Octal D-Type Latch with 3-State Output

The MC74VHCT573A is an advanced high speed CMOS octal latch with 3-state output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

This 8-bit D-type latch is controlled by a latch enable input and an output enable input. When the output enable input is high, the eight outputs are in a high impedance state.

The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V, because it has full 5.0 V CMOS level output swings.

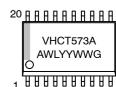
The VHCT573A input and output (when disabled) structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. These input and output structures help prevent device destruction caused by supply voltage—input/output voltage mismatch, battery backup, hot insertion, etc.

Features

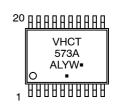
- High Speed: $t_{PD} = 7.7 \text{ ns (Typ)}$ at $V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Designed for 4.5 V to 5.5 V Operating Range
- Low Noise: V_{OLP} = 1.6 V (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V; Machine Model > 200 V

- Chip Complexity: 234 FETs or 58.5 Equivalent Gates
- These Devices are Pb-Free and are RoHS Compliant



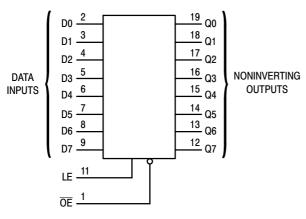
ON Semiconductor®


http://onsemi.com

MARKING DIAGRAMS

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package


(Note: Microdot may be in either location)

FUNCTION TABLE

	INPUTS	OUTPUT	
ŌĒ	LE	D	Q
L	Н	Н	Н
L	H L	L X	L No Change
H	X	X	Z

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

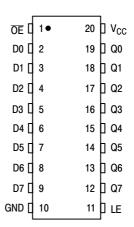


Figure 2. Pin Assignment

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage	- 0.5 to + 7.0	V
V _{out}	DC Output Voltage Outputs in 3–Sta High or Low Sta		V
I _{IK}	Input Diode Current	- 20	mA
I _{OK}	Output Diode Current (V _{OUT} < GND; V _{OUT} > V _{CC})	± 20	mA
I _{out}	DC Output Current, per Pin	± 25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	± 75	mA
P _D	Power Dissipation in Still Air, SOIC Packag TSSOP Packag	· ·	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

†Derating – SOIC Packages: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol		Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage		4.5	5.5	V
V _{in}	DC Input Voltage		0	5.5	V
V _{out}	DC Output Voltage	Outputs in 3–State High or Low State	0	5.5 V _{CC}	٧
T _A	Operating Temperature		- 40	+ 85	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} =5.0V ±0.5V	0	20	ns/V

DC ELECTRICAL CHARACTERISTICS

			V _{CC}		T _A = 25	°C	T _A = - 40	0 to 85°C	
Symbol	Parameter	Test Conditions	V	Min	Тур	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		4.5 to 5.5	2.0			2.0		V
V _{IL}	Maximum Low-Level Input Voltage		4.5 to 5.5			0.8		0.8	V
V _{OH}	Minimum High-Level Output	I _{OH} = - 50μA	4.5	4.4	4.5		4.4		V
	Voltage $V_{in} = V_{IH}$ or V_{IL}	I _{OH} = - 8mA	4.5	3.94			3.80		
V _{OL}	Maximum Low-Level Output	I _{OL} = 50μA	4.5		0.0	0.1		0.1	V
	Voltage V _{in} = V _{IH} or V _{IL}	I _{OL} = 8mA	4.5			0.36		0.44	
l _{in}	Maximum Input Leakage Current	V _{in} = 5.5 V or GND	0 to 5.5			± 0.1		± 1.0	μА
l _{OZ}	Maximum 3-State Leakage Current	$V_{in} = V_{IL} \text{ or } V_{IH}$ $V_{out} = V_{CC} \text{ or GND}$	5.5			± 0.25		± 2.5	μΑ
I _{CC}	Maximum Quiescent Supply Current	V _{in} = V _{CC} or GND	5.5			4.0		40.0	μΑ
I _{CCT}	Quiescent Supply Current	Per Input: V _{IN} = 3.4V Other Input: V _{CC} or GND	5.5			1.35		1.50	mA
I _{OPD}	Output Leakage Current	V _{OUT} = 5.5V	0			0.5		5.0	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$)

				T _A = 25°C		°C	T _A = - 40 to 85°C		
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, LE to Q	$V_{CC} = 5.0 \pm 0.5 V$	$C_L = 15pF$ $C_L = 50pF$		7.7 8.5	12.3 13.3	1.0 1.0	13.5 14.5	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, D to Q	$V_{CC} = 5.0 \pm 0.5 V$	$C_L = 15pF$ $C_L = 50pF$		5.1 5.9	8.5 9.5	1.0 1.0	9.5 10.5	ns
t _{PZL} , t _{PZH}	Output Enable Time, OE to Q	$\begin{aligned} V_{CC} &= 5.0 \pm 0.5 V \\ R_L &= 1 k \Omega \end{aligned}$	$C_L = 15pF$ $C_L = 50pF$		6.3 7.1	10.9 11.9	1.0 1.0	12.5 13.5	ns
t _{PLZ} , t _{PHZ}	Output Disable Time, OE to Q	$V_{CC} = 5.0 \pm 0.5V$ $R_L = 1 k\Omega$	C _L = 50pF		8.8	11.2	1.0	12.0	ns
t _{OSLH} , t _{OSHL}	Output to Output Skew	V _{CC} = 5.5 ± 0.5V (Note 1)	C _L = 50pF			1.0		1.0	ns
C _{in}	Maximum Input Capacitance				4	10		10	pF
C _{out}	Maximum 3-State Output Capacitance (Output in High-Impedance State)				6				pF

		Typical @ 25°C, V _{CC} = 5.0V	
C_{PD}	Power Dissipation Capacitance (Note 2)	25	pF

NOISE CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 5.0$ V)

		T _A = 25°C		
Symbol	Parameter	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	1.2	1.6	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-1.2	-1.6	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		2.0	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage		0.8	V

Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|.
 C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/8 (per latch). C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

TIMING REQUIREMENTS (Input $t_r = t_f = 3.0$ ns)

			T _A = 25°C		T _A = - 40 to 85°C	
Symbol	Parameter	Test Conditions	Тур	Limit	Limit	Unit
t _{w(h)}	Minimum Pulse Width, LE	$V_{CC} = 5.0 \pm 0.5 V$		6.5	8.5	ns
t _{su}	Minimum Setup Time, D to LE	$V_{CC} = 5.0 \pm 0.5 V$		1.5	1.5	ns
t _h	Minimum Hold Time, D to LE	$V_{CC} = 5.0 \pm 0.5 V$		3.5	3.5	ns

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74VHCT573ADWG	SOIC-20WB (Pb-Free)	38 Units / Rail
MC74VHCT573ADWRG	SOIC-20WB (Pb-Free)	1000 / Tape & Reel
MC74VHCT573ADTG	TSSOP-20*	75 Units / Rail
MC74VHCT573ADTRG	TSSOP-20*	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

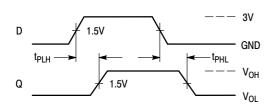


Figure 3. Switching Waveform

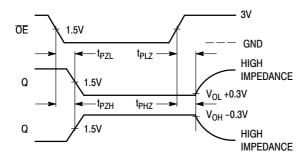


Figure 5. Switching Waveform

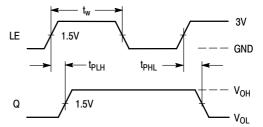


Figure 4. Switching Waveform

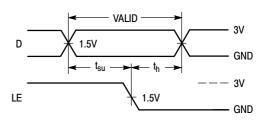
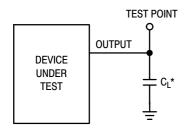




Figure 6. Switching Waveform

^{*}This package is inherently Pb-Free.

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

Figure 7. Test Circuit

Figure 8. Test Circuit

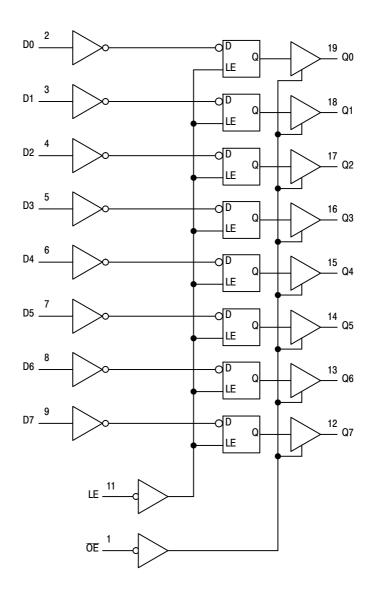
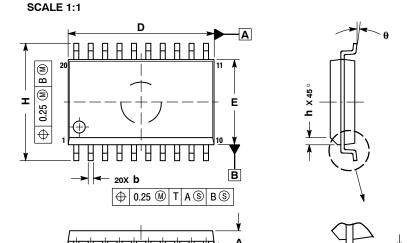
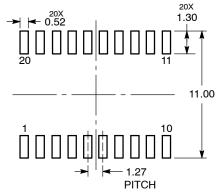
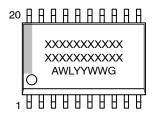



Figure 9. Expanded Logic Diagram

SOIC-20 WB CASE 751D-05 **ISSUE H**


DATE 22 APR 2015

- DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES.
- PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL


	MILLIMETERS				
DIM	MIN	MAX			
Α	2.35	2.65			
A1	0.10	0.25			
b	0.35	0.49			
С	0.23	0.32			
D	12.65	12.95			
E	7.40	7.60			
е	1.27	BSC			
Н	10.05	10.55			
h	0.25	0.75			
L	0.50	0.90			
A	0 °	7 °			

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

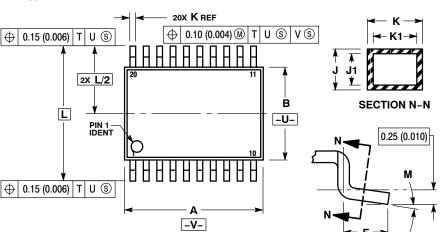
GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

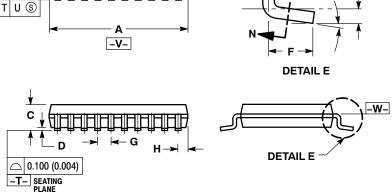
WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-20 WB		PAGE 1 OF 1	


ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

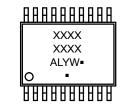
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



TSSOP-20 WB CASE 948E ISSUE D

DATE 17 FEB 2016

- 7.06


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
- (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65 BSC		0.026	BSC	
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252 BSC		
M	0°	8°	0°	8°	

GENERIC SOLDERING FOOTPRINT MARKING DIAGRAM*

= Assembly Location

= Wafer Lot

= Year

= Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1

DIMENSIONS: MILLIMETERS

0.65

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

16X

1.26

0.36

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Voice Mail: 1 800-282-9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Poine: 011 421 33 790 2910
For additional information, please contact your local Sales Representative

 \Diamond