

# International Rectifier

## HEXFET® POWER MOSFET

Provisional Data Sheet No. PD-9.335E

**JANTX2N6760**  
**JANTXV2N6760**  
**[REF:MIL-PRF-19500/542]**  
**[GENERIC:IRF330]**  
**N-CHANNEL**

### 400 Volt, 1.00Ω HEXFET

HEXFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry achieves very low on-state resistance combined with high transconductance.

HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, and high energy pulse circuits, and virtually any application where high reliability is required.

### Product Summary

| Part Number  | BV <sub>dss</sub> | R <sub>Ds(on)</sub> | I <sub>D</sub> |
|--------------|-------------------|---------------------|----------------|
| JANTX2N6760  | 400V              | 1.00Ω               | 5.5A           |
| JANTXV2N6760 |                   |                     |                |

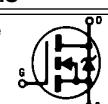
### Features:

- Avalanche Energy Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed

### Absolute Maximum Ratings

|                                                                | Parameter                                       | JANTX2N6760, JANTXV2N6760                             | Units |
|----------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|-------|
| I <sub>D</sub> @ V <sub>GS</sub> = 10V, T <sub>C</sub> = 25°C  | Continuous Drain Current                        | 5.5                                                   | A     |
| I <sub>D</sub> @ V <sub>GS</sub> = 10V, T <sub>C</sub> = 100°C | Continuous Drain Current                        | 3.5                                                   |       |
| I <sub>DM</sub>                                                | Pulsed Drain Current ①                          | 22                                                    |       |
| P <sub>D</sub> @ T <sub>C</sub> = 25°C                         | Max. Power Dissipation                          | 75                                                    | W     |
|                                                                | Linear Derating Factor                          | 0.60                                                  | W/K ⑤ |
| V <sub>GS</sub>                                                | Gate-to-Source Voltage                          | ±20                                                   | V     |
| E <sub>AS</sub>                                                | Single Pulse Avalanche Energy ②                 | 1.7                                                   | mJ    |
| I <sub>AR</sub>                                                | Avalanche Current ①                             | 5.5                                                   | A     |
| E <sub>AR</sub>                                                | Repetitive Avalanche Energy ①                   | —                                                     | mJ    |
| dv/dt                                                          | Peak Diode Recovery dv/dt ③                     | 4.0                                                   | V/ns  |
| T <sub>J</sub><br>T <sub>STG</sub>                             | Operating Junction<br>Storage Temperature Range | -55 to 150                                            | °C    |
|                                                                | Lead Temperature                                | 300 (0.063 in. (1.6mm) from<br>case for 10.5 seconds) |       |
|                                                                | Weight                                          | 11.5 (typical)                                        | g     |

## JANTX2N6760, JANTXV2N6760 Device


### Electrical Characteristics @ $T_j = 25^\circ\text{C}$ (Unless Otherwise Specified)

|                                            | Parameter                                    | Min. | Typ. | Max. | Units                    | Test Conditions                                                                                                                                              |
|--------------------------------------------|----------------------------------------------|------|------|------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\text{BV}_{\text{DSS}}$                   | Drain-to-Source Breakdown Voltage            | 400  | —    | —    | V                        | $\text{V}_{\text{GS}} = 0\text{V}, \text{I}_{\text{D}} = 1.0\text{ mA}$                                                                                      |
| $\Delta \text{BV}_{\text{DSS}}/\Delta T_j$ | Temperature Coefficient of Breakdown Voltage | —    | 0.46 | —    | $\text{V}^\circ\text{C}$ | Reference to $25^\circ\text{C}$ , $\text{I}_{\text{D}} = 1.0\text{ mA}$                                                                                      |
| $\text{RDS}(\text{on})$                    | Static Drain-to-Source On-State Resistance   | —    | —    | 1.00 | $\Omega$                 | $\text{V}_{\text{GS}} = 10\text{V}, \text{I}_{\text{D}} = 3.5\text{A}$ <sup>④</sup>                                                                          |
|                                            |                                              | —    | —    | 1.22 |                          | $\text{V}_{\text{GS}} = 10\text{V}, \text{I}_{\text{D}} = 5.5\text{A}$                                                                                       |
| $\text{VGS}(\text{th})$                    | Gate Threshold Voltage                       | 2.0  | —    | 4.0  | V                        | $\text{V}_{\text{DS}} = \text{V}_{\text{GS}}, \text{I}_{\text{D}} = 250\mu\text{A}$                                                                          |
| $\text{gfs}$                               | Forward Transconductance                     | 2.9  | —    | —    | $\text{S} (\text{d})$    | $\text{V}_{\text{DS}} > 15\text{V}, \text{I}_{\text{DS}} = 3.5\text{A}$ <sup>④</sup>                                                                         |
| $\text{IDSS}$                              | Zero Gate Voltage Drain Current              | —    | —    | 25   | $\mu\text{A}$            | $\text{V}_{\text{DS}} = 0.8 \times \text{Max Rating}, \text{V}_{\text{GS}} = 0\text{V}$                                                                      |
|                                            |                                              | —    | —    | 250  |                          | $\text{V}_{\text{DS}} = 0.8 \times \text{Max Rating}$<br>$\text{V}_{\text{GS}} = 0\text{V}, \text{T}_j = 125^\circ\text{C}$                                  |
| $\text{IGSS}$                              | Gate-to-Source Leakage Forward               | —    | —    | 100  | nA                       | $\text{V}_{\text{GS}} = 20\text{V}$                                                                                                                          |
| $\text{IGSS}$                              | Gate-to-Source Leakage Reverse               | —    | —    | -100 |                          | $\text{V}_{\text{GS}} = -20\text{V}$                                                                                                                         |
| $\text{Q}_g$                               | Total Gate Charge                            | 17   | —    | 39   | nC                       | $\text{V}_{\text{GS}} = 10\text{V}, \text{I}_{\text{D}} = 5.5\text{A}$                                                                                       |
| $\text{Q}_{\text{gs}}$                     | Gate-to-Source Charge                        | 2.0  | —    | 6.0  |                          | $\text{V}_{\text{DS}} = \text{Max. Rating} \times 0.5$<br>see figures 6 and 13                                                                               |
| $\text{Q}_{\text{gd}}$                     | Gate-to-Drain ("Miller") Charge              | 8.0  | —    | 20   | ns                       | $\text{V}_{\text{DD}} = 200\text{V}, \text{I}_{\text{D}} = 5.5\text{A},$<br>$\text{R}_G = 7.5\Omega, \text{V}_{\text{GS}} = 10\text{V}$<br><br>see figure 10 |
| $\text{t}_{\text{d}(\text{on})}$           | Turn-On Delay Time                           | —    | —    | 30   |                          |                                                                                                                                                              |
| $\text{t}_r$                               | Rise Time                                    | —    | —    | 40   |                          |                                                                                                                                                              |
| $\text{t}_{\text{d}(\text{off})}$          | Turn-Off Delay Time                          | —    | —    | 80   |                          |                                                                                                                                                              |
| $\text{t}_f$                               | Fall Time                                    | —    | —    | 35   |                          |                                                                                                                                                              |
| $\text{L}_D$                               | Internal Drain Inductance                    | —    | 5.0  | —    | nH                       | Measured from the drain lead, 6mm (0.25 in.) from package to center of die.                                                                                  |
| $\text{L}_S$                               | Internal Source Inductance                   | —    | 13.0 | —    |                          | Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.                                                                            |
| $\text{C}_{\text{iss}}$                    | Input Capacitance                            | —    | 620  | —    | pF                       | $\text{V}_{\text{GS}} = 0\text{V}, \text{V}_{\text{DS}} = 25\text{V}$<br>$f = 1.0\text{ MHz}$<br>see figure 5                                                |
| $\text{C}_{\text{oss}}$                    | Output Capacitance                           | —    | 200  | —    |                          |                                                                                                                                                              |
| $\text{C}_{\text{rss}}$                    | Reverse Transfer Capacitance                 | —    | 75   | —    |                          |                                                                                                                                                              |



### Source-Drain Diode Ratings and Characteristics

|                        | Parameter                                      | Min.                                                                                                           | Typ. | Max. | Units         | Test Conditions                                                                                                                                                    |
|------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------|------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\text{I}_S$           | Continuous Source Current (Body Diode)         | —                                                                                                              | —    | 5.5  | A             | Modified MOSFET symbol showing the integral reverse p-n junction rectifier.                                                                                        |
| $\text{ISM}$           | Pulse Source Current (Body Diode) <sup>①</sup> | —                                                                                                              | —    | 22   | A             |                                                                                                                                                                    |
| $\text{V}_{\text{SD}}$ | Diode Forward Voltage                          | —                                                                                                              | —    | 1.5  | V             | $\text{T}_j = 25^\circ\text{C}, \text{I}_S = 5.5\text{A}, \text{V}_{\text{GS}} = 0\text{V}$ <sup>④</sup>                                                           |
| $\text{t}_{\text{rr}}$ | Reverse Recovery Time                          | —                                                                                                              | —    | 700  | ns            | $\text{T}_j = 25^\circ\text{C}, \text{I}_F = 5.5\text{A}, \text{dI}/\text{dt} \leq 100\text{A}/\mu\text{s}$<br>$\text{V}_{\text{DD}} \leq 50\text{V}$ <sup>④</sup> |
| $\text{QRR}$           | Reverse Recovery Charge                        | —                                                                                                              | —    | 6.2  | $\mu\text{C}$ |                                                                                                                                                                    |
| $\text{t}_{\text{on}}$ | Forward Turn-On Time                           | Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $\text{L}_S + \text{L}_D$ . |      |      |               |                                                                                                                                                                    |



### Thermal Resistance

|                          | Parameter           | Min. | Typ. | Max. | Units | Test Conditions      |
|--------------------------|---------------------|------|------|------|-------|----------------------|
| $\text{R}_{\text{thJC}}$ | Junction-to-Case    | —    | —    | 1.67 | K/W   | Typical socket mount |
| $\text{R}_{\text{thJA}}$ | Junction-to-Ambient | —    | —    | 30   |       |                      |

## JANTX2N6760, JANTXV2N6760 Device

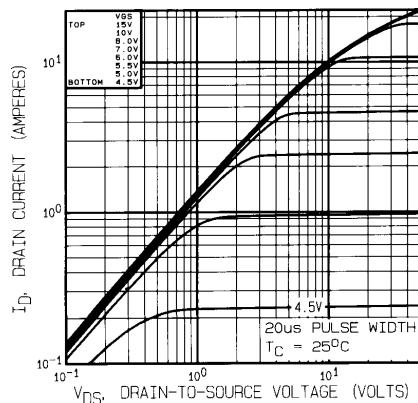



Fig. 1 — Typical Output Characteristics  
 $T_C = 25^\circ\text{C}$

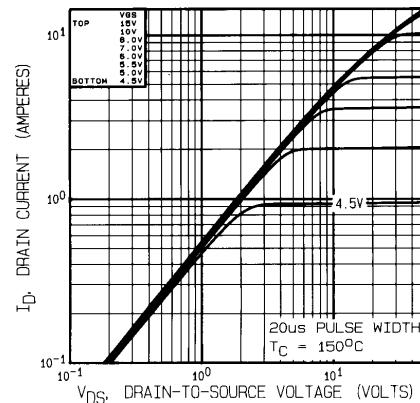



Fig. 2 — Typical Output Characteristics  
 $T_C = 150^\circ\text{C}$

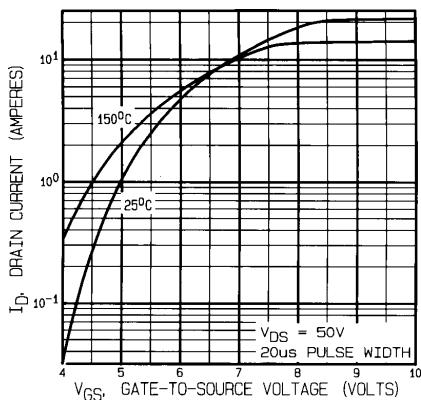



Fig. 3 — Typical Transfer Characteristics

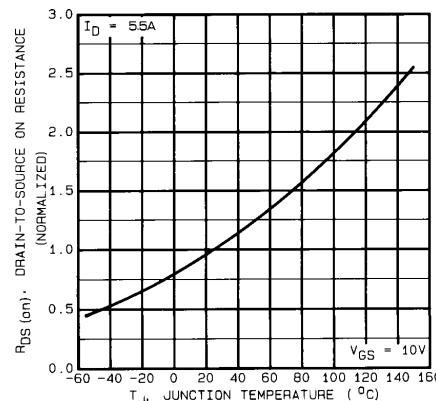



Fig. 4 — Normalized On-Resistance Vs. Temperature

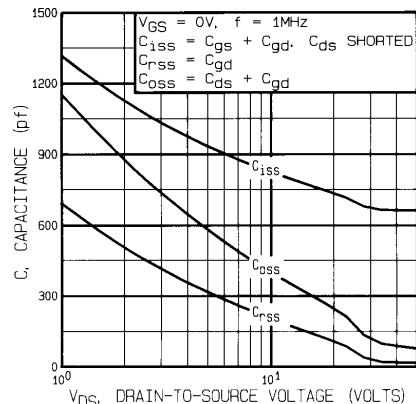



Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

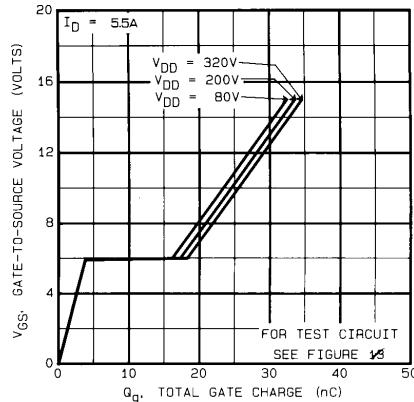



Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage

## JANTX2N6760, JANTXV2N6760 Device

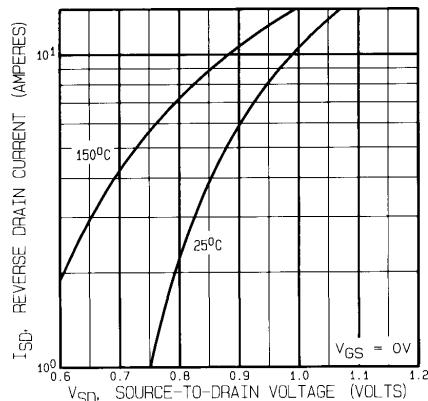



Fig. 7 — Typical Source-to-Drain Diode Forward Voltage

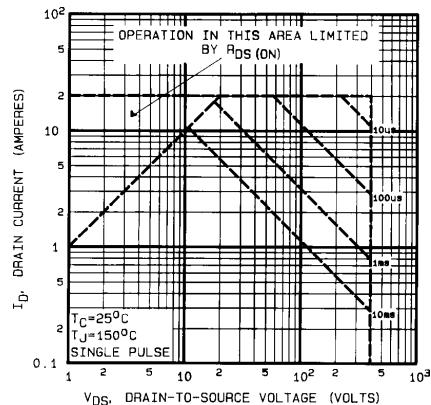



Fig. 8 — Maximum Safe Operating Area

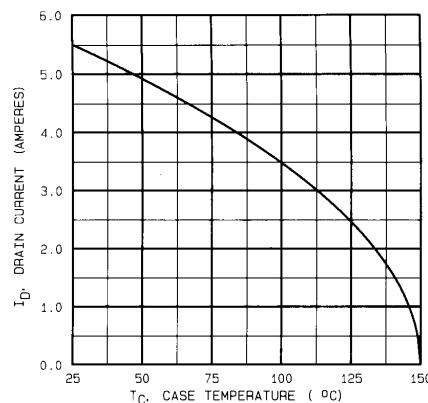



Fig. 9 — Maximum Drain Current Vs. Case Temperature

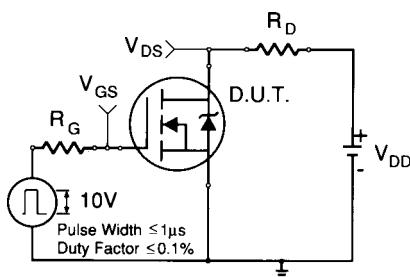



Fig. 10a — Switching Time Test Circuit

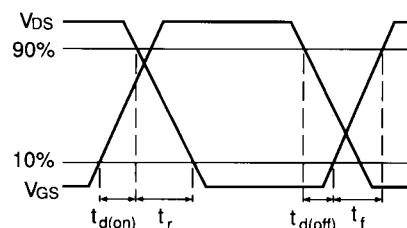



Fig. 10b — Switching Time Waveforms

## JANTX2N6760, JANTXV2N6760 Device

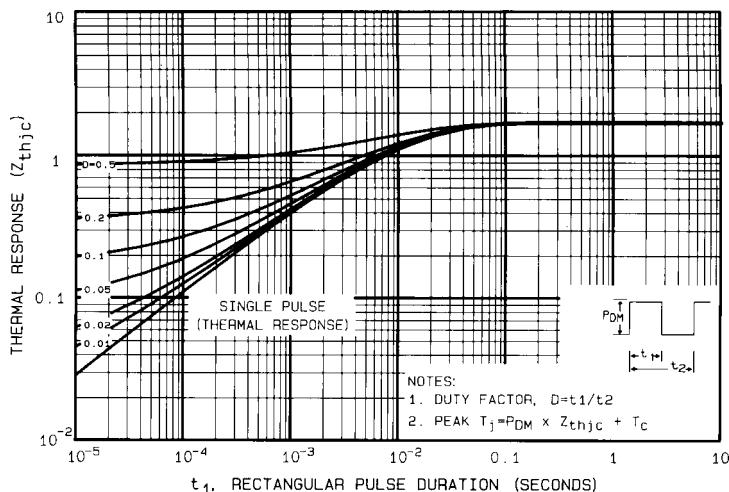



Fig. 11 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

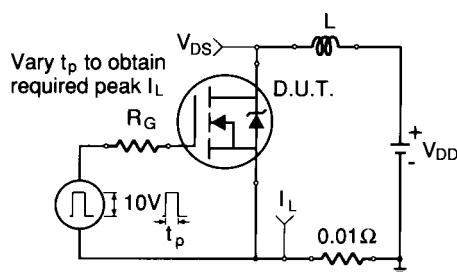



Fig. 12a — Unclamped Inductive Test Circuit

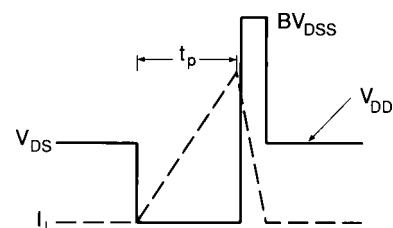



Fig. 12b — Unclamped Inductive Waveforms

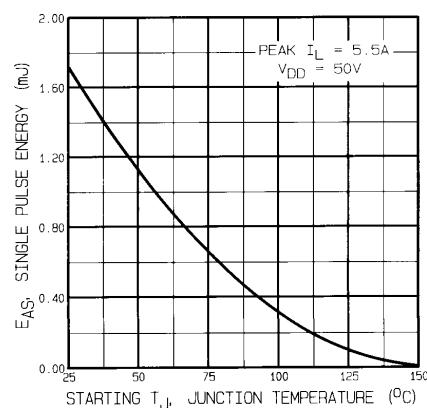



Fig. 12c — Max. Avalanche Energy vs. Current

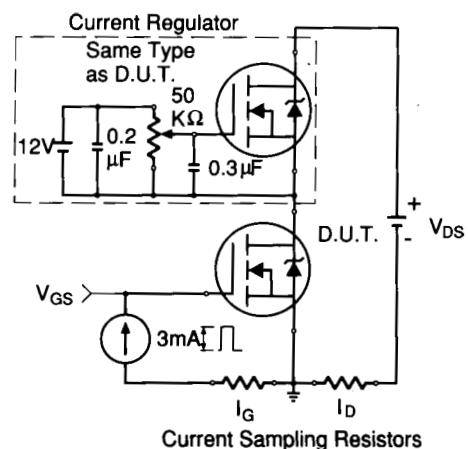
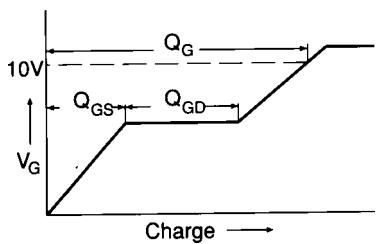
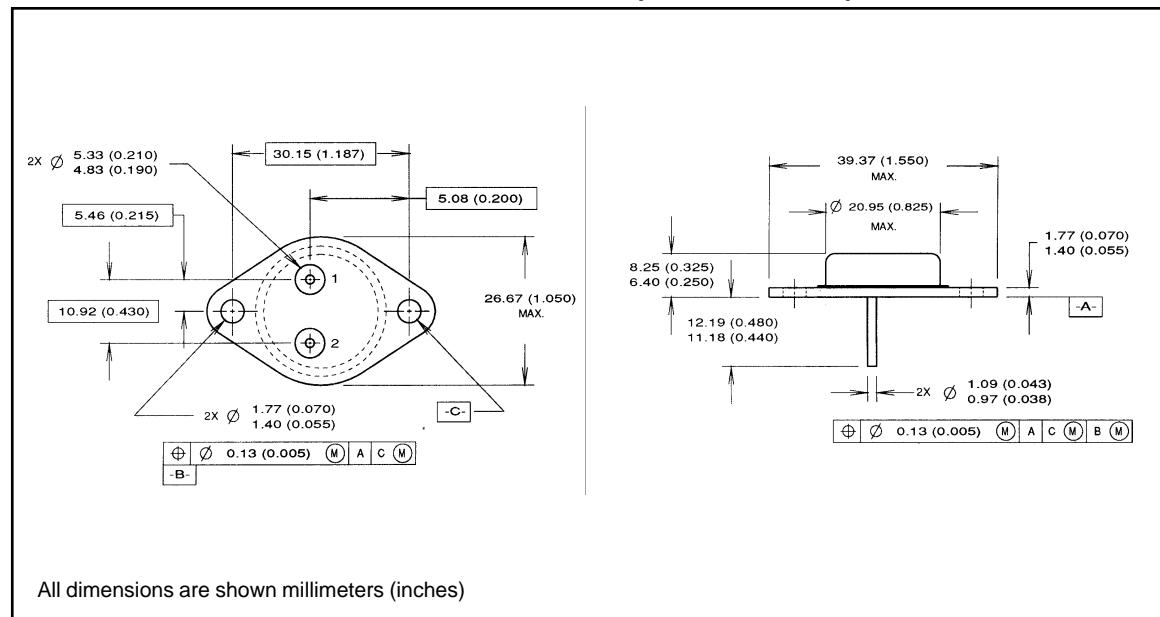




Fig. 13a — Gate Charge Test Circuit


## JANTX2N6760, JANTXV2N6760 Device



- ① Repetitive Rating; Pulse width limited by maximum junction temperature.  
(see figure 11)
- ② @  $V_{DD} = 50V$ , Starting  $T_J = 25^\circ C$ ,  
 $EAS = [0.5 * L * (I_L^2) * [BV_{DSS}/(BV_{DSS}-V_{DD})]]$   
Peak  $I_L = 5.5A$ ,  $V_{GS} = 10V$ ,  $25 \leq R_G \leq 200\Omega$
- ③  $I_{SD} \leq 5.5A$ ,  $dI/dt \leq 90A/\mu s$ ,  
 $V_{DD} \leq BV_{DSS}$ ,  $T_J \leq 150^\circ C$
- ④ Pulse width  $\leq 300 \mu s$ ; Duty Cycle  $\leq 2\%$
- ⑤  $K/W = ^\circ C/W$   
 $W/K = W/^{\circ}C$

Fig. 13b — Basic Gate Charge Waveform

## Case Outline and Dimensions — TO-204AA (Modified TO-3)



International  
**IR** Rectifier

**WORLD HEADQUARTERS:** 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

**EUROPEAN HEADQUARTERS:** Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

**IR CANADA:** 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897

**IR GERMANY:** Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

**IR ITALY:** Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

**IR FAR EAST:** K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086

**IR SOUTHEAST ASIA:** 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

<http://www.irf.com/> Data and specifications subject to change without notice.

10/96