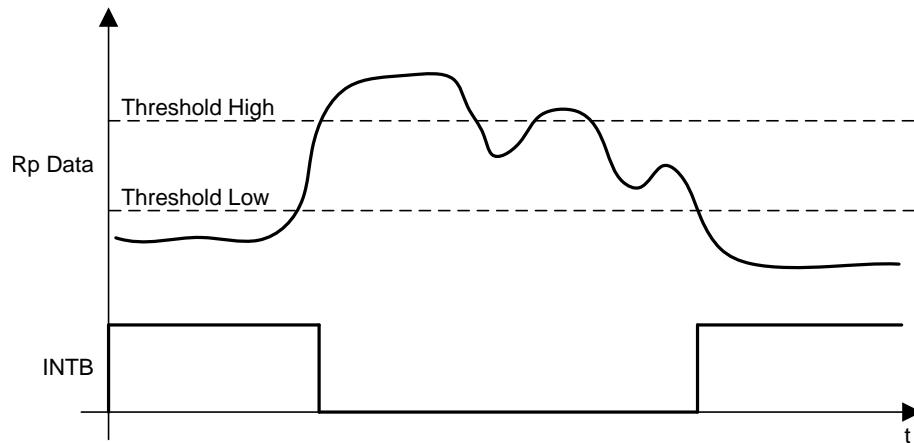


Figure 11. Behavior Of INTB Terminal In Comparator Mode

7.4.2.2 Wake-Up Mode

In Wake-Up mode, the INTB terminal is asserted when proximity register value increases above Threshold High and de-asserted when wake-up mode is disabled in INTB terminal mode register.

This mode can be used to wake-up an MCU from sleep, to conserve power.

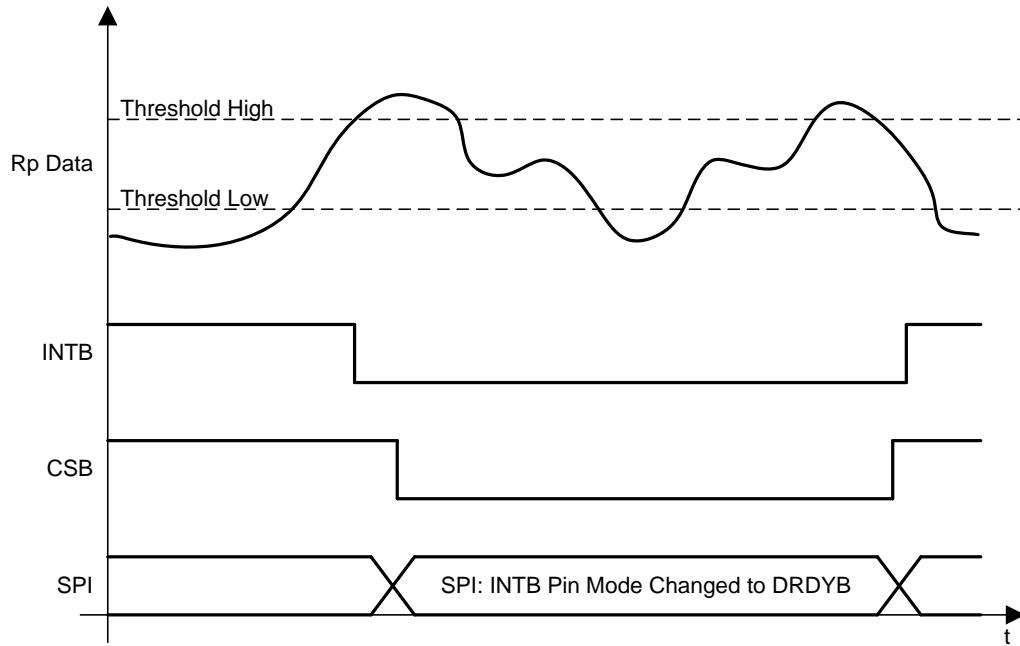
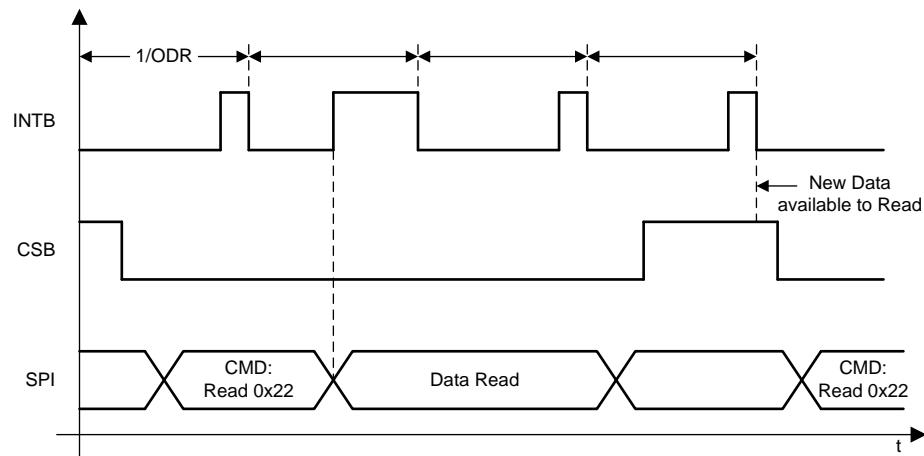
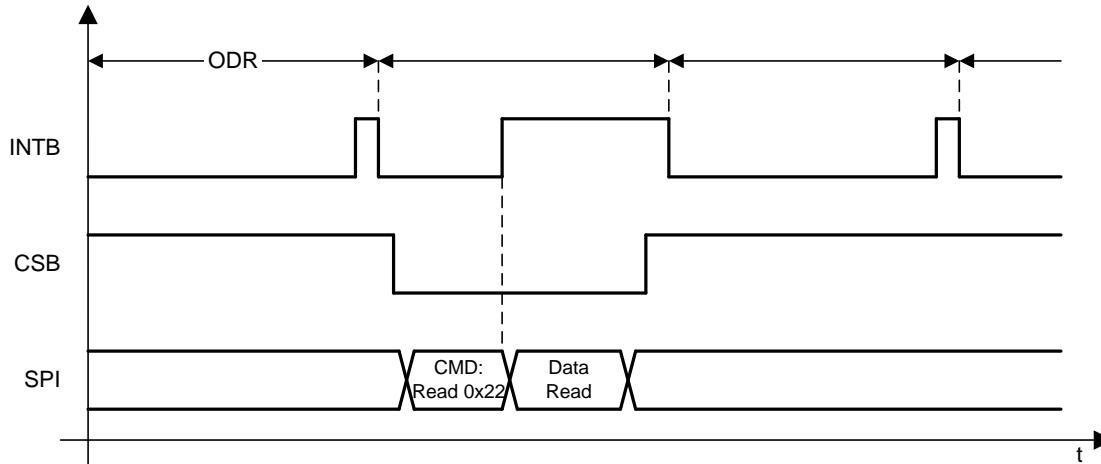



Figure 12. Behavior Of INTB Terminal In Wake-Up Mode


7.4.2.3 DRDYB Mode

In DRDY(Data Ready) mode, the INTB terminal is asserted every time the conversion data is available and de-asserted once the read command on register 0x22 is registered internally; if the read is in progress, the terminal is pulsed instead. The valid condition for new data availability is CSB high and DRDYB falling edge.

Device Functional Modes (continued)

Figure 13. Behavior of INTB Terminal in DRDYB Mode with SPI Extending Beyond Subsequent Conversions

Figure 14. Behavior Of INTB Terminal In DRDYB Mode with SPI Reading The Data Within Subsequent Conversion

7.5 Programming

The LDC1051 utilizes a 4-wire SPI to access control and data registers. The LDC1051 is an SPI slave device and does not initiate any transactions.

7.5.1 SPI Description

A typical serial interface transaction begins with an 8-bit instruction, which is comprised of a read/write bit (MSB, R=1) and a 7 bit address of the register, followed by a data field which is typically 8 bits. However, the data field can be extended to a multiple of 8 bits by providing sufficient SPI clocks. Refer to the [Extended SPI Transactions](#) section below.

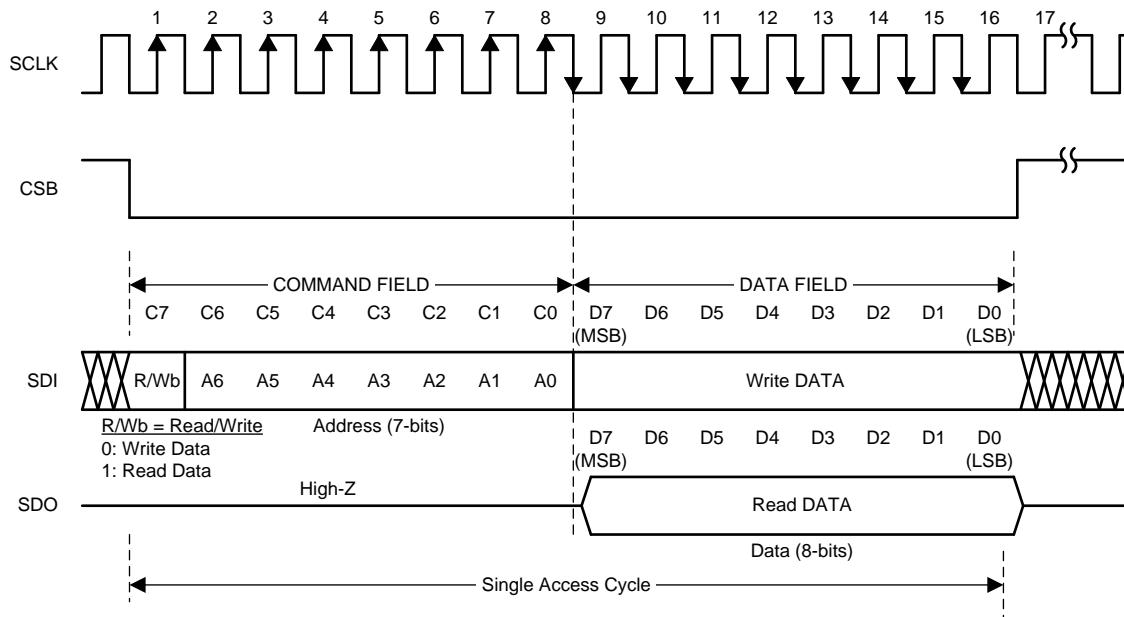


Figure 15. Serial Interface Protocol

Each assertion of CSB starts a new register access. The R/Wb bit in the command field configures the direction of the access; a value of 0 indicates a write operation and a value of 1 indicates a read operation. All output data is driven on the falling edge of the serial clock (SCLK), and all input data is sampled on the rising edge of the serial clock (SCLK). Data is written into the register on the rising edge of the 16th clock. It is required to deassert CSB after the 16th clock; if CSB is deasserted before the 16th clock, no data write will occur.

7.5.1.1 Extended SPI Transactions

A transaction may be extended to multiple registers by keeping the CSB asserted beyond the initial 16 clocks. In this mode, the register addresses increment automatically. CSB must be asserted during $8*(1+N)$ clock cycles of SCLK, where N is the amount of bytes to write or read during the transaction.

During an extended read access, SDO outputs the register contents every 8 clock cycles after the initial 8 clocks of the command field. During an extended write access, the data is written to the registers every 8 clock cycles after the initial 8 clocks of the command field.

7.6 Register Map and Description

Table 1. Register Map⁽¹⁾⁽²⁾⁽³⁾

Register Name	Address	Direction	Default	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0									
Device ID	0x00	RO	0x84	Device ID																
Rp_MAX	0x01	R/W	0x0E	Rp Maximum																
Rp_MIN	0x02	R/W	0x14	Rp Minimum																
Watchdog Timer Frequency	0x03	R/W	0x45	Min Sensor Frequency																
LDC Configuration	0x04	R/W	0x1B	Reserved(000)			Amplitude			Response Time										
Reserved	0x05	RO	0x01	Reserved(00000001)																
Reserved	0x06	R/W	0xFF ??	Reserved																
Comparator Threshold High MSB	0x07	R/W	0xFF	Threshold High MSB																
Reserved	0x08	R/W	0x00 ??	Reserved																
Comparator Threshold Low MSB	0x09	R/W	0x00	Threshold Low MSB																
INTB Terminal Configuration	0x0A	R/W	0x00	Reserved(00000)							INTB_MODE									
Power Configuration	0x0B	R/W	0x00	Reserved(0000000)										PWR_MODE						
Status	0x20	RO		OSC Dead	DRDYB	Wake-up	Comparator	Do Not Care												
Reserved	0x21	RO		Reserved(0000000)																
Proximity Data	0x22	RO		Proximity Data																
Reserved	0x23	RO		Reserved																
Reserved	0x24	RO		Reserved																
Reserved	0x25	RO		Reserved																

(1) Values of register fields which are unused should be set to default values only.

(2) Registers 0x01 through 0x05 are Read Only when the part is awake (PWR_MODE bit is SET)

(3) R/W: Read/Write. RO: Read Only. WO: Write Only.

Table 2. Revision ID

Address = 0x00, Default=0x84, Direction=RO		
Bit Field	Field Name	Description
7:0	Revision ID	Revision ID of Silicon.

Table 3. Rp_MAX

Address = 0x01, Default=0x0E, Direction=R/W		
Bit Field	Field Name	Description
7:0	Rp Maximum	Maximum Rp that LDC1051 needs to measure. Configures the input dynamic range of LDC1051. See Table 4 for register settings.

Table 4. Register Settings for Rp_MAX

Register setting	Rp (kΩ)
0x00	3926.991
0x01	3141.593
0x02	2243.995
0x03	1745.329
0x04	1308.997
0x05	981.748
0x06	747.998
0x07	581.776
0x08	436.332
0x09	349.066
0x0A	249.333
0x0B	193.926
0x0C	145.444
0x0D	109.083
0x0E	83.111
0x0F	64.642
0x10	48.481
0x11	38.785
0x12	27.704
0x13	21.547
0x14	16.160
0x15	12.120
0x16	9.235
0x17	7.182
0x18	5.387
0x19	4.309
0x1A	3.078
0x1B	2.394
0x1C	1.796
0x1D	1.347
0x1E	1.026
0x1F	0.798

Table 5. Rp_MIN

Address = 0x02, Default=0x14, Direction=R/W		
Bit Field	Field Name	Description
7:0	Rp Minimum	Minimum Rp that LDC1051 needs to measure. Configures the input dynamic range of LDC1051. See Table 6 for register settings. ⁽¹⁾

(1) This Register needs a mandatory write as it defaults to 0x14.

Table 6. Register Settings for Rp_MIN

Register setting	Rp (kΩ)
0x20	3926.991
0x21	3141.593
0x22	2243.995
0x23	1745.329
0x24	1308.997
0x25	981.748
0x26	747.998
0x27	581.776
0x28	436.332
0x29	349.066
0x2A	249.333
0x2B	193.926
0x2C	145.444
0x2D	109.083
0x2E	83.111
0x2F	64.642
0x30	48.481
0x31	38.785
0x32	27.704
0x33	21.547
0x34	16.160
0x35	12.120
0x36	9.235
0x37	7.182
0x38	5.387
0x39	4.309
0x3A	3.078
0x3B	2.394
0x3C	1.796
0x3D	1.347
0x3E	1.026
0x3F	0.798

Table 7. Watchdog Timer Frequency

Address = 0x03, Default=0x45, Direction=R/W		
Bit Field	Field Name	Description
7:0	Min Sensor Frequency	<p>Sets the watchdog timer. The Watchdog timer is set based on the lowest sensor frequency.</p> $N = 68.94 \times \log_{10} \left(\frac{F}{2500} \right)$ <p>where</p> <ul style="list-style-type: none"> • F is the sensor frequency <p>Example: If Sensor frequency is 1Mhz Min Sensor Frequency=68.94*log10(1M/2500)=Round to nearest integer(179.38)=179</p>

Table 8. LDC Configuration

Address = 0x04, Default=0x1B, Direction=R/W		
Bit Field	Field Name	Description
7:5	Reserved	Reserved to 0
4:3	Amplitude	<p>Sets the oscillation amplitude</p> <p>00:1V 01:2V 10:4V 11:Reserved</p>
2:0	Response Time	<p>000: Reserved 001: Reserved 010: 192 011: 384 100: 768 101: 1536 110: 3072 111: 6144</p>

Table 9. Comparator Threshold High MSB

Address = 0x07, Default=0xFF, Direction=R/W		
Bit Field	Field Name	Description
7:0	Threshold High	Threshold High Register.

Table 10. Comparator Threshold Low MSB

Address = 0x09, Default=0x00, Direction=R/W		
Bit Field	Field Name	Description
7:0	Threshold Low	Threshold Low Register.

Table 11. INTB Terminal Configuration

Address = 0x0A, Default=0x00, Direction=R/W		
Bit Field	Field Name	Description
7:3	Reserved	Reserved to 0
2:0	Mode	000: All modes disabled 001: Wake-up Enabled on INTB terminal 010: INTB terminal indicates the status of Comparator output 100: DRDYB Enabled on INTB terminal All other combinations are Reserved

Table 12. Power Configuration

Address = 0x0B, Default=0x00, Direction=R/W		
Bit Field	Field Name	Description
7:1	Reserved	Reserved to 0
0	PWR_MODE	0:Stand-By mode 1:Active Mode. Conversion is Enabled Refer to Power Modes for more details.

Table 13. Status

Address = 0x20, Default=NA, Direction=RO		
Bit Field	Field Name	Description
7	OSC status	1:Indicates oscillator overloaded and stopped 0:Oscillator working
6	Data Ready	1:No new data available 0:Data is ready to be read
5	Wake-up	1:Wake-up disabled 0:Wake-up triggered. Proximity data is more than Threshold High value.
4	Comparator	1:Proximity data is less than Threshold Low value 0:Proximity data is more than Threshold High value
3:0	Do not Care	

Table 14. Proximity Data

Address = 0x22, Default=NA, Direction=RO		
Bit Field	Field Name	Description
7:0	Proximity data	Proximity data

Conversion data is updated to the proximity register only when a read is initiated on 0x22 register. If the read is delayed between subsequent conversions, these registers are not updated until another read is initiated on 0x22.

8 Applications and Implementation

8.1 Application Information

8.1.1 Calculation of Rp_MIN and Rp_MAX

Different sensing applications may have a different range of the resonance impedance R_p to measure. The LDC1051 measurement range of R_p is controlled by setting 2 registers – R_p_{MIN} and R_p_{MAX} . For a given application, R_p must never be outside the range set by these register values, otherwise the measured value will be clipped. For optimal sensor resolution, the range of R_p_{MIN} to R_p_{MAX} should not be unnecessarily large. The following procedure is recommended to determine the R_p_{MIN} and R_p_{MAX} register values.

8.1.1.1 Setting R_p_{MAX}

R_p_{MAX} sets the upper limit of the LDC1051 resonant impedance input range.

- Configure the sensor such that the eddy current losses are minimized. As an example, for a proximity sensing application, set the distance between the sensor and the target to the maximum sensing distance.
- Measure the resonant impedance R_p using an impedance analyzer.
- Multiply R_p by 2 and use the next higher value from [Table 4](#).

Note that setting R_p_{MAX} to a value not listed in [Table 4](#) can result in indeterminate behavior.

8.1.1.2 Setting R_p_{MIN}

R_p_{MIN} sets the lower limit of the LDC1051 resonant impedance input range.

- Configure the sensor such that the eddy current losses are maximized. As an example, for a proximity sensing application, set the distance between the sensor and the metal target to the minimum sensing distance.
- Measure the resonant impedance R_p using an impedance analyzer.
- Divide the R_p value by 2 and then select the next lower R_p value from [Table 6](#).

Note that setting R_p_{MIN} to a value not listed on [Table 6](#) can result in indeterminate behavior. In addition, R_p_{MIN} powers on with a default value of 0x14 which must be set to a value from [Table 6](#) prior to powering on the LDC.

8.1.2 Output Data Rate

Output data rate of LDC1051 depends on the sensor frequency, f_{sensor} and 'Response Time' field in LDC Configuration register(Address:0x04).

$$\text{Output Data Rate} = \frac{f_{sensor}}{\left(\frac{\text{Response time}}{3} \right)} \quad (4)$$

8.1.3 Choosing Filter Capacitor (CFA and CFB Terminals)

The Filter capacitor is critical to the operation of the LDC1051. The capacitor should be low leakage, temperature stable, and it must not generate any piezoelectric noise (the dielectrics of many capacitors exhibit piezoelectric characteristics and any such noise is coupled directly through R_p into the converter). The optimal capacitance values range from 20pF to 100nF. The value of the capacitor is based on the time constant and resonating frequency of the LC tank.

If a ceramic capacitor is used, then a C0G (or NP0) grade dielectric is recommended; the voltage rating should be $\geq 10V$. The traces connecting CFA and CFB to the capacitor should be as short as possible to minimize any parasitics.

For optimal performance, the chosen filter capacitor, connected between terminals CFA and CFB, needs to be as small as possible, but large enough such that the active filter does not saturate. The size of this capacitor depends on the time constant of the sense coil, which is given by L/R_s , (L =inductance, R_s =series resistance of the inductor at oscillation frequency). The larger this time constant, the larger filter capacitor is required. Hence, this time constant reaches its maximum when there is no target present in front of the sensing coil.

Application Information (continued)

The following procedure can be used to find the optimal filter capacitance:

1. Start with a large filter capacitor. For a ferrite core coil, 10nF is usually large enough. For an air coil or PCB coil, 100pF is usually large enough.
2. Power on the LDC and set the desired register values. Minimize the eddy currents losses. This is done by minimizing the amount of conductive target covering the sensor. For an axial sensing application, the target should be at farthest distance from coil. For a lateral or angular position sensing application, the target coverage of the coil should be minimized.
3. Observe the signal on the CFB terminal using a scope. Since this node is very sensitive to capacitive loading, it is recommended to use an active probe. As an alternative, a passive probe with a $1\text{k}\Omega$ series resistance between the tip and the CFB terminal can be used.
4. Vary the values of the filter capacitor until that the signal observed on the CFB terminal has an amplitude of approximate 1V peak-to-peak. This signal scales linearly with the reciprocal of the filter capacitance. For example, if a 100pF filter capacitor is applied and the signal observed on the CFB terminal has a peak-to-peak value of 200mV, the desired 1V peak-to-peak value is obtained using a $200\text{mV} / 1\text{V} * 100\text{pF} = 20\text{pF}$ filter capacitor.

8.2 Typical Applications

8.2.1 Axial Distance Sensing Using a PCB Sensor with LDC1051

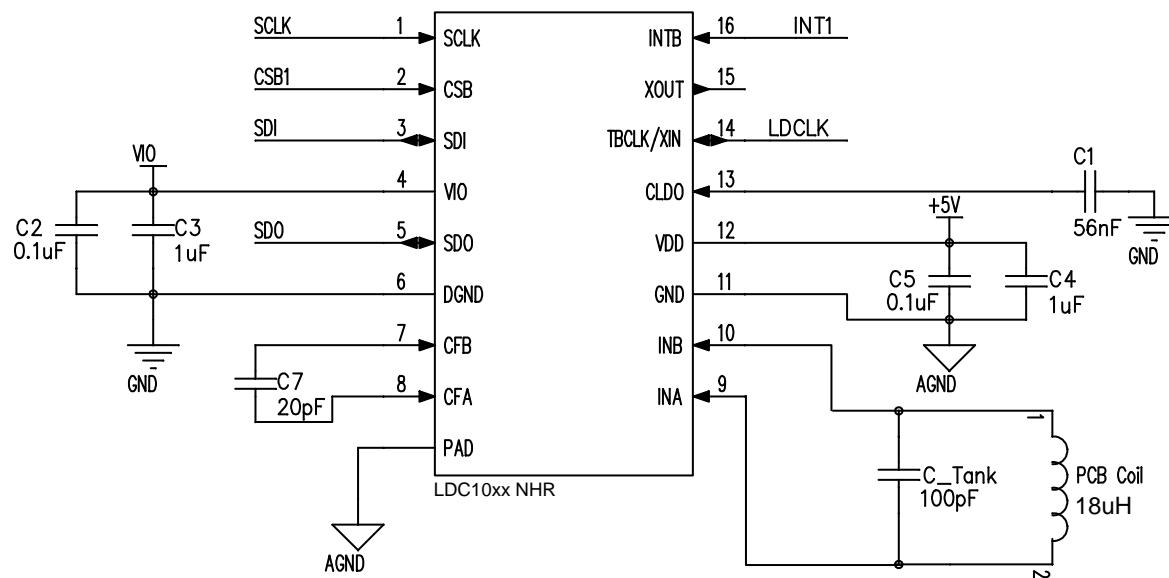


Figure 16. Typical Application Schematic, LDC10xx

8.2.1.1 Design Requirements

For this design example, use the following as the input parameters.

Table 15. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Minimum sensing distance	1 mm
Maximum sensing distance	8 mm
Output data rate	78 KSPS (Max data rate with LDC10xx series)
Number of PCB layers for sensor	2 layers

8.2.1.2 Detailed Design Procedure

8.2.1.2.1 Sensor and Target

In this example, consider a sensor with the below characteristics.

Table 16. Sensor Characteristics

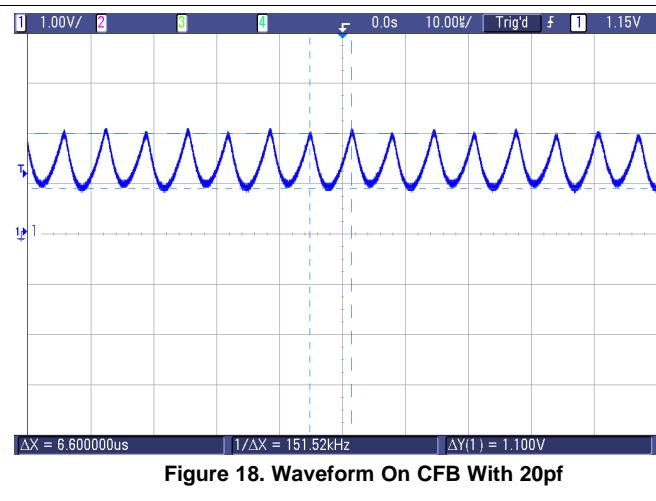
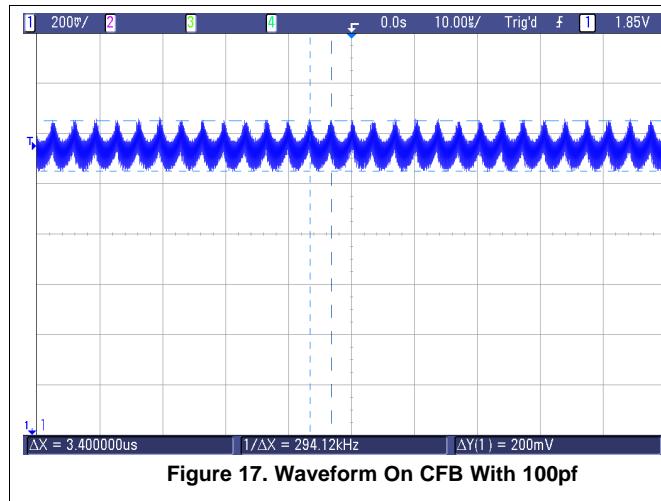
PARAMETER	VALUE
Layers	2
Thickness of copper	1 Oz
Coil shape	Circular
Number of turns	23
Trace thickness	4 mil
Trace spacing	4 mil
PCB core material	FR4
R _p @ 1 mm	5 kΩ
R _p @ 8 mm	12.5 kΩ
Nominal Inductance	18 μH

Target material used is stainless steel

8.2.1.2.2 Calculating Sensor Capacitor

Sensor frequency depends on various factors in the application. In this example since one of the design parameter is to achieve output data rate of 78 KSPS, sensor frequency can be calculated as below.

$$\text{Output Data Rate} = \frac{f_{\text{sensor}}}{\left(\frac{\text{Response time}}{3} \right)} \quad (5)$$



With the lowest Response time of 192 and output data rate of 78 KSPS, sensor frequency calculated using the above formula is 4.99 MHz.

Now, using the below formula sensor capacitor is calculated to be 55 pF with a sensor inductance of 18 μH

$$L = \frac{1}{C \times (2\pi \times f_{\text{sensor}})^2} \quad (6)$$

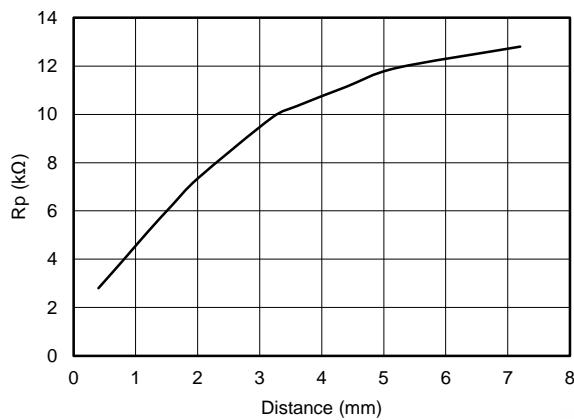
8.2.1.2.3 Choosing Filter Capacitor

Using the steps given in [Choosing Filter Capacitor \(CFA and CFB Terminals\)](#) filter capacitor for the example sensor is 20 pF. Below waveform shows the pattern on CFB terminal with 100 pF and 20 pF filter capacitor.

8.2.1.2.4 Setting Rp_MIN and Rp_MAX

Calculating value for Rp_MAX Register : Rp at 8mm is $12.5\text{k}\Omega$, $12500 \times 2 = 25000$. In [Table 4](#), then $27.704\text{k}\Omega$ is the nearest value larger than $25\text{k}\Omega$; this corresponds to Rp_MAX value of 0x12

Calculating value for Rp_MIN Register : Rp at 1mm is $5\text{k}\Omega$, $5000/2 = 2500$. In [Table 6](#), $2.394\text{k}\Omega$ is the nearest value lower than $2.5\text{k}\Omega$; this corresponds to Rp_MIN value of 0x3B


8.2.1.2.5 Calculating Minimum Sensor Frequency

Using,

$$N = 68.94 \times \log_{10} \left(\frac{F}{2500} \right) \quad (7)$$

N is 227.51, round off to 228 decimal. This value has to be written into Watchdog Timer Register, which is used to wake up the internal circuit when the sensor is saturated.

8.2.1.3 Application Curves

Figure 19. Rp vs Distance

8.2.2 Lateral Position Sensing Application Diagram

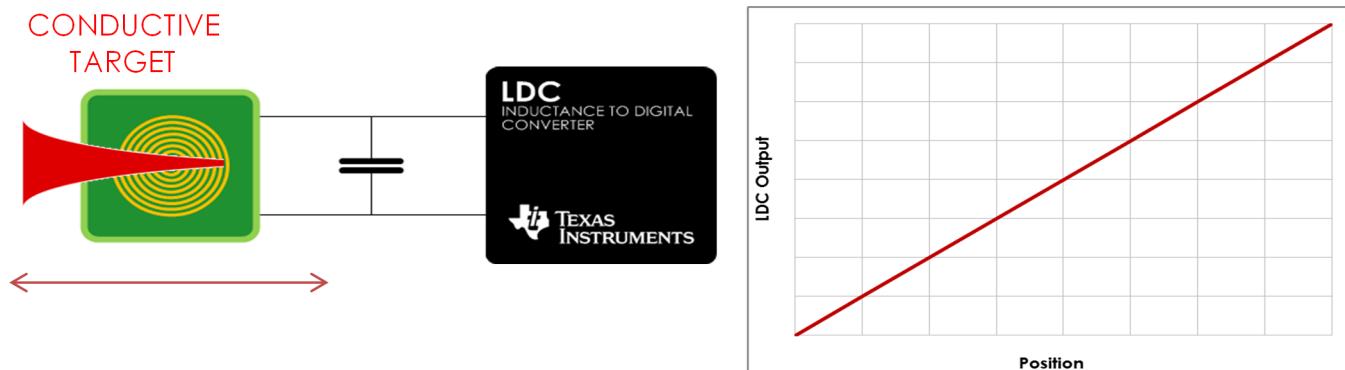


Figure 20. Linear Position Sensing

8.2.3 Angular Position Sensing Application Diagram

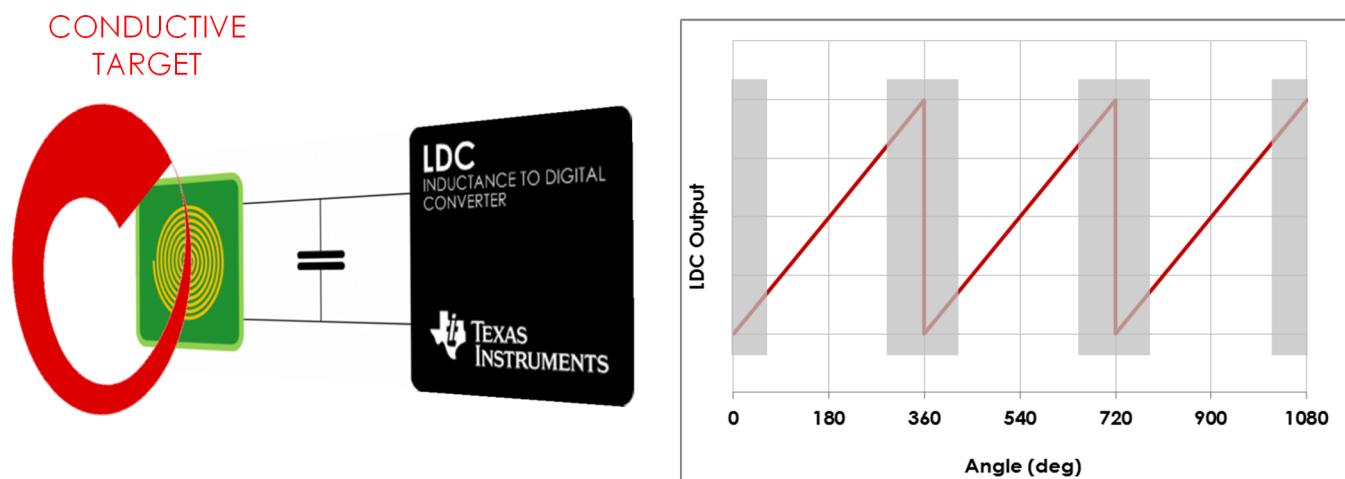
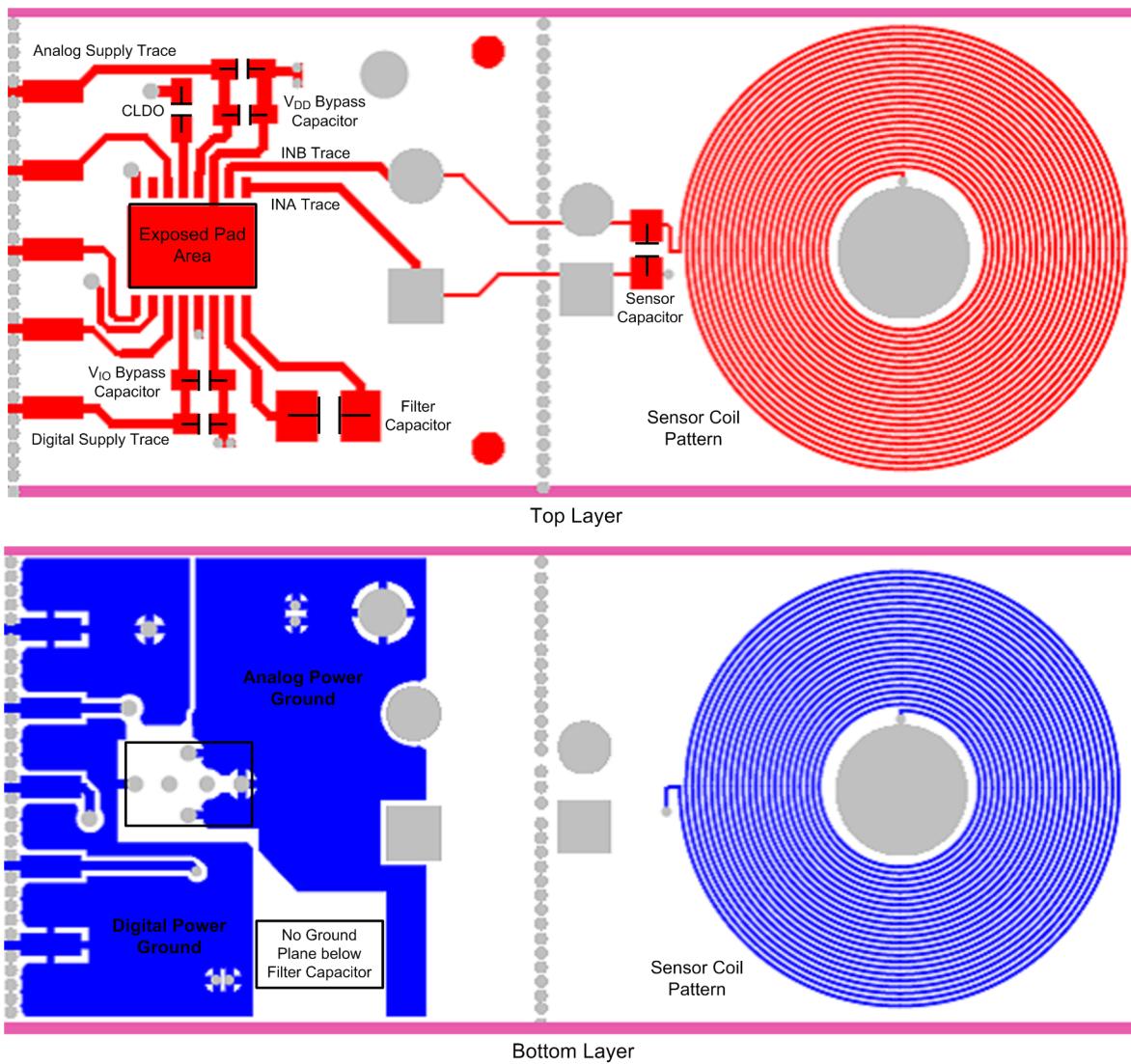


Figure 21. Angular Position Sensing

9 Power Supply Recommendations


The LDC1051 is designed to operate from an analog supply range of 4.75 V to 5.25 V and digital I/O supply range of 1.8V to 5.25V. The analog supply voltage should be greater than or equal to the digital supply voltage for proper operation of the device. The supply voltage should be well regulated. If the supply is located more than a few inches from the LDC1051 additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of 10uF is a typical choice.

10 Layout

10.1 Layout Guidelines

- The VDD and VIO terminal should be bypassed to ground with a low ESR ceramic bypass capacitor. The typical recommended bypass capacitance is 0.1uF ceramic with a X5R or X7R dielectric.
- The optimum placement is closest to the VDD/VIO and GND/DGND terminals of the device. Care should be taken to minimize the loop area formed by the bypass capacitor connection, the VDD/VIO terminal, and the GND/DGND terminal of the IC. See [Figure 22](#) for a PCB layout example.
- The CLDO terminal should be bypassed to digital ground (DGND) with a 56nF ceramic bypass capacitor.
- The filter capacitor selected for the application using the procedure described in section [Choosing Filter Capacitor \(CFA and CFB Terminals\)](#) is connected between CFA and CFB terminals. Place the filter capacitor close to the CFA and CFB terminals. Do not use any ground/power plane below the capacitor and the trace connecting the capacitor and the CFA /CFB terminals.
- Use of two separate ground plane for GND and DGND is recommended with a star connection. See [Figure 22](#) for a PCB layout example.

10.2 Layout Example

Figure 22. LDC10xx Board Layout

11 Device and Documentation Support

11.1 Trademarks

All trademarks are the property of their respective owners.

11.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary

[SLYZ022 — TI Glossary](#).

This glossary lists and explains terms, acronyms and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LDC1051NHRJ	ACTIVE	WSON	NHR	16	4500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	LDC1051	Samples
LDC1051NHRR	ACTIVE	WSON	NHR	16	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	LDC1051	Samples
LDC1051NHRT	LIFEBUY	WSON	NHR	16	250	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	LDC1051	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

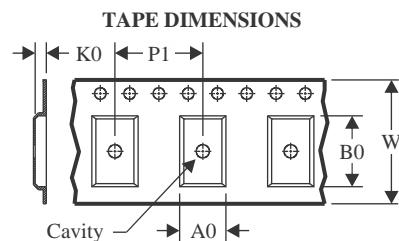
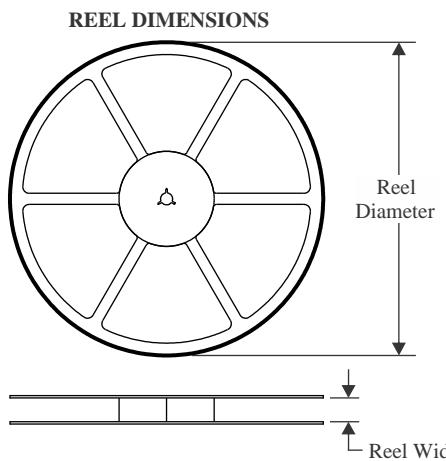
(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

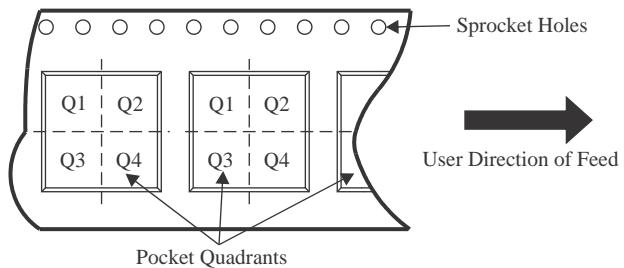
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

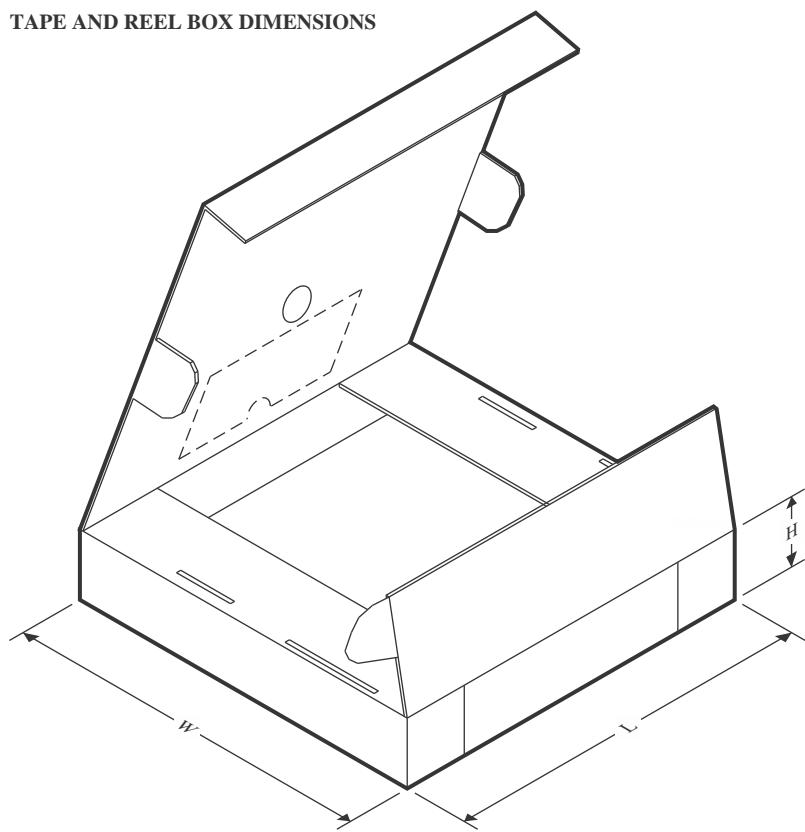
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.



(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

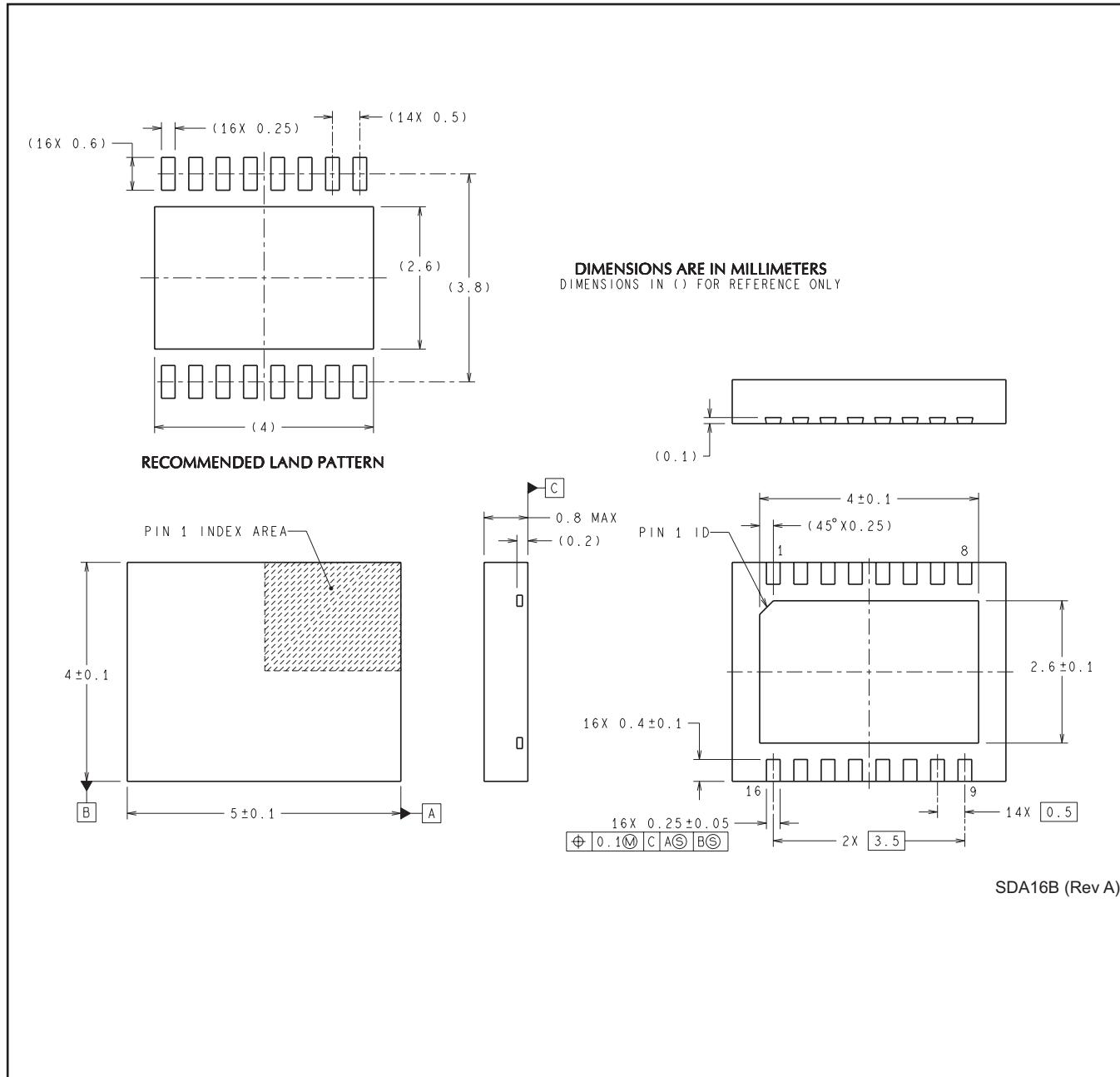

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LDC1051NHRJ	WSON	NHR	16	4500	330.0	12.4	4.3	5.3	1.3	8.0	12.0	Q1
LDC1051NHRR	WSON	NHR	16	1000	178.0	12.4	4.3	5.3	1.3	8.0	12.0	Q1
LDC1051NHRT	WSON	NHR	16	250	178.0	12.4	4.3	5.3	1.3	8.0	12.0	Q1


TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LDC1051NHRJ	WSON	NHR	16	4500	367.0	367.0	35.0
LDC1051NHRR	WSON	NHR	16	1000	210.0	185.0	35.0
LDC1051NHRT	WSON	NHR	16	250	210.0	185.0	35.0

MECHANICAL DATA

NHR0016B

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated